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Data Flow Analysis outline

• Concepts needed by most code analyses

• Why do we need DFA? (opportunities)

• Introduction to DFA (concepts)

• A DFA example: reaching definitions (concept application)

• Implementation of DFA (actual implementation)
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Variables and constants

x = 0;
y = x + 1;

Constants

Variable definitions

Variable uses
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Now that we know variables, 
we can talk about how 
data stored in them could evolve through the code
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Now that we know variables, 
we can talk about how 
data flows through the code
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Data flows

int sumcalc (int a, int b, int N){
int x,y;
x = 0;
y = 0;
for (int i=0; i <= N; i++){
x = x + (a * b);
x = x + b*y;

}
return x;

}

Data flows from a definition
to its uses
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Data flow examples

int sumcalc (int a, int b, int N){
int x,y;
x = 0;
y = 0;
for (int i=0; i <= N; i++){
x = x + (a * b);
x = x + b*y;

}
return x;

}

Understanding data flows require 
understanding the possible sequence of instructions 
that could be executed at run-time control flows
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Control flows

x = a;
y = x + 1;
x++;
return x + y;

x = a;
y = x + 1;
if (y > 5){
  x--;
} else {
  x++;
}

Control flow: sequence of instructions in a program 
that may execute at run-time in that order
(common simplification: we ignore data values and arithmetic operations)
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How can we automatically identify and represent 
the control flows?

Let us start by looking at
how to iterate over instructions of a function
in LLVM
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Functions and instructions

What is the instruction that will be executed after inst?

The iteration order of instructions isn’t the execution one
We cannot use iteration order to analyze data flows

Iteration order:
Follows the order
used to store 
instructions
in a function F
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Storing order ≠ executing order
int myF (int a){

int x = a + 1;
if (a > 5){

x++;
} else {

x--;
}
return x; }

int x = a + 1
      tmp = a > 5
      branch_ifnot tmp L1
      x++
      branch L2
L1: x--
L2: return x

When the storing order is chosen (compile time),
the execution order isn’t known

int x = a + 1
      tmp = a > 5
      branch_if tmp L1
      x--
      branch L2
L1: x++
L2: return x

What is the next 
instruction executed?
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Storing order ≠ executing order

Common pitfall 1: 
if instruction i1 has been stored before i2, 
then i2 is always executed after i1

Common pitfall 2: 
if instruction i1 has been stored before i2, 
then i2 can execute after i1

i1
i2
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How can we automatically identify and represent 
the control flows?

We could represent the control flows using a directed graph:
- Node: instruction
- Direct edge: points to the possible next instruction 

that could be executed at run-time
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• Most instructions

• Jump instructions

• Branch instructions

Representing the control flow of the program
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Representing the control flow of the program

A graph where nodes are instructions
• Very large
• Lot of straight-line connections
• Can we simplify it?

Basic block
Sequence of instructions that 
is always 
entered at the beginning
and exited at the end
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Basic blocks
A basic block is a maximal sequence of instructions such that
• Only the first one can be reached

from outside this basic block

• All instructions within are executed consecutively
if the first one get executed
• Only the last instruction can be a branch/jump
• Only the first instruction can be a label

• The storing sequence is the execution order in a basic block
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Basic blocks in compilers

• Automatically identified
• Algorithm:

Inst = F.entryPoint()
B = new BasicBlock()
While (Inst){
  if Inst is Label {
    B = new BasicBlock()
  } 
  B.add(Inst)
  if Inst is Branch/Jump{
     B = new BasicBlock()
  }
  Inst = F.nextInst(Inst)
}
Add missing labels
Add explicit jumps
Delete empty basic blocks 17



Basic blocks in compilers

• Automatically identified
• Algorithm:
• Code changes trigger the re-identification
• Increase the compilation time

• Enforced by design
• Instruction exists only within the context of its basic block
• To define a function:
• you define its basic blocks first
• Then you define the instructions of each basic block

Inst = F.entryPoint()
B = new BasicBlock()
While (Inst){
  if Inst is Label {
    B = new BasicBlock()
  } 
  B.add(Inst)
  if Inst is Branch/Jump{
     B = new BasicBlock()
  }
  Inst = F.nextInst(Inst)
}
Add missing labels
Add explicit jumps
Delete empty basic blocks
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Basic blocks in compilers

• Automatically identified
• Algorithm:
• Code changes trigger the re-identification
• Increase the compilation time

• Enforced by design
• Instruction exists only within the context of its basic block
• To define a function:
• you define its basic blocks first
• Then you define the instructions of each basic block

Inst = F.entryPoint()
B = new BasicBlock()
While (Inst){
  if Inst is Label {
    B = new BasicBlock()
  } 
  B.add(Inst)
  if Inst is Branch/Jump{
     B = new BasicBlock()
  }
  Inst = F.nextInst(Inst)
}
Add missing labels
Add explicit jumps
Delete empty basic blocks

What about calls?
- Program exits
- Infinite loops

in callees
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Basic blocks in LLVM

• Every basic block in LLVM must
• Have a label associated to it
• Have a “terminator” at the end of it

• The first basic block of LLVM (entry point)
cannot have predecessors
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Basic blocks in LLVM

• LLVM organizes “compiler concepts” in containers
• A basic block is a container of ordered LLVM instructions (BasicBlock)
• A function is a container of basic blocks (Function)
• A module is a container of functions (Module)
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Basic blocks in LLVM (2)

• LLVM C++ Class “BasicBlock”
• Uses:
• BasicBlock *b = … ;
• Function *f = b.getParent();
•Module *m = b.getModule();
• Instruction *i = b.getTerminator();
• Instruction *i = b.front();
• size_t b.size();
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Basic blocks in LLVM in action

Bitcode generation

• All function variables are declared 
at the beginning of the function

• A variable access becomes 
a memory access
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Basic blocks in LLVM in action

Bitcode generation

Bitcode generationBitcode generation

Bitcode generation

Bitcode generation
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How can we automatically identify and represent 
the control flows?

We could represent the control flows using a directed graph:
- Node: instruction
- Direct edge: points to the possible next instruction 

that could be executed at run-time

Basic block
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Control Flow Graph (CFG)

• A CFG is a graph G = <Nodes, Edges>
• Nodes: Basic blocks
• Edges: (x,y) ϵ Edges if and only if 

after executing the last instruction of basic block x (Ix)
the first instruction of the basic block x (lx) may execute

…
...
Ix

Iy
...
...

Successor

Predecessor
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Control Flow Graph (CFG)

• Entry node: block with the first instruction of the function
• Exit nodes: blocks with the return instruction
• Some compilers make a single exit node by adding a special node

ret ret
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CFG example

CFG
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CFG in LLVM

Differences?

Bitcode generation

opt -view-cfg
F.viewCFG(); 29



Navigating the instructions
within a basic block
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Successors of a basic block

Predecessors of a basic block

Navigating the CFG in LLVM: 
from a basic block to another
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Navigating the CFG in LLVM:
From an instruction to its successors

   . . .
      i

k
   . . . 

j
  . . . 

Let’s say we want to iterate over 
the successors of i 
so from i to j and k

How can we do it?
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Navigating the CFG in LLVM:
From an instruction to its successors
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H0/tests

Output of the LLVM pass 
of the previous slide:
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Now that we know how to traverse over the CFG,
we can introduce the first code transformation
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Code transformation example:
constant propagation
int sumcalc (int a, int b, int N){
int x,y;
x = 0;
y = 0;
for (int i=0; i <= N; i++){
x = x + (a * b);
x = x + b*y;

}
return x;

}

Replace a variable use
with a constant
while preserving 
the original code semantics
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Code transformation example:
constant propagation
int sumcalc (int a, int b, int N){
int x,y;
x = 0;
y = 0;
for (int i=0; i <= N; i++){
x = x + (a * b);
x = x + b*y;

}
return x;

}

Replace a variable use
with a constant
while preserving 
the original code semantics
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Code transformation example:
constant propagation
int sumcalc (int a, int b, int N){
int x,y;
x = 0;
y = 0;
for (int i=0; i <= N; i++){
x = x + (a * b);
x = x + b*0;

}
return x;

}

Replace a variable use
with a constant
while preserving 
the original code semantics
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Understanding     requires understanding how the value of a variable
                                                could evolve over time data flows
and this is the job of data flow analyses



Data Flow Analysis outline

• Concepts needed by most code analyses

• Why do we need DFA? (opportunities)

• Introduction to DFA (concepts)

• A DFA example: reaching definitions (concept application)

• Implementation of DFA (actual implementation)
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The need for DFAs
• We constantly need to improve programs 

(e.g., speed, energy efficiency, memory requirements)
• We constantly need to identify opportunities
• After having found an opportunity (e.g., propagating constants), 

you need to ask yourself: 
• What do I need to know to take advantage of this opportunity?

(e.g., I need to know the possible values a given variable might have 
at a given point in the program)

• How can I automatically compute this information?
Often the solution relies on understanding
how data flows through the code. 
This is often done by designing custom DFAs
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Let us go deeper in the need for data flow analysis
for code transformation

Let us introduce an actual code transformation implemented 
by all compilers: constant propagation
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Transformation: constant propagation
Analysis: reaching definition DFA
• Opportunity: this code is “better”

compared to this 

j: … = b

… …

i:  b = 2

j: … = 2

… …

i:  b = 2

Which information do I need to know 
if it is safe to replace b with 2

What are the possible values
b can have at run time?

Among all possible run time 
control flows, what are the
latest definitions of b?

42



Constant propagation

• Find an instruction i that defines a variable with a constant expression
Instruction i: b = CONSTANT_EXPRESSION

• Replace an use of b in an instruction j
with that CONSTANT_EXPRESSION if
• All control flows to j includes i
• There are no intervening definition of that variable

j: … = b

… …

i:  b = 2

j: … = 2

… …

i:  b = 2
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Constant propagation: code example

int sumcalc (int a, int b, int N){
int x,y;
x = 0;
y = 0;
if (a > b){
x = x + N;

}
if (b > N){  return y;} 
return x;

}

if (b > N){  return 0;} 

We need to analyze the “data-flows” of a program
and represent them explicitly

Data-flow analysis is
a collection of techniques
for compile-time reasoning about
the run-time values 
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But constant propagation (CP)
has been done already …
• CP has been already designed and implemented

•Why should we study it? 
Why don’t we design and implement all possible 
transformations and analyses in a compiler and move on?

• It is always possible to invent new/better transformations 
Full employment theorem for compiler writers
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Since it is always possible to improve transformations,
let us learn the typical approach to create new data-flow analyses
that will drive the innovation 
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New transformations and analyses

• New transformations (often) need to understand 
specific and new code properties related to 
how data might change through the code
• So we need to know how to design a new data flow analysis

that identifies these new code properties
• Generic recipe

Data flow analysis (DFA):
traverse the CFGs collecting information about 
what may happen at run time (Conservative approximation)
Transformation: 
Modify the code based on the result of data flow analysis
(Correctness guaranteed by the conservative approximation of DFA)

Data flow value
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New transformations and analyses

• Generic recipe
Data flow analysis (DFA):
traverse the CFGs collecting information about 
what may happen at run time (Conservative approximation)
Transformation: 
Modify the code based on the result of data flow analysis
(Correctness guaranteed by the conservative approximation of DFA)

Data flow value

j: … = b

… …

i:  b = 2

Among all possible run time control flows, 
what are the latest definitions of b?
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Data Flow Analysis outline

• Concepts needed by most code analyses

• Why do we need DFA? (opportunities)

• Introduction to DFA (concepts)

• A DFA example: reaching definitions (concept application)

• Implementation of DFA (actual implementation)
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Concepts

• Static and dynamic control flows

• Data flow abstraction

• Data flow values

• Transfer functions

• GEN, KILL, IN, OUT sets
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Static program vs. dynamic execution
• Static:

Finite program
• Dynamic:

Can have infinitely many possible control flows
• Data flow analysis abstraction: 

For each point in a program: 
combine information about all possible run-time instances
of the same program point. 

If (b > N)

b = b + 1

… = b

b = 1 b = 2

…

What are the possible values of b?

Data flow analysis (DFA):
traverse the CFGs collecting information about 
what may happen at run time 
(Conservative approximation)
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Example of data-flow questions

• What are the possible values of b just before an instruction “… = b”?
• Which instruction defines the value used in “… = b”?

… = b

b = 1 b = 2

…
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Example of data-flow questions

• What are the possible values of b just before an instruction “… = b”?
• Which instruction defines the value used in “… = b”?
• Has the expression “a * b” been computed 

before another instruction? (“… = a * b”)
• What are the instructions that might read the value 

produced by an instruction “b = …”?
• What are the instructions that will (must) read the value 

produced by an instruction “b = …”?
• …
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Data-flow expressed in CFG

int x,y
x = 0
y = 0
If (a > b)

x = x +N

If (b > N)

return y

return x

Data-flow value:
set of all possible program states 
that can be observed 
at a given program point

e.g., all definitions in the program 
that might have been executed
before that point

{  }IN= { x=0 } =OUT

Data-flow analysis
computes IN and OUT sets
by computing 
the DFA-specific transfer functions  54



Transfer functions

• Let i be an instruction: IN[i] and OUT[i] are the set of data-flow values
before and after the instruction i of a program
• A transfer function fs relates the data-flow values

before and after an instruction i
• In a forward data-flow problem

OUT[ i ] = fs( IN[ i ] ) 
• In a backward data-flow problem 

IN[ i ] = fs( OUT[ i ] ) 

fs is DFA-specific

int x,y
x = 0
y = 0
If (a > b)

{  }
{ x=0 }IN= =OUT
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Transfer function internals: Y[ i ] = fs ( X[ i ] )
• It relies on information that reaches i

• It transforms such information to propagate the result 
to the rest of the CFG

• To do so, it relies on information specific to i
• Encoded in GEN[i], KILL[i]
• fs uses GEN[i] and KILL[i] to compute its output 

• GEN[i] and KILL[i] are DFA-specific and 
(typically) data/control flow independent!

int x,y
x = 0
y = 0
If (a > b)

{  }
{ x=0 }IN= =OUT

GEN[i] = data flow value added by i
KILL[i] = data flow value removed because of i
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DFA steps

1) Define the DFA-specific sets GEN[i] and KILL[i], for all I
and without looking at the control flows

2) Implement the DFA-specific transfer function fs

3) Compute all IN[i] and OUT[i]
OUT[i] = fs ( IN[i]     )
IN[i]     = fs ( OUT[i] )

Compilers typically have a data flow framework/engine 
to help developing new DFAs
(we will not rely on such framework/engine for this class)

following a DFA-generic algorithm
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Data Flow Analysis outline

• Concepts needed by most code analyses

• Why do we need DFA? (opportunities)

• Introduction to DFA (concepts)

• A DFA example: reaching definitions (concept application)

• Implementation of DFA (actual implementation)
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Before introducing the reaching definition DFA, 
let us go back to the previous example to formalize new terminology
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Optimization example: constant propagation

int sumcalc (int a, int b, int N){
int x,y;
x = 0;
y = 0;
if (a > b){
x = x + N;

}
if (b > N){  return y;} 
return x;

}

if (b > N){  return 0;} 

Information needed just before an instruction i:
what are the definitions that might execute before i?

IN[return y] = {y=0}
IN[return x] = {x=0, x = x + N}

reach
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Let us define the concept of “reaching” more formally
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Data-flow example: reaching definitions

• A definition D reaches a program point X 
if there is a control flow from D to X
such that the variable defined by D is not redefined along that path

…
D: v = 0
J:  call printf(...)
X: ... = v ...

GEN[D] = {D}

J

X

D

D reaches X

IN[X] = {D}

killed

GEN[i] = data flow value 
                added by i
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Data-flow example: reaching definitions

• A definition D reaches a program point X 
if there is a control flow from D to X
such that D is not killed along that path

…
D: v = 0
J:  call printf(...)
X: ... = v ...

GEN[D] = {D}

J

X

D

D reaches X

IN[X] = {D}
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Data-flow example: reaching definitions

• A definition D reaches a program point X 
if there is a control flow from D to X
such that D is not killed along that path

…
D: v = 0
…
J : v = v + n
…
X: ... = v ...

KILL[J] = {D}

GEN[D] = {D}

J

X

D

D does not reach X
D is not in IN[X]

GEN[i] = data flow value 
                added by i

KILL[i] = data flow value
               removed because of i

KILL[D] = {J}
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Data-flow example: reaching definitions

• A definition D reaches a program point X 
if there is a control flow from D to X
such that D is not killed along that path

…
D: v = 0
…
J : v = v + n
…
X: ... = v ...

KILL[J] = {D}

GEN[D] = {D}

J

X

D

J reaches X
IN[X] = {J}

GEN[J] = {J}

KILL[D] = {J}
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Data-flow example: reaching definitions

• A definition D reaches a program point X 
if there is a control flow from D to X
such that D is not killed along that path

• The reaching definition data-flow problem for a flow graph
is to compute all definitions that reach an instruction i
(i.e., IN[i], OUT[i])
for all i in that graph

J

X

D
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Computing INs and OUTs

0: int x,y
1: x = 0
2: y = 0
3: return x

• Forward or backward?
OUT[i] = fs (IN[i] )

• GEN[i] = what i generates
• KILL[i] = what i kills (invalidates)

• fs within a basic block?
    Let i be an instruction and
    p be its only predecessor
IN[i] =  OUT[p]
OUT[i] = GEN[i] U (IN[i] – KILL[i])

{  }
{ x=0 }IN= =OUT

GEN[0] = { }
GEN[1] = {1}
GEN[2] = {2}
GEN[3] = { }

Local 
reaching definitions

KILL[0] = { }
KILL[1] = { }

KILL[2] = { }
KILL[3] = { }
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Data-flow example: reaching definitions

• A definition d reaches a program point X 
if there is a path from d to X 
such that d is not killed along that path
• The data-flow problem for a flow graph

is to compute IN[i] and OUT[i]
for all i in that graph

IN[i]     =                           OUT[p]
OUT[i] = GEN[i] U (IN[i] – KILL[i])

0: int x,y
1: x = 0
2: y = 0
3: If (a > b)

4: x = x +N

5: If (b > N)Up a predecessor of i

Global 
reaching definitions

Should 1 be in IN[5]?
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Data Flow Analysis outline

• Concepts needed by most code analyses

• Why do we need DFA? (opportunities)

• Introduction to DFA (concepts)

• A DFA example: reaching definitions (concept application)

• Implementation of DFA (actual implementation)
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• So far, we have defined data-flow equations 
(i.e., IN and OUT equations)

• How can we actually compute them?

• Main problem: 
Øinput of equation IN depends on output of equation OUT

IN[i]     =  Up a predecessor of i OUT[p]
ØOutput of equation OUT depends on input of equation IN

OUT[i] = GEN[i] U (IN[i] – KILL[i])

C

B

A

IN[B]

OUT[A] OUT[C]

IN[A] IN[C]
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We break all possible dependence cycles 
by iteratively computing 
all IN and OUT sets
until a fixed point is reached

IN[B]

OUT[C]

IN[C]

71



Steps for iterative algorithm

• Compute GEN and KILL sets for all instructions without using the CFG
• GEN and KILL sets will not change anymore

• Compute IN and OUT sets with an iterative algorithm
do{

Compute IN and OUT sets for all instructions
} while (any IN or OUT set changes from the previous iteration)
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Iterative algorithm for reaching definitions

• Given GEN[i], KILL[i] for all instructions i,
we compute IN[i] and OUT[i] for all i

for (each instruction i)  IN[i] = OUT[i] = { };

do {
for (each instruction i) { 

IN[i] = ∪p a predecessor of i OUT[p]; 
OUT[i] = GEN[i] ∪ (IN[i] ─ KILL[i]); 

}
} while (changes to any OUT occur)ß

ß
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Reaching definition in action
GEN[0] = {}
GEN[1] = {1}
GEN[2] = {2}
GEN[3] = {}
GEN[4] = {4}
GEN[5] = {}

0: int x,y
1: x = 0
2: y = 0
3: If (a > b)

4: x = x +N

5: If (b > N)

KILL[0] = {}
KILL[1] = {4}
KILL[2] = {}
KILL[3] = {}
KILL[4] = {1}
KILL[5] = {}

IN[i]     = Up a predecessor   OUT[p]
OUT[i] = GEN[i] U (IN[i] – KILL[i])

IN[0] = {        }
IN[1] = {        }
IN[2] = {        }
IN[3] = {        }
IN[4] = {        }
IN[5] = {        }

OUT[0] = {        }
OUT[1] = {        }
OUT[2] = {        }
OUT[3] = {        }
OUT[4] = {        }
OUT[5] = {        }

1
1 1,2
1,2 1,2
1,2 2,4
1,2,4 1,2,4

Done?
Why do we need to reach a fixed point?
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Now that you know reaching definition

• It’s time for the homework H1
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• What we learned was for forward data-flow analysis
OUT[ s ] = fs( IN[ s ] )

• What about backward data-flow analysis?
IN[ s ] = fs( OUT[ s ] ) 

for (each instruction i)  IN[i] = OUT[i] = { };
do {
  for (each instruction i) { 
    IN[i] = ∪p a predecessor of i OUT[p]; 
    OUT[i] = GEN[i] ∪ (IN[i] ─ KILL[i]); 
  }
} while (changes to any OUT occur) 
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for (each instruction i)  IN[i] = OUT[i] = { };
do {
  for (each instruction i) { 
    IN[i] = fsp a predecessor of i (OUT[p]) 
    OUT[i] = fs(IN[i]) 
  }
} while (changes to any OUT occur) 

Forward DFA
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for (each instruction i)  IN[i] = OUT[i] = { };
do {
  for (each instruction i) { 
    OUT[i] = fss a successor of i (IN[s]) 
    IN[i] = fs(OUT[i]) 
  }
} while (changes to any IN     occur) 

Backward DFA
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Always have faith in your ability

Success will come your way eventually

Best of luck!
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