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Outline

• More DFAs and related transformations

• DFAs without assumptions

• Other uses of DFA

• DFA implementation
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Thinking about 
what constant propagation does
•What’s the value of these propagations?
• Constant propagation: less variable uses

Redundant use of variables

• Redundancy is one of the 
main source of optimization in compilers

Front-end … Back-end
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Copy propagation: problem definition

Given a CFG, we would like to know 
for every point in the program, 
if a variable contains always the same value of another one. 

1: x = y
2: a = 5
3: b = x + 3

Copy propagation
1: x = y
2: a = 5
3: b = y + 3

How can we implement this transformation?
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Reaching definition summary

• Reaching definition data-flow analysis computes IN[i] and OUT[i] 
for every instruction i

• IN[i] (OUT[i]) includes definitions that reach 
just before (just after) instruction i

• Each IN/OUT set contains a mapping 
for every variable in the program to a “value”;
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Copy propagation

• For a use of variable v in statement n,
n: x = ... v ...
• If the definitions of v that reach n

are all of the form
d: v = z [z is another variable]
• then replace 

the use of v in n with z
Do you see any problem?
How can we fix it?
(3 points, deadline = next class)

1: int x,y
2: x = a
3: y = x
4: If (a > b)

5: x = x +N

6: If (b > N)

7: return y

8: return x

IN[5]={2,3}

IN[7]={2,3,5}

IN[2]={ }
IN[3]={2}
IN[4]={2,3}

IN[6]={2,3,5}

IN[8]={2,3,5}
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• Copy propagation relies on the same DFA of constant propagation
(… we got lucky)
• However, a new optimization often relies on 

a (or multiple) new data-flow analysis
• It is important to learn how to define new and specialized DFAs

• Different DFAs have different
• Data-flow values
• Data-flow equations
• Definitions of GEN and KILL sets

• Beyond reaching definition:
Now we are going to see other common DFAs
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Dead code elimination: problem definition

Given a program, we would like to know statements/instructions
that do not influence the program at all (i.e., dead code)

1: y = …
2: x = y
3: return x

Copy propagation
1: y = …
2: x = y
3: return y

How can we identify dead code? With a new data flow analysis
called liveness analysis 8



Liveness analysis

A variable is live at a particular point in the program
if its value at that point will be used in the future (dead, otherwise)

• To compute liveness at a given point of a CFG, 
we need to look at instructions that will be executed next

• How to use variable liveness information for eliminating dead-code?
• Dead-code: 

a side-effect free instruction i that defines a variable 
that is dead just after i

i-1: b = 42
i    : a = 5
i+1: return b
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Liveness analysis

A variable is live at a particular point in the program
if its value at that point will be used in the future (dead, otherwise)

• Another use: register allocation
• A program contains an unbounded number of variables
• Must execute on a machine with a bounded number of registers
• Two variables can use the same register 

if they are never in use at the same time
• CS 322 Compiler Construction
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Liveness analysis

A variable v is live at a given point of a program p if
• Exist a directed path from p to a use of v and
• that path does not contain any definition of v

• Is liveness data-flow analysis forward or backward?
• Liveness flows backwards through the CFG, 

because the behavior at future nodes determines liveness at a given node
• What are the elements in data flow values?
GEN[i]=?                                        KILL[i]=?
IN[i]     = GEN[i] ∪(OUT[i] – KILL[i])
OUT[i] = ∪s a successor of i IN[s] 

IN[ s ] = fs( OUT[ s ] )  

i: a = 5
…
j: a = v + 1
…
k: x = a + 1

p:   …

… = v …

variables used by i variable defined by i
variables
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Example of variable liveness
and dead-code elimination

0: a = 0

1: b = a + 1

2: a = a + b

3: d = b * 2

4: return b

What are in IN/OUT sets?
IN[0]     = {}
OUT[0] = {a}
IN[1]     = {a}
OUT[1] = {a, b}
IN[2]     = {a, b}
OUT[2] = {b}
IN[3]     = {b}
OUT[3] = {b}
IN[4]     = {b}
OUT[4] = {} Is there dead-code?

0: a = 0

1: b = a + 1

4: return b

Dead-code: 
a side-effect free instruction i that defines a variable 
that is dead just after i
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Creating opportunities

• So far we saw 
• Dead code elimination
• Constant propagation
• Copy propagation

• They might look simple, 
but they can already optimize the code in interesting ways
• Applying one often creates 

new optimization opportunities to the rest
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Example of variable liveness
and dead-code elimination

0: a = 0

1: b = a + 1

2: a = a + b

3: d = b * 2

4: return b

0: a = 0

4: return b

1: b = 0 + 1

4: return 1

1. Dead code elimination
2. Constant propagation
3. Dead code elimination
4. Constant folding
5. Constant propagation
6. Dead code elimination

0: a = 0

1: b = a + 1

4: return b 4: return b

1: b = 0 + 1 1: b = 1 4: return 1

4: return b

1: b = 1
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Example of variable liveness
and dead-code elimination

0: a = 0

1: b = a + 1

2: a = a + b

3: d = b * 2

4: return b

With a combination of 3 “simple” transformations 
• dead code elimination, 
• constant propagation,
• constant folding

4: return 1

Are there more transformations to remove more redundancy?
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Common sub-expression elimination: 
problem definition
Given a program, we would like to know 
for every point in the program, 
which expressions are available

1: y = x + 3
2: b = x + 3

1: y = x + 3
2: b = y

Do you see any redundancy?
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Available expressions

• What are the elements in data-flow sets?
• GEN and KILL?
• Forward or backward?
• IN and OUT?
IN[i]     = ∩ p a predecessor of i OUT[p]
OUT[i] = GEN[i] U (IN[i] – KILL[i])
• How to use available expressions for eliminating redundant code?

1: y = x + 3
2: b = x + 3

i: y = x + 3 j: z = x + 3

k: …
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So far …

Reaching definitions

Variable liveness

Available expressions

Constant propagation

Copy propagation

Common sub-expression 
elimination

Dead-code elimination
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Dominators

Definition: a basic block d dominates n in a CFG (d dom n) 
if every control flow from the start node to n goes through d.  
Every node dominates itself.

1

2

3

CFG

1

2 3

Dominators

What are the elements for data flow values?
GEN ? KILL ? IN ? OUT? (1 point)
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20



What about function parameters?

int myFunction (int a, int b){
if (a > b){

a = 5;
}
return a;

}

1: If (a > b)

2: a = 5

3: return a

IN[2]    ={           }
OUT[2]={2         } 

IN[1]    ={           }
OUT[1]={           }

IN[3] = {2            } 

CP algorithm replaces “a” with “5” in instruction 3!

… let’s compute the reaching definition analysis
Which information is missing? 0a: NOP

0b: NOP

0a,0b
0a,0b

0a,0b
, 0b

,0a,0b

IN[0a]      = { }
OUT[0a]  = {0a}
IN[0b]      = {0a}
OUT[0b]  = {0a,0b}

Can we exploit SSA properties?
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• But you didn’t have to deal with this problem in your assignments
so far
• Why?

What about function parameters?
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What about escaped variables?

int myFunction (void){
int a;
int *p = f(&a);
if (a > b){

a = 5;
} else {

*p = 6;
} 
return a;

}

1: int a
2: int *q = &a
3: int *p = f(q)
4: If (a > b)

5: a = 5

7: return a

IN[5]     ={2,3   }
OUT[5] ={2,3,5}

OUT[1] ={     }
OUT[2] ={2   }
OUT[3] ={2,3}
OUT[4] ={2,3} 

IN[7] = {2,3,5,6}

CP algorithm replaces “a” with “5” in instruction 7!

… let’s compute the reaching definition analysis
Which information is missing?

6: *p = 6IN[6]     ={2,3   }
OUT[6] ={2,3,6}
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What about escaped variables?

int myFunction (void){
int a;
int *p = f(&a);
if (a > b){

a = 5;
} else {

*p = 6;
} 
return a;

}

1: int a
2: int *q = &a
3: int *p = f(q)
4: If (a > b)

5: a = 5

7: return a

IN[5]     ={2,3   }
OUT[5] ={2,3,5}

OUT[1] ={     }
OUT[2] ={2   }
OUT[3] ={2,3}
OUT[4] ={2,3} 

IN[7] = {2,3,5,6}
Possible solutions:
- Simple      = skip escaped variables in CP
- Advanced = analyze how the memory is modified via pointers

6: *p = 6IN[6]     ={2,3   }
OUT[6] ={2,3,6}
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Identifying software bugs

1: int x,y
2: y = 0
3: If (a > b)

4: x=5

5: If (b > N)

6: return y

7: return x

• “x” can be undefined at instruction 7
• Can we design an analysis to identify this problem

and notify a developer about this bug?
• Let’s define precisely the problem
• Conservativeness

• What are the data flow values?
• GEN[i] = ?
• KILL[i] = ?
• IN[i] and OUT[i] ?
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Identifying software bugs (2)

1: int x
2: call f(&x)
3: If (a > b)

4: x=5

5: return x

• What about now?

• Let’s define precisely the problem
• Conservativeness
• Warnings vs. errors
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for (each instruction i)  IN[i] = OUT[i] = { };
do {
  for (each instruction i) { 
    IN[i] = fsp a predecessor of i (OUT[p]) 
    OUT[i] = fs(IN[i]) 
  }
} while (changes to any OUT occur) 

Forward DFA
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for (each instruction i)  IN[i] = OUT[i] = { };
do {
  for (each instruction i) { 
    OUT[i] = fss a successor of i (IN[s]) 
    IN[i] = fs(OUT[i]) 
  }
} while (changes to any IN     occur) 

Backward DFA
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Now that we know DFAs and how to compute them,

let us look at how to reduce the computation time to compute them
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for (each instruction i)  IN[i] = OUT[i] = { };
do {

for (each instruction i) { 
IN[i] = ∪p a predecessor of i OUT[p]; 
OUT[i] = GEN[i] ∪ (IN[i] ─ KILL[i]); 

}
} while (changes to any OUT occur) 

Implementation aspects

• Memory representation of data flow values
• Operations performed on them
• What is an element in a set?
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for (each instruction i)  IN[i] = OUT[i] = { };
do {

for (each instruction i) { 
IN[i] = ∪p a predecessor of i OUT[p]; 
OUT[i] = GEN[i] ∪ (IN[i] ─ KILL[i]); 

}
} while (changes to any OUT occur) 

Optimization 1: bit-set
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Optimization 1: bit-sets

• Assign a bit to each element that might be in the set
• Union: bitwise OR
• Intersection: bitwise AND
• Subtraction: bitwise NEGATE and AND

• Fast implementation
• 64 elements packed to each word on today’s commodity processors
• AND and OR are single machine code instructions (single cycle latency)
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for (each instruction i)  IN[i] = OUT[i] = { };
do {

for (each instruction i) { 
IN[i] = ∪p a predecessor of i OUT[p]; 
OUT[i] = GEN[i] ∪ (IN[i] ─ KILL[i]); 

}
} while (changes to any OUT occur) 

Can we further optimize the analysis?

... that’s a lot of iterations
repeated for each
while iteration

Are they all necessary
for every while iteration?
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36

(i)       
(j)

(l)       

IN[i], OUT[i]
IN[j], OUT[j]
IN[l], OUT[l]

do {
for (each instruction i) { 

IN[i] = ∪p a predecessor of i OUT[p]; 
OUT[i] = GEN[i] ∪ (IN[i] ─ KILL[i]); 

}
} while (changes to any OUT occur) 

First while-iteration

IN[i], OUT[i]
IN[j], OUT[j]
IN[l], OUT[l]

Second while-iteration

IN[i], OUT[i]
IN[j], OUT[j]
IN[l], OUT[l]

Third while-iteration

IN[i], OUT[i]
IN[j], OUT[j]
IN[l], OUT[l]

Forth while-iteration

Changed
Not changed

Are these
necessary?



for (each instruction i)  IN[i] = OUT[i] = { };
do {

for (each instruction i) { 
IN[i] = ∪p a predecessor of i OUT[p]; 
OUT[i] = GEN[i] ∪ (IN[i] ─ KILL[i]); 

}
} while (changes to any OUT occur) 

Optimization 2: work list
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Optimization 2: work list

OUT[ENTRY] = { }; 
for (each instruction i other than ENTRY)  OUT[i] = { };
workList = all instructions
while (workList isn’t empty)

i = pick and remove an instruction from workList
oldOUT = OUT[i]  
IN[i] = ∪p a predecessor of i OUT[p]; 
OUT[i]= GEN[i] ∪ (IN[i] ─ KILL[i]);
if (oldOut != OUT[i]) workList = workList U {all successors of i}

} 
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(i)       
(j)

(l)       

IN[i], OUT[i]
IN[j], OUT[j]
IN[l], OUT[l]

First while-iteration

IN[i], OUT[i]
IN[j], OUT[j]
IN[l], OUT[l]

Second while-iteration

IN[l], OUT[l]Third while-iteration

IN[l], OUT[l]Forth while-iteration

Changed
Not changed



Can we further optimize it?

OUT[ENTRY] = { }; 
for (each instruction i other than ENTRY)  OUT[i] = { };
workList = all instructions
while (workList isn’t empty)

i = pick and remove an instruction from workList
oldOUT = OUT[i]  
IN[i] = ∪p a predecessor of i OUT[p]; 
OUT[i]= GEN[i] ∪ (IN[i] ─ KILL[i]);
if (oldOut != OUT[i]) workList = workList U {all successors of i}

} 
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(i)       
(j)

(l)       

IN[i], OUT[i]
IN[j], OUT[j]
IN[l], OUT[l]

First while-iteration

IN[i], OUT[i]
IN[j], OUT[j]
IN[l], OUT[l]

Second while-iteration

IN[l], OUT[l]Third while-iteration

IN[l], OUT[l]Forth while-iteration

Changed
Not changed

IN[l], OUT[l]
IN[j], OUT[j]
IN[i], OUT[i]

First while-iteration

IN[l], OUT[l]
IN[j], OUT[j]
IN[i], OUT[i]

Second while-iteration

IN[l], OUT[l]
IN[j], OUT[j]
IN[i], OUT[i]

Third while-iteration

IN[l], OUT[l]Forth while-iteration

IN[l], OUT[l]Fifth while-iteration



Optimization 3: evaluation order

OUT[ENTRY] = { }; 
for (each instruction i other than ENTRY)  OUT[i] = { };
workList = all instructions
while (workList isn’t empty)

i = pick and remove an instruction from workList
oldOUT = OUT[i]  
IN[i] = ∪p a predecessor of i OUT[p]; 
OUT[i]= GEN[i] ∪ (IN[i] ─ KILL[i]);
if (oldOut != OUT[i]) workList = workList U {all successors of i}

} 
42



for (each instruction i)  IN[i] = OUT[i] = { };
do {

for (each instruction i) { 
IN[i] = ∪p a predecessor of i OUT[p]; 
OUT[i] = GEN[i] ∪ (IN[i] ─ KILL[i]); 

}
} while (changes to any OUT occur) 

Optimization 4: basic blocks

Is this always necessary ?
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for (each basic block B)  IN[B] = OUT[B] = { };
do {

for (each basic block B) { 
IN[B] = ∪P a predecessor of B OUT[P]; 
OUT[B] = GEN[B] ∪ (IN[B] ─ KILL[B]); 

}
} while (changes to any OUT occur) 

Optimization 4: basic blocks

Contains all definitions in block B
that are visible immediately after B

i0: v1 = 5
i1: v2 = v1 + 1
i2: v1 = 42

GEN[B]={i1,i2}

i1 is not visible outside B
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for (each basic block B)  IN[B] = OUT[B] = { };
do {

for (each basic block B) { 
IN[B] = ∪P a predecessor of B OUT[P]; 
OUT[B] = GEN[B] ∪ (IN[B] ─ KILL[B]); 

}
} while (changes to any OUT occur) 

Optimization 4: basic blocks

Contains all definitions in block B
that are visible immediately after B

Contains all definitions killed
by instructions in block B

Suggestion: if you are going to implement 
these optimizations, then either 
• skip this one or 
• keep it to be the last one
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for (each basic block B)  IN[B] = OUT[B] = { };
do {

for (each basic block B) { 
IN[B] = ∪P a predecessor of B OUT[P]; 
OUT[B] = GEN[B] ∪ (IN[B] ─ KILL[B]); 

}
} while (changes to any OUT occur)
… // propagate IN[B] through the instructions within B

// without computing IN[B.first()] and OUT[B.last()]
// because IN[B.first()] == IN[B]; OUT[B.last()] == OUT[B]

Optimization 4: basic blocks
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… // propagate IN[B] through the instructions within B

f = B.first() ; IN[f] = IN[B];
OUT[f] = GEN[f] ∪ (IN[f] ─ KILL[f]);
t = f;
while (t != B.last()){

tNext = t.next();   
IN[tNext] = OUT[t];
OUT[tNext] = GEN[tNext] ∪ (IN[tNext] ─ KILL[tNext]);
t = tNext;

}

Optimization 4: basic blocks

OUT[B] = GEN[B] ∪ (IN[B] ─ KILL[B]);
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… // propagate IN[B] through the instructions within B

f = B.first() ; IN[f] = IN[B];
if (f != B.last()) OUT[f] = GEN[f] ∪ (IN[f] ─ KILL[f]);
t = f;
while (t != B.last()){

tNext = t.next();   
IN[tNext] = OUT[t];
if (tNext != B.last()) OUT[tNext] = GEN[tNext] ∪ (IN[tNext] ─ KILL[tNext]);
t = tNext;

}

Optimization 4: basic blocks
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Food for thought

• Correctness: is the answer ALWAYS correct?
•Meaning: what is exactly the meaning of the answer?
• Precision: how good is the answer?
• Convergence:
• Will the analysis ALWAYS terminate?
• Under what conditions does the iterative algorithm converge? 

• Speed: how long does it take to converge in the worst case?
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Always have faith in your ability

Success will come your way eventually

Best of luck!
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