C de analysis
and
transf rmation

Ly -

Constant Optimizations

Nid

Simone Campanoni
simone.campanoni@northwestern.edu

Outline

* Constant propagation

* Constant folding

 Algebraic simplification

Constant propagation: problem definition

Given a program, we would like to know
for every point in that program,
which variables have constant values, and which ones do not.

A variable has a constant value at a certain point in the CFG
if every execution that reaches that point
sees that variable holding the same constant value.

We are now going to implement
constant propagation automatically
and by relying only on reaching definition

Reaching definition summary

e Reaching definition data-flow analysis computes IN[i] and OUT[i]
for every instruction i

* IN[i] (OUT]Ii]) includes definitions that reach
just before (just after) instruction i

e Each IN/OUT set contains a mapping
for every variable in the program to a “value”

Constant propagation

* For a use of variable v by instruction n

N: X=...V...

e If the definitions of v that reach n

are all of the form IN[5]={2,3}

d:v=c//cis ageneric constant
IN[6]={2,3,5}

6: If (b > N)

* then replace
the uses of vin n with c

Do you see any problem?

IN[E1-{2p]5}

Constant propagation problem?

IN[6]={3,5}

NGRED

1:intxy
3:y=0
4:1f (a>b)

IN[3]={}
IN[4]={3}

IN[5]={3}

IN[7]={3,5}

Is this correct?

Undefined behavior: a funny interpretation

* Undefined behavior is the result of executing a program
whose behavior is unpredictable

e Undefined behavior results in whatever
compilers want the program being compiled to do

even to make demons fly out of your nose
 Undefined behavior is often referred to as nasal demons

Constant propagation problem?

Better solutions?
- Customize reaching definitions
- New analysis

1:intxy
3:y=0
4:1f (a>b)

8: return x

Constant propagation for CAT

 Undefined values enable optimizations
* What about in the CAT language?

« CATData CAT _new (int64 t value);

SSA simplifies transformations

* We learned constant propagation that relies on reaching definition
* This transformation is correct for both SSA and non-SSA IRs

e Can we have a faster constant propagation for SSA IRs?
* Yes

* Let’s first apply the previous constant propagation to an SSA IR
to understand how to make it faster

Constant propagation in SSA (in LLVM)

%E
%3 = icmp sgt %a, %b
br %3 %T %F

If you want the

conventional CP semantics
br %F

- Skip undef
%F
4%6 = phi [undef, %E] [5, %T]
%7 = icmp sgt %b, %N
br %7 %R1 %R2
IN[%R2]={%3,|%6,|%7} | %R2 7R1

return %6 . retuiini o ,

1:intxy
3:y=0
4:1If (a > D)

6: If (b > N)

B 8 return x l

7:returny

(Unnecessary thanks to SSA)
Constant propagation in SSA (in LLVM)

%E
%3 = icmp sgt %a, %b
br %3 %T %F

%F
4%6 = phi [undef, %E] [5, %T]
%7 = icmp sgt %b, %N

br %7 %R1 %R2

IN[%R2]={%3,

%R1
return O

Outline

* Constant folding

 Algebraic simplification

Constant folding

Definition:
This transformation evaluates constant expressions at compile time so
they do not need to be computed at runtime

inta=3+2; Constant folding inta=>;
myF(a); for C variables myF(a);
%a =add 3, 2 Constant folding

call @myF(%a) for LLVM IR variables call @myF(5)

Outline

 Algebraic simplification

Algebraic simplification

* Definition:
Algebraic simplification uses algebraic properties of operators or
particular operand combinations to simplify expressions

* Example:

intb=a+0; A.Igeb.r?'c , int b = a;
simplification

%b =add a, 0 Algebraic
call @myF(%b) simplification call @myF(%a)

Algebraic simplification

* Definition:
Algebraic simplification uses algebraic properties of operators or
particular operand combinations to simplify expressions

* Example:

intb=a*1: Algebraic

simplification intb =a;

%b=mula, 1 Algebraic
call @myF(%b) simplification call @myF(%a)

Constant propagation Constant folding Algebraic simplification

.

Constant Optimizations

Always have faith in your ability

Success will come your way eventually

Best of luck!

