
CFA
Simone Campanoni
simone.campanoni@northwestern.edu

Outline

• CFA and a first example: dominators

• Another example of CFA: dominance frontier

• Example of CFA and CFT: basic block merging and splitting

2

Control Flow Analysis

• Storing order ≠ executing order
• Control Flow Analyses are designed

to understand the possible execution paths (control flows)
while ignoring data values and operations/operators

• We need to identify all possible control flows
between instructions
• We need to identify all possible control flows

between basic blocks

• Let’s look at an example of CFA

3

Control Flow Graph

…
...
y = 0

x = y
...
...

y = 3
After executing this basic block
This other basic block might be executed

4

Sometimes “may” isn’t enough

…
...
y = 0

x = y
...
...

y = 3

How can I know that a given basic block
will be executed no matter what?

This is what our first CFA computes.

5

Dominators

Definition: Node d dominates node n in a CFG (d dom n)
iff every control flow from the start node to n goes through d.
Every node dominates itself.

1What is the relation between
instructions within a basic block?

d

n

start

What is the relation between
instructions in different basic blocks?

It depends on the CFG
In other words, dominators depend on the control flows

6

Dominators

Definition: Node d dominates node n in a CFG (d dom n)
iff every control flow from the start node to n goes through d.
Every node dominates itself.

1

2

3

What are the dominators of
basic blocks 1 and 2?

What are the dominators of
basic blocks 1, 2, and 3?

d

n

start

7

Dominators

Definition: Node d dominates node n in a CFG (d dom n)
iff every control flow from the start node to n goes through d.
Every node dominates itself.

1

2

3
What are now the dominators of
basic blocks 1, 2, and 3?

d

n

start

8

Now that we know what we want to obtain
(the dominance binary relation between basic blocks),

let us define an algorithm (a CFA) that computes it

9

A CFA to find dominators

Consider a block n with k predecessors p1, …, pk

Observation 1: if d dominates each pi (1<=i<=k), then d dominates n
Observation 2: if d dominates n, then it must dominate all pi

D[n] = {n} ∪ (∩p∈predecessors(n) D[p])

To compute it:
- By iteration
- Initialize each D[n] to ?

n

p1 pk

{ }

{ b0, b1, b2, …}

{…, …} {…, …}
…

…

…

10

A CFA to find dominators

Consider a block n with k predecessors p1, …, pk

Observation 1: if d dominates each pi (1<=i<=k), then d dominates n
Observation 2: if d dominates n, then it must dominate all pi

D[n] = {n} ∪ (∩p∈predecessors(n) D[p])

To compute it:
- By iteration
- Initialize each D[n] to include every one

n

p1 pk

This is our first CFA

Notice: this CFA does not
depend on values and/or
operations/operators

11

Dominance

1

2

3

CFG

1

Dominators

2 3

12

We can now introduce new concepts based on the dominator relation

13

Strict dominance

Definition:
a node d strictly dominates n iff
• d dominates n and
• d is not n 1

2

3

CFG

1

Strict dominators

2 3

1

Dominators

2 3

14

Immediate dominators

Definition: the immediate dominator of a node n
is the unique node that strictly dominates n
but does not strictly dominate another node that strictly dominates n

1

2

3

1

2

3

CFG Immediate dominators

Dominator tree1

Strict dominators

2 3

15

Immediate dominators

Definition: the immediate dominator of a node n
is the unique node that strictly dominates n
but does not strictly dominate another node that strictly dominates n

1

2

3

1

2 3

CFG Immediate dominators

Dominator tree1

Strict dominators

2 3

16

Dominators in LLVM

17

Dominators in LLVM

What is going to be
the output?

Notice the order You cannot assume
any order

Notice
the order

18

Dominators in LLVM: example 2

19

Dominators in LLVM: example 2

What is going to be
the output?

20

LLVM-specific notes for dominators

• bool DominatorTree::dominates (…)
• bool dominates (Instruction *i, Instruction *j)

Return true if the basic block that includes i is an immediate dominator
of the basic block that includes j
• bool dominates (Instruction *i, BasicBlock *b)

Return true if the basic block that includes i is an immediate dominator of b

• If the first argument
is not reachable from the entry point of the function, return false
• If the second argument (either instruction or basic block)

is not reachable from the entry point of the function, return true

21

Post-dominators
Assumption: Single exit node in CFG
Definition: Node d post-dominates node n in a graph
iff every path from n to the exit node goes through d

B

C

D

D

C B

CFG

Immediate
post-dominator tree

How to compute
post-dominators?

B: if (par1 > 5)
C: varX = par1 + 1
D: print(varX)

d

exit

n

22

Post-dominators

B

C

D

D

C2 B

CFG
Immediate
post-dominator tree

B: if (par1 > 5)
C: varX = par1 + 1
C2: …
D: print(varX)

C2 C

Assumption: Single exit node in CFG
Definition: Node d post-dominates node n in a graph
iff every path from n to the exit node goes through d

23

Post dominators in LLVM

24

Post dominators in LLVM

What is going to be
the output?

25

LLVM-specific notes for post dominators

• bool PostDominatorTree::dominates (…)
• bool dominates (Instruction *i, Instruction *j)

Return true if the basic block that includes i is an immediate post-dominator
of the basic block that includes j
• bool dominates (Instruction *i, BasicBlock *b)

Return true if the basic block that includes i
is an immediate post-dominator of b

• If the first argument
is not reachable from the entry point of the function, return false
• If the second argument (either instruction or basic block)

is not reachable from the entry point of the function, return true

26

LLVM-specific notes for *dominators

PostDominatorTreeDominatorTree

DominatorTreeBase
 ::bool dominates(…)

…

27

Outline

• CFA and a first example: dominators

• Another example of CFA: dominance frontier

• Example of CFA and CFT: basic block merging and splitting

28

A problem: deciding where the place PHIs

• Problem:
we would like to map a stack location into a set of IR variables

%p = alloca …

store %v2, %p

B1

CFG

store %v1, %p
…

B4B2

B3

%v9 = %load %p

B1

…

B4B2

B3

%v9 = PHI [%v1, B3] [?, B5]

B5 B5

store %v3, %p

B0 B0

29

A problem: deciding where the place PHIs

• Problem:
we would like to map a stack location into a set of IR variables

%p = alloca …

store %v2, %p

B1

CFG

store %v1, %p
…

B4B2

B3

%v9 = %load %p

B1

…

%v4 = PHI [%v2, …] [%v3, …]B2

B3

%v9 = PHI [%v1, B3] [%v4, B5]

How can we identify
where to insert PHI?

B5 B5

store %v3, %p

B0 B0

30

A problem: deciding where the place PHIs

• Problem:
we would like to map a stack location into a set of IR variables

• Solutions:
• Simple:

insert PHI in all basic blocks for all variables (expensive)
• Smarter:

for each variable, identify the subset of basic blocks that need PHI

31

Dominance frontier

• Dominators of block N tell us which basic blocks
must be executed prior to N
• We need to identify blocks “just after” those blocks

that are dominated by N

• Definition:
The Dominance Frontier of a basic block N, DF(N), is the set of all
blocks that are immediate successors to blocks dominated by N,
but which aren’t strictly dominated by N

B0

B1

B2

DF(B0) = {B2}

B3

Definition Where to insert PHI 32

defintion

phi

Dominance frontier

• Definition:
The Dominance Frontier of a basic block N, DF(N), is the set of all blocks that are
immediate successors to blocks dominated by N,
but which aren’t strictly dominated by N
• DF(N) includes a basic block X if and only if

1. N dominates a predecessor of X
2. N does not strictly dominate X

• How can we compute DF(N)?

33

1. From the CFG

2. Compute the dominators tree

3. Compute the local dominance frontier for all nodes
DFlocal[N] = successors of N in the CFG

that are not strictly dominated by N

3. Compute the dominance frontier

DF[N] = DFlocal[N] Uc∈children(N)DFup[c]

Dominance frontier computation

34

B1

B3

B4

B2

B1

B2 B3

B4

DFlocal[B0] =
DFlocal[B1] =
DFlocal[B2] =
DFlocal[B3] =
DFlocal[B4] =

{}
{}
{}
{B4}
{}

B0

B0

Dominance frontier computation

Compute the dominance frontier

DF[N] = DFlocal[N] Uc∈children(N)DFup[c]

Dflocal[N] = successors of N in the CFG
that are not strictly dominated by N

DFup[c] = nodes in DF[c] that are not strictly dominated by parent(c)
of the dominator tree

35
CFG Dominator tree

DF[B0] =
DF[B1] =
DF[B2] =
DF[B3] =
DF[B4] =

{}
{}
{}
{B4}
{}

B1

B3

B4

B2

B0

B1

B2 B3

B4

B0
DFlocal[B0] =
DFlocal[B1] =
DFlocal[B2] =
DFlocal[B3] =
DFlocal[B4] =

{}
{}
{}
{B4}
{}

Dominance frontier computation

Compute the dominance frontier

DF[N] = DFlocal[N] Uc∈children(N)DFup[c]

Dflocal[N] = successors of N in the CFG
that are not strictly dominated by N

DFup[c] = nodes in DF[c] that are not strictly dominated by parent(c)
of the dominator tree

36
CFG Dominator tree

DF[B0] =
DF[B1] =
DF[B2] =
DF[B3] =
DF[B4] =

{}
{}
{}
{B4}
{}

B1

B3

B4

B2

B0

B1

B2 B3

B4

B0
DFlocal[B0] =
DFlocal[B1] =
DFlocal[B2] =
DFlocal[B3] =
DFlocal[B4] =

{}
{}
{}
{B4}
{}

Dominance frontier computation

Compute the dominance frontier

DF[N] = DFlocal[N] Uc∈children(N)DFup[c]

Dflocal[N] = successors of N in the CFG
that are not strictly dominated by N

DFup[c] = nodes in DF[c] that are not strictly dominated by parent(c)
of the dominator tree

37
CFG Dominator tree

DF[B0] =
DF[B1] =
DF[B2] =
DF[B3] =
DF[B4] =

{}
{}
{}
{B4}
{}

B1

B3

B4

B2

B0

B1

B2 B3

B4

B0
DFlocal[B0] =
DFlocal[B1] =
DFlocal[B2] =
DFlocal[B3] =
DFlocal[B4] =

{}
{}
{}
{B4}
{}

Dominance frontier computation

Compute the dominance frontier

DF[N] = DFlocal[N] Uc∈children(N)DFup[c]

Dflocal[N] = successors of N in the CFG
that are not strictly dominated by N

DFup[c] = nodes in DF[c] that are not strictly dominated by parent(c)
of the dominator tree

38
CFG Dominator tree

DF[B0] =
DF[B1] =
DF[B2] =
DF[B3] =
DF[B4] =

{}
{B4}
{}
{B4}
{}

B1

B3

B4

B2

B0

B1

B2 B3

B4

B0
DFlocal[B0] =
DFlocal[B1] =
DFlocal[B2] =
DFlocal[B3] =
DFlocal[B4] =

{}
{}
{}
{B4}
{}

Dominance frontier

39

CFG

DF[B0] =
DF[B1] =
DF[B2] =
DF[B3] =
DF[B4] =

{}
{B4}
{}
{B4}
{}

B1

B3

B4

B2

B0

If I have a re-definition in B0:
• No need for a phi

If I have a re-definition in B1:
• I need to add a phi in B4

This is how mem2reg decides
where to inject phis for alloca that can be
safely removed

Outline

• CFA and a first example: dominators

• Another example of CFA: dominance frontier

• Example of CFA and CFT: basic block merging and splitting

40

Another example of CFA (and CFT)

goto L1
L1: call printf()
 return

goto L1

call printf()
return

call printf()
returnCFA The two basic blocks

can be merged CFT

This is a simple CFA and CFG,
but useful after applying several other code transformations

A homework of this class could be the following one:
design and implement an algorithm to implement this CFA
• CFA: it says whether it is safe to merge two basic blocks
• CFT: it merges only the basic block pairs identified by the CFA

Existing LLVM pass:
simplifycfg

41

Another example of CFA
• What are the possible equivalent CFGs the compiler can choose from?
• The compiler needs to be able to transform CFGs
• CFAs tell the compiler what are the equivalent CFGs

…
If (b == 2){
 return;
}

return;

…
if (b == 2)

return

return

…
b == 2

return

#ifdef CRAZY
printf(“Yep”);
#endif

clang myfile.c –DCRAZY –o myprog

42

Critical edges

Definition:
A critical edge is an edge in the CFG
which is neither the only edge leaving its source block,
nor the only edge entering its destination block.

These edges must be split: a new block must be created
and inserted in the middle of the edge,
to insert computations on the edge without affecting any other edges.

n1

nA nB

n2

If (…){
 while (…){
 …
 }
}
A()

Source

Destination

opt --break-crit-edges 43

Always have faith in your ability

Success will come your way eventually

Best of luck!

44

