
DFA Part 2
Simone Campanoni
simone.campanoni@northwestern.edu

Outline

• More DFAs and related transformations

• DFAs without assumptions

• Other uses of DFA

• DFA implementation

2

Thinking about
what constant propagation does
•What’s the value of these propagations?
• Constant propagation: less variable uses

Redundant use of variables

• Redundancy is one of the
main source of optimization in compilers

Front-end … Back-end

3

Copy propagation: problem definition

Given a CFG, we would like to know
for every point in the program,
if a variable contains always the same value of another one.

1: x = y
2: a = 5
3: b = x + 3

Copy propagation
1: x = y
2: a = 5
3: b = y + 3

How can we implement this transformation?
4

Reaching definition summary

• Reaching definition data-flow analysis computes IN[i] and OUT[i]
for every instruction i

• IN[i] (OUT[i]) includes definitions that reach
just before (just after) instruction i

• Each IN/OUT set contains a mapping
for every variable in the program to a “value”;

5

Copy propagation

• For a use of variable v in statement n,
n: x = ... v ...
• If the definitions of v that reach n

are all of the form
d: v = z [z is another variable]
• then replace

the use of v in n with z
Do you see any problem?
How can we fix it?
(3 points, deadline = next class)

1: int x,y
2: x = a
3: y = x
4: If (a > b)

5: x = x +N

6: If (b > N)

7: return y

8: return x

IN[5]={2,3}

IN[7]={2,3,5}

IN[2]={ }
IN[3]={2}
IN[4]={2,3}

IN[6]={2,3,5}

IN[8]={2,3,5}

6

• Copy propagation relies on the same DFA of constant propagation
(… we got lucky)
• However, a new optimization often relies on

a (or multiple) new data-flow analysis
• It is important to learn how to define new and specialized DFAs

• Different DFAs have different
• Data-flow values
• Data-flow equations
• Definitions of GEN and KILL sets

• Beyond reaching definition:
Now we are going to see other common DFAs

7

Dead code elimination: problem definition

Given a program, we would like to know statements/instructions
that do not influence the program at all (i.e., dead code)

1: y = …
2: x = y
3: return x

Copy propagation
1: y = …
2: x = y
3: return y

How can we identify dead code? With a new data flow analysis
called liveness analysis 8

Liveness analysis

A variable is live at a particular point in the program
if its value at that point will be used in the future (dead, otherwise)

• To compute liveness at a given point of a CFG,
we need to look at instructions that will be executed next

• How to use variable liveness information for eliminating dead-code?
• Dead-code:

a side-effect free instruction i that defines a variable
that is dead just after i

i-1: b = 42
i : a = 5
i+1: return b

9

Liveness analysis

A variable is live at a particular point in the program
if its value at that point will be used in the future (dead, otherwise)

• Another use: register allocation
• A program contains an unbounded number of variables
• Must execute on a machine with a bounded number of registers
• Two variables can use the same register

if they are never in use at the same time
• CS 322 Compiler Construction

10

Liveness analysis

A variable v is live at a given point of a program p if
• Exist a directed path from p to a use of v and
• that path does not contain any definition of v

• Is liveness data-flow analysis forward or backward?
• Liveness flows backwards through the CFG,

because the behavior at future nodes determines liveness at a given node
• What are the elements in data flow values?
GEN[i]=? KILL[i]=?
IN[i] = GEN[i] ∪(OUT[i] – KILL[i])
OUT[i] = ∪s a successor of i IN[s]

IN[s] = fs(OUT[s])

i: a = 5
…
j: a = v + 1
…
k: x = a + 1

p: …

… = v …

variables used by i variable defined by i
variables

11

Example of variable liveness
and dead-code elimination

0: a = 0

1: b = a + 1

2: a = a + b

3: d = b * 2

4: return b

What are in IN/OUT sets?
IN[0] = {}
OUT[0] = {a}
IN[1] = {a}
OUT[1] = {a, b}
IN[2] = {a, b}
OUT[2] = {b}
IN[3] = {b}
OUT[3] = {b}
IN[4] = {b}
OUT[4] = {} Is there dead-code?

0: a = 0

1: b = a + 1

4: return b

Dead-code:
a side-effect free instruction i that defines a variable
that is dead just after i

12

Creating opportunities

• So far we saw
• Dead code elimination
• Constant propagation
• Copy propagation

• They might look simple,
but they can already optimize the code in interesting ways
• Applying one often creates

new optimization opportunities to the rest

13

Example of variable liveness
and dead-code elimination

0: a = 0

1: b = a + 1

2: a = a + b

3: d = b * 2

4: return b

0: a = 0

4: return b

1: b = 0 + 1

4: return 1

1. Dead code elimination
2. Constant propagation
3. Dead code elimination
4. Constant folding
5. Constant propagation
6. Dead code elimination

0: a = 0

1: b = a + 1

4: return b 4: return b

1: b = 0 + 1 1: b = 1 4: return 1

4: return b

1: b = 1

14

Example of variable liveness
and dead-code elimination

0: a = 0

1: b = a + 1

2: a = a + b

3: d = b * 2

4: return b

With a combination of 3 “simple” transformations
• dead code elimination,
• constant propagation,
• constant folding

4: return 1

Are there more transformations to remove more redundancy?

15

Common sub-expression elimination:
problem definition
Given a program, we would like to know
for every point in the program,
which expressions are available

1: y = x + 3
2: b = x + 3

1: y = x + 3
2: b = y

Do you see any redundancy?
16

Available expressions

• What are the elements in data-flow sets?
• GEN and KILL?
• Forward or backward?
• IN and OUT?
IN[i] = ∩ p a predecessor of i OUT[p]
OUT[i] = GEN[i] U (IN[i] – KILL[i])
• How to use available expressions for eliminating redundant code?

1: y = x + 3
2: b = x + 3

i: y = x + 3 j: z = x + 3

k: …

17

So far …

Reaching definitions

Variable liveness

Available expressions

Constant propagation

Copy propagation

Common sub-expression
elimination

Dead-code elimination

18

Dominators

Definition: a basic block d dominates n in a CFG (d dom n)
if every control flow from the start node to n goes through d.
Every node dominates itself.

1

2

3

CFG

1

2 3

Dominators

What are the elements for data flow values?
GEN ? KILL ? IN ? OUT? (1 point)

19

Outline

• More DFAs and related transformations

• DFAs without assumptions

• Other uses of DFA

• DFA implementation

20

What about function parameters?

int myFunction (int a, int b){
if (a > b){

a = 5;
}
return a;

}

1: If (a > b)

2: a = 5

3: return a

IN[2] ={ }
OUT[2]={2 }

IN[1] ={ }
OUT[1]={ }

IN[3] = {2 }

CP algorithm replaces “a” with “5” in instruction 3!

… let’s compute the reaching definition analysis
Which information is missing? 0a: NOP

0b: NOP

0a,0b
0a,0b

0a,0b
, 0b

,0a,0b

IN[0a] = { }
OUT[0a] = {0a}
IN[0b] = {0a}
OUT[0b] = {0a,0b}

Can we exploit SSA properties?

21

• But you didn’t have to deal with this problem in your assignments
so far
• Why?

What about function parameters?

22

What about escaped variables?

int myFunction (void){
int a;
int *p = f(&a);
if (a > b){

a = 5;
} else {

*p = 6;
}
return a;

}

1: int a
2: int *q = &a
3: int *p = f(q)
4: If (a > b)

5: a = 5

7: return a

IN[5] ={2,3 }
OUT[5] ={2,3,5}

OUT[1] ={ }
OUT[2] ={2 }
OUT[3] ={2,3}
OUT[4] ={2,3}

IN[7] = {2,3,5,6}

CP algorithm replaces “a” with “5” in instruction 7!

… let’s compute the reaching definition analysis
Which information is missing?

6: *p = 6IN[6] ={2,3 }
OUT[6] ={2,3,6}

23

What about escaped variables?

int myFunction (void){
int a;
int *p = f(&a);
if (a > b){

a = 5;
} else {

*p = 6;
}
return a;

}

1: int a
2: int *q = &a
3: int *p = f(q)
4: If (a > b)

5: a = 5

7: return a

IN[5] ={2,3 }
OUT[5] ={2,3,5}

OUT[1] ={ }
OUT[2] ={2 }
OUT[3] ={2,3}
OUT[4] ={2,3}

IN[7] = {2,3,5,6}
Possible solutions:
- Simple = skip escaped variables in CP
- Advanced = analyze how the memory is modified via pointers

6: *p = 6IN[6] ={2,3 }
OUT[6] ={2,3,6}

24

Outline

• More DFAs and related transformations

• DFAs without assumptions

• Other uses of DFA

• DFA implementation

25

Identifying software bugs

1: int x,y
2: y = 0
3: If (a > b)

4: x=5

5: If (b > N)

6: return y

7: return x

• “x” can be undefined at instruction 7
• Can we design an analysis to identify this problem

and notify a developer about this bug?
• Let’s define precisely the problem
• Conservativeness

• What are the data flow values?
• GEN[i] = ?
• KILL[i] = ?
• IN[i] and OUT[i] ?

26

Identifying software bugs (2)

1: int x
2: call f(&x)
3: If (a > b)

4: x=5

5: return x

• What about now?

• Let’s define precisely the problem
• Conservativeness
• Warnings vs. errors

27

Outline

• More DFAs and related transformations

• DFAs without assumptions

• Other uses of DFA

• DFA implementation

28

for (each instruction i) IN[i] = OUT[i] = { };
do {
 for (each instruction i) {
 IN[i] = fsp a predecessor of i (OUT[p])
 OUT[i] = fs(IN[i])
 }
} while (changes to any OUT occur)

Forward DFA

29

for (each instruction i) IN[i] = OUT[i] = { };
do {
 for (each instruction i) {
 OUT[i] = fss a successor of i (IN[s])
 IN[i] = fs(OUT[i])
 }
} while (changes to any IN occur)

Backward DFA

30

Now that we know DFAs and how to compute them,

let us look at how to reduce the computation time to compute them

31

for (each instruction i) IN[i] = OUT[i] = { };
do {

for (each instruction i) {
IN[i] = ∪p a predecessor of i OUT[p];
OUT[i] = GEN[i] ∪ (IN[i] ─ KILL[i]);

}
} while (changes to any OUT occur)

Implementation aspects

• Memory representation of data flow values
• Operations performed on them
• What is an element in a set?

32

Hot code

for (each instruction i) IN[i] = OUT[i] = { };
do {

for (each instruction i) {
IN[i] = ∪p a predecessor of i OUT[p];
OUT[i] = GEN[i] ∪ (IN[i] ─ KILL[i]);

}
} while (changes to any OUT occur)

Optimization 1: bit-set

33

Optimization 1: bit-sets

• Assign a bit to each element that might be in the set
• Union: bitwise OR
• Intersection: bitwise AND
• Subtraction: bitwise NEGATE and AND

• Fast implementation
• 64 elements packed to each word on today’s commodity processors
• AND and OR are single machine code instructions (single cycle latency)

34

llvm::SparseBitVectorllvm::BitVector llvm::SmallBitVector

for (each instruction i) IN[i] = OUT[i] = { };
do {

for (each instruction i) {
IN[i] = ∪p a predecessor of i OUT[p];
OUT[i] = GEN[i] ∪ (IN[i] ─ KILL[i]);

}
} while (changes to any OUT occur)

Can we further optimize the analysis?

... that’s a lot of iterations
repeated for each
while iteration

Are they all necessary
for every while iteration?

35

36

(i)
(j)

(l)

IN[i], OUT[i]
IN[j], OUT[j]
IN[l], OUT[l]

do {
for (each instruction i) {

IN[i] = ∪p a predecessor of i OUT[p];
OUT[i] = GEN[i] ∪ (IN[i] ─ KILL[i]);

}
} while (changes to any OUT occur)

First while-iteration

IN[i], OUT[i]
IN[j], OUT[j]
IN[l], OUT[l]

Second while-iteration

IN[i], OUT[i]
IN[j], OUT[j]
IN[l], OUT[l]

Third while-iteration

IN[i], OUT[i]
IN[j], OUT[j]
IN[l], OUT[l]

Forth while-iteration

Changed
Not changed

Are these
necessary?

for (each instruction i) IN[i] = OUT[i] = { };
do {

for (each instruction i) {
IN[i] = ∪p a predecessor of i OUT[p];
OUT[i] = GEN[i] ∪ (IN[i] ─ KILL[i]);

}
} while (changes to any OUT occur)

Optimization 2: work list

37

Optimization 2: work list

OUT[ENTRY] = { };
for (each instruction i other than ENTRY) OUT[i] = { };
workList = all instructions
while (workList isn’t empty)

i = pick and remove an instruction from workList
oldOUT = OUT[i]
IN[i] = ∪p a predecessor of i OUT[p];
OUT[i]= GEN[i] ∪ (IN[i] ─ KILL[i]);
if (oldOut != OUT[i]) workList = workList U {all successors of i}

}
38

39

(i)
(j)

(l)

IN[i], OUT[i]
IN[j], OUT[j]
IN[l], OUT[l]

First while-iteration

IN[i], OUT[i]
IN[j], OUT[j]
IN[l], OUT[l]

Second while-iteration

IN[l], OUT[l]Third while-iteration

IN[l], OUT[l]Forth while-iteration

Changed
Not changed

Can we further optimize it?

OUT[ENTRY] = { };
for (each instruction i other than ENTRY) OUT[i] = { };
workList = all instructions
while (workList isn’t empty)

i = pick and remove an instruction from workList
oldOUT = OUT[i]
IN[i] = ∪p a predecessor of i OUT[p];
OUT[i]= GEN[i] ∪ (IN[i] ─ KILL[i]);
if (oldOut != OUT[i]) workList = workList U {all successors of i}

}
40

41

(i)
(j)

(l)

IN[i], OUT[i]
IN[j], OUT[j]
IN[l], OUT[l]

First while-iteration

IN[i], OUT[i]
IN[j], OUT[j]
IN[l], OUT[l]

Second while-iteration

IN[l], OUT[l]Third while-iteration

IN[l], OUT[l]Forth while-iteration

Changed
Not changed

IN[l], OUT[l]
IN[j], OUT[j]
IN[i], OUT[i]

First while-iteration

IN[l], OUT[l]
IN[j], OUT[j]
IN[i], OUT[i]

Second while-iteration

IN[l], OUT[l]
IN[j], OUT[j]
IN[i], OUT[i]

Third while-iteration

IN[l], OUT[l]Forth while-iteration

IN[l], OUT[l]Fifth while-iteration

Optimization 3: evaluation order

OUT[ENTRY] = { };
for (each instruction i other than ENTRY) OUT[i] = { };
workList = all instructions
while (workList isn’t empty)

i = pick and remove an instruction from workList
oldOUT = OUT[i]
IN[i] = ∪p a predecessor of i OUT[p];
OUT[i]= GEN[i] ∪ (IN[i] ─ KILL[i]);
if (oldOut != OUT[i]) workList = workList U {all successors of i}

}
42

for (each instruction i) IN[i] = OUT[i] = { };
do {

for (each instruction i) {
IN[i] = ∪p a predecessor of i OUT[p];
OUT[i] = GEN[i] ∪ (IN[i] ─ KILL[i]);

}
} while (changes to any OUT occur)

Optimization 4: basic blocks

Is this always necessary ?
43

for (each basic block B) IN[B] = OUT[B] = { };
do {

for (each basic block B) {
IN[B] = ∪P a predecessor of B OUT[P];
OUT[B] = GEN[B] ∪ (IN[B] ─ KILL[B]);

}
} while (changes to any OUT occur)

Optimization 4: basic blocks

Contains all definitions in block B
that are visible immediately after B

i0: v1 = 5
i1: v2 = v1 + 1
i2: v1 = 42

GEN[B]={i1,i2}

i1 is not visible outside B

44

for (each basic block B) IN[B] = OUT[B] = { };
do {

for (each basic block B) {
IN[B] = ∪P a predecessor of B OUT[P];
OUT[B] = GEN[B] ∪ (IN[B] ─ KILL[B]);

}
} while (changes to any OUT occur)

Optimization 4: basic blocks

Contains all definitions in block B
that are visible immediately after B

Contains all definitions killed
by instructions in block B

Suggestion: if you are going to implement
these optimizations, then either
• skip this one or
• keep it to be the last one

45

for (each basic block B) IN[B] = OUT[B] = { };
do {

for (each basic block B) {
IN[B] = ∪P a predecessor of B OUT[P];
OUT[B] = GEN[B] ∪ (IN[B] ─ KILL[B]);

}
} while (changes to any OUT occur)
… // propagate IN[B] through the instructions within B

// without computing IN[B.first()] and OUT[B.last()]
// because IN[B.first()] == IN[B]; OUT[B.last()] == OUT[B]

Optimization 4: basic blocks

46

… // propagate IN[B] through the instructions within B

f = B.first() ; IN[f] = IN[B];
OUT[f] = GEN[f] ∪ (IN[f] ─ KILL[f]);
t = f;
while (t != B.last()){

tNext = t.next();
IN[tNext] = OUT[t];
OUT[tNext] = GEN[tNext] ∪ (IN[tNext] ─ KILL[tNext]);
t = tNext;

}

Optimization 4: basic blocks

OUT[B] = GEN[B] ∪ (IN[B] ─ KILL[B]);

47

… // propagate IN[B] through the instructions within B

f = B.first() ; IN[f] = IN[B];
if (f != B.last()) OUT[f] = GEN[f] ∪ (IN[f] ─ KILL[f]);
t = f;
while (t != B.last()){

tNext = t.next();
IN[tNext] = OUT[t];
if (tNext != B.last()) OUT[tNext] = GEN[tNext] ∪ (IN[tNext] ─ KILL[tNext]);
t = tNext;

}

Optimization 4: basic blocks

48

Food for thought

• Correctness: is the answer ALWAYS correct?
•Meaning: what is exactly the meaning of the answer?
• Precision: how good is the answer?
• Convergence:
• Will the analysis ALWAYS terminate?
• Under what conditions does the iterative algorithm converge?

• Speed: how long does it take to converge in the worst case?

49

Always have faith in your ability

Success will come your way eventually

Best of luck!

50

