C de analysis
and
transf rmation

DFA Part 2

Simone Campanoni
simone.campanoni@northwestern.edu

Outline

e More DFAs and related transformations

* DFAs without assumptions

e Other uses of DFA

* DFA implementation

Thinking about
what constant propagation does

* What'’s the value of these propagations?

* Constant propagation: less variable uses
Redundant use of variables

* Redundancy is one of the
main source of optimization in compilers

[Front-end —> > P> —>—>[Back-endJ

J

Copy propagation: problem definition

Given a CFG, we would like to know

for every point in the program,
if a variable contains always the same value of another one.

Copy propagation

How can we implement this transformation?

Reaching definition summary

e Reaching definition data-flow analysis computes IN[i] and OUT[i]
for every instruction i

* IN[i] (OUT]Ii]) includes definitions that reach
just before (just after) instruction i

e Each IN/OUT set contains a mapping
for every variable in the program to a “value”;

Copy propagation

* For a use of variable v in statega@nt n, |, "% IN[2]={ }
- IN[3]={2}
nN:X=..V.. Y =X .
4:If (a>b)]

e If the definitions of¥ that reach n

IN[5]={2,3}

nother variable]
IN[6]={2,3,5}

e use of vin n with z IN[7]={2,3,5}

7: retur

Do you see any problem?
IN[8]={2,3,5}

How can we fix it?

(3 points, deadline = next class) 6

* Copy propagation relies on the same DFA of constant propagation
(... we got lucky)

* However, a new optimization often relies on
a (or multiple) new data-flow analysis

* Itis important to learn how to define new and specialized DFAs

e Different DFAs have different
e Data-flow values

* Data-flow equations
* Definitions of GEN and KILL sets

* Beyond reaching definition:
Now we are going to see other common DFAs

Dead code elimination: problem definition

Given a program, we would like to know statements/instructions
that do not influence the program at all (i.e., dead code)

Copy propagation

How can we identify dead code? with anew data flow analysis
called liveness analysis

Liveness analysis

A variable is live at a particular point in the program
if its value at that point will be used in the future (dead, otherwise)

* To compute liveness at a given point of a CFG,
we need to look at instructions that will be executed next

* How to use variable liveness information for eliminating dead-code?

e Dead-code:

a side-effect free instruction i that defines a variable .
that is dead just after i | :a=>5
i+1:returnb

i-1: b =42

Liveness analysis

A variable is live at a particular point in the program
if its value at that point will be used in the future (dead, otherwise)

* Another use: register allocation

* A program contains an unbounded number of variables
* Must execute on a machine with a bounded number of registers
* Two variables can use the same register
if they are never in use at the same time

* CS 322 Compiler Construction

Liveness analysis

A variable v is live at a given point of a program p if
 Exist a directed path from p to a use of v and
 that path does not contain any definition of v

* Is liveness data-flow analysis forward or backward? IN[s]=fs(OUT[s])

* Liveness flows backwards through the CFG,
because the behavior at future nodes determines liveness at a given node

* What are the elements in data flow values? variables
GEN][i]= variables used by i KILL[i]= variable defined by i
IN[i] = GENTIi] U(OUT[i] — KILL[i])

OUT[] = Us 4 successor of i IN[S]

Example of variable liveness
and dead-code elimination

What are in IN/OUT sets?

IN[O] =1}

OUT[O0] = {a}

IN[1] ={a}

OUT[1] = {a, b}

IN[2] ={a, b}

OUTI[2] = {b}]

o3 (]

OUT3] - {b} aDSizcej:gz(ejgczfree instruction i that defines a variable
|N[4 = {b} that is dead just after |

OUTI[4] = {} Is there dead-code?

Creating opportunities

e So far we saw
e Dead code elimination
[- Constant propagation]
e Copy propagation

* They might look simple,
but they can already optimize the code in interesting ways

* Applying one often creates
new optimization opportunities to the rest

Example of variable liveness
and dead-code elimination

[T = O

Dead code elimination
. Constant propagation
. Dead code elimination
. Constant folding

. Constant propagation
Dead code elimination

OUh WN PR

Example of variable liveness
and dead-code elimination

With a combination of 3 “simple” transformations

 dead code elimination,

* constant propagation,
e constant folding

Are there more transformations to remove more redundancy?

Common sub-expression elimination:
problem definition

Given a program, we would like to know

for every point in the program,
which expressions are available

Do you see any redundancy?

Available expressions

* What are the elements in data-flow sets?
 GEN and KILL?

* Forward or backward?

* IN and OUT?

N[l =0 2 predecessor of OUTP]

OUTIi] = GEN[i] U (IN[i] = KILL[/])

* How to use available expressions for eliminating redundant code?

So far ...

e

Reaching definitions { Constant propagation
g
(.
. Copy propagation
Variable liveness
g
- Dead-code elimination

Available expressions

.

Common sub-expression
elimination

Dominators

Definition: a basic block d dominates n in a CFG (d dom n)
if every control flow from the start node to n goes through d.
Every node dominates itself.

1 /\ Dominators

2 2 3

\ 4

3 What are the elements for data flow values?

CEG GEN ? KILL ? IN ? OUT? (1 point)

Outline

* DFAs without assumptions

e Other uses of DFA

* DFA implementation

What about 7

... let’s compute the reaching definition analysis
Which information is missing?

IN[1] = J
OUT[1]={

int myFunction (){
if (a > Db){

a=>; Can we exploit SSA properties?

)
return a; IN[3] ={2 }

CP algorithm replaces “a” with “5” in instruction 3!

What about function parameters?

e But you didn’t have to deal with this problem in your assignments
so far

* Why?

2. A C variable that includes a reference to a CAT variable cannot be given as argument to a call to a function.

22

What about 7

... let’s compute the reaching definition analysis

Which information is missing? OUT[1] ={ }
int myFunction (void){ ; :Eiiq 2 OUT[2] ={2 '}
int a; 3:int *p = f(q) OUT:3: ={2,3}
int *p = f(&a); 4:1f (a>b) 4] ={2,3}
i (a > b)f N6l =23] IN[5] ={2,3 }
= 5; OUT[E] ={2.3,6) OUT([5] ={2,3,5}
}else {
*p=6;
} IN[7] = {2,3,5,6}
return a;

} CP algorithm replaces “a” with “5” in instruction 7!

What about 7

OUT[1]={ }
int myFunction (void){ ; ::tiq - 23 831; f{g 3}
int a; 3:int *p =f(q) . =12,3)
int *p — f) 4: If (a>b) 4] ={2,3}
if (a > b)f N6l =23) IN[S] ={2,3 }
= 5; OUTI6] ={2.3,6} OUT[5] ={2,3,5)
L else { Y
*p=6;
return a: Possible solutions:
) - Simple = skip escaped variables in CP

- Advanced = analyze how the memory is modified via pointers

Outline

e Other uses of DFA

* DFA implementation

|[dentifying software bugs

o, _n

e “x” can be undefined at instruction 7
e Can we design an analysis to identify this problem
and notify a developer about this bug?
* Let’s define precisely the problem
e Conservativeness
 What are the data flow values?
e GEN[i] =7
e KILL[i]="
* IN[i] and OUT[i] ?

5: If (b > N)

|[dentifying software bugs (2)

e What about now?

1:intx
2: call f(&x)

3:1f (a > b) * Let’s define precisely the problem
* Conservativeness

4: x=5 * Warnings vs. errors

5:return x

Outline

* DFA implementation

Forward DFA

for (each instruction i) IN[i] = OUT[i] =1{};
do {

£ : : :
|N[i] =fspa predecessor of i (OUT[p])]
l OUTIi] = fs(IN[i])

}

} while (changes to any occur)

29

Backward DFA

for (each instruction i) IN[i] = OUT[i] =1{};
do {

¢ : . .
OUTI(i] = fs; a successor of i (IN[s])]
l IN[i] = fs(OUTIi])

}
} while (changes to any@ occur)

30

Now that we know DFAs and how to compute them,

let us look at how to reduce the computation time to compute them

Implementation aspects

for (each instruction i) IN[i] = OUT[i] =1{};
do {

for (each instruction i) {
IN[/] =Y} a predecessor of i OUTIp];

OUTI[i] = GEN[/] U (IN[/] = KILL[/]

} o

Hot code

);

} while (changes to any

* Memory representation of data flow values
e Operations performed on them
* What is an element in a set?

32

Optimization 1: bit-set

for (each instruction i) IN[i] = OUT[i] ={};
do {

for (each instruction i) {
IN [’] : a predecessor of i OUT[p];

OUTIi] = GEN/](UJ(IN[/[=JKILLL);
}

} while (changes to any OUT occur)

Optimization 1: bit-sets

* Assign a bit to each element that might be in the set
* Union: bitwise OR

* |Intersection: bitwise AND
e Subtraction: bitwise NEGATE and AND

* Fast implementation
* 64 elements packed to each word on today’s commodity processors
 AND and OR are single machine code instructions (single cycle latency)

llvm::BitVector llvm::SmallBitVector llvm::SparseBitVector

Can we further optimize the analysis?

for (each instruction i) IN[i] = OUT[i] =1{};

do {
for (each instruction i) { < ... that’s a lot of iterations
IN[] = U, 4 predecessor of i OUTIPI; repeated for each
OUTIi] = GEN[i] U (IN[i] = KILL[i]); while fteration
} Are they all necessary

} while (changes to any OUT occur) for every while iteration?

35

First while-iteration

Second while-iteration |N|[
IN[j
IN[

Third while-iteration

Forth while-iteration

INTi
INJj
INT

INTi
IN[j
IN[

INTi
IN[
INII

], OUTIi]
], OUT[j]

], OUT[I]

i], OUTIi]
], OUT[j]

], OUTII]

], OUTIi]
1, OUT[j.

], OUT]I]

], OUTIi;
j1, OUT[j

1, OUT]

Changed
Not changed

Are these
necessary?

do {

for (each instruction i) {
IN[i] = Up a predecessor of i OUTIp];
OUTI[i] = GEN[/i] U (IN[i] = KILL[i]);
}

} while (changes to any OUT occur)

(i)
(j)

()

36

Optimization 2: work list

for (each instruction i) IN[i] = OUTI[il={};
do {
&(neach instruction i) {|
IN[/] = U, a predecessor of i OUT[p];
OUTIi] = GENIi] U (IN[i] = KILL[{]);
}

} while (changes to any OUT occur)

Optimization 2: work list

OUT[ENTRY] ={ };
for (each instruction i other than ENTRY) OUT[i] ={};
workList = all instructions
while (workList isn’t empty)
i = pick and remove an instruction from workList

O|dQUT = OUT]i]
IN[i] = Up a predecessor of i OUTI[p];

OUTI[i]= GEN[/] U (IN[i] = KILL[]);
if (oldOut != OUT]Ii]) workList = workList U {all successors of i}

First while-iteration |N[i], OUT[i]
IN[j], OUTj
IN[I], OUTII]

Second while-iteration |N[i], OUT]i]
IN[j], OUTIj]
IN[I], OUTI]

Third while-iteration [N[|], OUTII]

Forth while-iteration IN[], OUT[]

Changed
Not changed

(i)
(j)

()

39

Can we further optimize it?

OUT[ENTRY] ={ };
for (each instruction i other than ENTRY) OUT[i] ={};
workList = all instructions
while (workList isn’t empty)
i = pick and remove an instruction from workList

O|dQUT = OUT]i]
IN[i] = Up a predecessor of i OUTI[p];

OUTI[i]= GEN[/] U (IN[i] = KILL[]);
if (oldOut != OUT]Ii]) workList = workList U {all successors of i}

First while-iteration IN

INJj
IN[

Second while-iteration |N|[
IN[j
IN[

Third while-iteration

Forth while-iteration

i], OUTIi
], OUT[j]
], OUT[I]
i], OUTIi]
], OUT[j]
], OUTI]
IN[I], OUTII]

IN[I], OUTII]

First while-iteration N[
IN[j
IN[i

Second while-iteration |N|
IN[j
IN[i

Third while-iteration |N|[
IN[
INTi

Forth while-iteration |N

Fifth while-iteration IN|[

Changed
Not changed

], OUT[I]
], OUTj]

], OUTIi]

1, OUT]
1, OUT[j.

1, OUTIi]
], OUT[I]
j1, OUT[j
1, OUTIi]
1], OUTII

(i)
(J)

()

1, OUT[I]

Optimization 3: evaluation order

OUT[ENTRY] ={ };

for (each instruction i other than ENTRY) OUT[i] ={};
workList = all instructions

while (workList isn’t empty)

[i = pick and remove an instruction from workList]

O|dQUT = OUT]i]
IN[i] = U, a predecessor of i OUTIp];

OUTI[i]= GEN[/] U (IN[i] = KILL[]);
if (oldOut = OUT[i])[workList = workList U {all successors of i}]

}

42

Optimization 4: basic blocks

for (each instruction i) IN[i] = OUT[i] =1{};
do {

for (each instruction i) {
IN[/] = U a predecessor of i OUTIp];

OUTI[i] = GEN[/] U (IN[/] = KILL[f]);

} while (changes to OUT occur)

Is this always necessary ?

43

Optimization 4: basic blocks

for (each basic block B) IN[B] = OUT[B] ={ };
do {

for (each basic block B) {
IN[B] = Up, predecessor of s OUTI[P;
OUT[B] = GEN[B] U (IN[B] —KILL[B]);

} while (chvanges to any OUT occur)

Contains all definitions in block B

that are visible immediately after B

0:vl=5
11:v2=vl+1
12: vl =42

GENI[B]={i1,i2}

i1 is not visible outside B

44

Optimization 4: basic blocks

for (each basic block B) IN[B] = OUT[B] ={ };
do {

for (each basic block B) {
IN[B] = UPa predecessor ofBOUT[P];

OUT([B] = GEN[B] U (IN[B] = KILL[B]);

} while (chvanges to any OUT occur) | Contains all definitions killed
by instructions in block B

Contains all definitions in block B

that are visible immediately after B

45

Optimization 4: basic blocks

for (each basic block B) IN[B] = OUT[B] ={ };
do {

for (each basic block B) {
IN[B] = UPa predecessor ofBOUT[P];

OUT[B] = GEN[B] U (IN[B] — KILL[B]);
}

} while (changes to any OUT occur)
... [/ propagate IN[B] through the instructions within B
// without computing IN[B.first()] and OUT[B.last()]
// because IN[B.first()] == IN[B]; OUT[B.last()] == OUT[B]

Optimization 4: basic blocks

... // propagate IN[B] through the instructions within B
f = B.first() ; IN[f] = IN[B];
OUTI[f] = GEN[f] U (IN[f] = KILL[f]); OUT([B] = GEN[B] U (IN[B] = KILL[B])]
t=f;
while (t != B.last()){
tNext = t.next();
IN[tNext] = OUT[t];
OUT[tNext] = GEN[tNext] U (IN[tNext] — KILL[tNext]);
t = tNext;
}

Optimization 4: basic blocks

f = B.first() ; IN[f] = IN[B];
if (f I=B.last()) OUT[f] = GEN[f] U (IN[f] — KILL[f]);
t=f;
while (t != B.last()){
tNext = t.next();
IN[tNext] = OUT[t];
if (tNext 1= B.last()) OUT[tNext] = GEN[tNext] U (IN[tNext] — KILL[tNext]);
t = tNext:
}

Food for thought

* Correctness: is the answer ALWAYS correct?
* Meaning: what is exactly the meaning of the answer?
* Precision: how good is the answer?

* Convergence:
* Will the analysis ALWAYS terminate?
* Under what conditions does the iterative algorithm converge?

* Speed: how long does it take to converge in the worst case?

Always have faith in your ability

Success will come your way eventually

Best of luck!

