
Dependences
Simone Campanoni
simone.campanoni@northwestern.edu

Dependences: the big picture

• Code transformations are designed
to preserve the semantics of the code given as input
• As defined earlier, semantics of a program is the Input=>Output mapping

• A dependence A -> B is satisfied if
A will always execute before B
• If we satisfy all dependences in the code,

then we will preserve I => O

1: varX = par1 + 1
2: varY = par2 + par1
3: varZ = varY + varX
4: print(varZ)

4: print(varZ)
1: varX = par1 + 1
2: varY = par2 + par1
3: varZ = varX + varY

2: varY = par2 + par1
1: varX = par1 + 1
3: varZ = varX + varY
4: print(varZ)

A: varX = 1;
B: if (par1 > 5)
C: varX = par1 + 1
D: print(varX) 2

Outline

•Control dependences

•Data dependences

• Introduction to memory alias analysis
3

Control dependence intuition

• Dependence: C will be executed depending on B

• How to identify C?
(automatically)
• Do we need a DFA?
• We need a

Control Flow Analysis

A: varX = 1;
B: if (par1 > 5)
C: varX = par1 + 1
D: print(varX)

B

C

D

CFG

4

Dominators

Definition: Node d dominates node n in a graph
if every path from the start node to n goes through d

B

C

D

B

C D

CFG

Immediate dominator tree

B: if (par1 > 5)
C: varX = par1 + 1
D: print(varX)

Are dominators useful to identify
the control dependence between C and B?

5

Post-Dominators
Assumption: Single exit node in CFG
Definition: Node d post-dominates node n in a graph
if every path from n to the exit node goes through d

B

C

D

D

C B

CFG

Immediate
post-dominator tree

B: if (par1 > 5)
C: varX = par1 + 1
D: print(varX)

How can we identify C and B with
the post-dominator tree and the CFG?
B determines whether C executes or not 6

Control dependence in our example
Node C is control-dependent on B because
1. C is the successor of B
2. C does not post-dominate B

B

C

D

D

C B

CFG

Immediate
post-dominator tree

B: if (par1 > 5)
C: varX = par1 + 1
D: print(varX)

7

Do you see any problem?

Control dependence in our example
Node C is control-dependent on B because
1. C is the successor of B
2. C does not post-dominate B

8

B

C

D

D

C2 B

CFG
Immediate
post-dominator tree

B: if (par1 > 5)
C: varX = par1 + 1
C2: …
D: print(varX)

C2 C

Control dependences (almost correct)
A node Y control-depends on another node X if and only if
1. There is a path from X to Y such that

every node in that path other than X is post-dominated by Y
2. X is not post-dominated by Y

x

y Exit

9

B

C

D

D

C2 B

CFG
Immediate
post-dominator tree

B: if (par1 > 5)
C: varX = par1 + 1
C2: …
D: print(varX)

C2 C

Why?

Control dependences (almost correct)
A node Y control-depends on another node X if and only if
1. There is a path from X to Y such that

every node in that path other than X is post-dominated by Y
2. X is not post-dominated by Y

B

C

D

D

C2

B

CFG
Immediate
post-dominator tree

B: while (par1 > 5)
C: varX = par1 + 1
C2: …
D: print(varX)

C2
C

Why?

10

Control dependences
A node Y control-depends on another node X if and only if
1. There is a path from X to Y such that

every node in that path other than X is post-dominated by Y
2. X is not strictly post-dominated by Y

B

C

D

D

C2

B

CFG
Immediate
post-dominator tree

B: while (par1 > 5)
C: varX = par1 + 1
C2: …
D: print(varX)

C2
C

11

Control dependence graph (CDG)

• Graph (N, E) where
• N are basic blocks
• Exist an edge (x,y) in E if and only if y control-depends on x

B

C

D

CFG

C2

B

C

D

CDG
C2

An use of CDG:
Sequential program: fixed order of execution
Goal: remove unnecessary order
Useful for parallelism 12

Extracting parallelism automatically
while (…)

I0: …
 if (…){
I1: …
I2: …
I3: …
 }
I4: …
 }

while (…)

I0 If (…) I4

I1 I2 I3

CDG
Time

Cores

• Assuming
• no data dependence
• Infinite cores

• We want to minimize the wall time of our program 13

Control dependence graph

A node X is control-dependent on another node Y if and only if
1. There is a path from X to Y such that

every node in that path other than X is post-dominated by Y
2. X is not strictly post-dominated by Y

• The previous definition of control dependences

• Naïve implementation:
Iterate over all pair of instructions
Check conditions 1 and 2 for each pair

 O(N2)
• Can we do better?

14

Control dependence graph: algorithm
A node Y control-depends on another node X if and only if
1. There is a path from X to Y such that

every node in that path other than X is post-dominated by Y
2. X is not strictly post-dominated by Y

B

C

D

D

C2 B

CFG
Immediate
post-dominator tree

C2 C

How can we compute
the CDG?

B

C C2

D

CDG

(B,C)
(B,C2)

15

Outline

•Control dependences

•Data dependences

• Introduction to memory alias analysis
16

Data dependence
Three types of data dependence (assuming int a,b,c):
• Flow (True) dependence : read-after-write

a = c * 10;
b = 2 * a + c;

• Anti Dependency: write-after-read
a = b* 4+ c;
c = b + 40;

• Output Dependence: write-after-write
a = b *c ;
a = b + c + 10;

17

Data dependences

• Gives constraints on parallelism that must be satisfied

• Must be satisfied to have correct program
• How can we satisfy data dependences?

• Any order that does not violate these dependences is correct!

18

Data dependence graph (DDG)

• Graph (N, E) where
• N are instructions
• Exist an edge (x,y) in E if and only if y is data dependent on x

Differences between CDG and DDG
- Granularity
- Structure vs. content

19

Dependence example

A

B

E

CFG

C

D

A

B

E

CDG

C D

AB

E

DDG

C D

What are the possible executions that
preserve the original semantics of the program?
A B C E A D E
A C B E A E D A C E B 20

Dependence descriptors

• Data vs. control
• RAW, WAR, WAW
• …

21

Loop-carried data dependences

while(…){
j: *p = x + 1;
i: x = …;
…

}

i

j

while(…){
 i: x = …;
 j: *p = x + 1;
 …
}

i

j
LC

22

Loop-carried data dependences
while(…){

j: *p = x + 1;
i: x = …;
…

}

i

j
LC

while(…){
 j: *p = A[i-2] + 1;
 i: A[i] = …;
 k: i++;
}

i

j
LC

Distance =1

Distance =2

23

Data dependence analysis and others

Data
dependence
analysis

Code
transformation

Code analysis Code
transformation

24

(Variable) Data dependences in LLVM

Any idea?

25

(Memory) Data dependences in LLVM

• Memory data dependences are computed by MemoryDependenceAnalysis

• To get the output of the data dependence analysis:

• To get a dependency

26

Program dependence graph

• Program Dependence Graph = Control Dependence Graph +
Data Dependences

• Facilitates performing most traditional optimizations
• Constant folding, scalar propagation, common subexpression elimination,

code motion, strength reduction

• Requires only single walk over PDG

27

i0: while (i <= N)
i1: X = Y + 1
i2: K = Z * 5
i3: Y = X * 42
i4: Z = K + 2
i5: i = i + 1

Strongly Connected Component (SCC)

Often you need to partition instructions in groups
• Where each group is composed of instructions that depend on each other

Different colors <-> different cycles in the PDG => different cores

i1: X = Y + 1
i3: Y = X * 42

i2: K = Z * 5
i4: Z = K + 2

Core 0 Core 0 Core 1

28

Strongly Connected Component (SCC)

• A directed graph is strongly connected if
there is a path between all pairs of vertices

• A strongly connected component (SCC) of a directed graph is a
maximal strongly connected subgraph

A

B C

A

B C
D E

29

SCCDAG

• From the PDG

• To the SCC identifications

A

B C

D

E

30

SCCDAG

• From the PDG

• To the SCC identifications

• To the SCCDAG

A

B C

D

E

SCC 0

SCC 1

i0: while (i <= N)
i1: X = Y + 1
i2: K = Z * 5
i3: Y = X * 42
i4: Z = K + 2
i5: i = i + 1 31

Identify SCCs

• Tarjan's algorithm
• It utilizes the property that

nodes of a strongly connected component form
a subtree in the DFS spanning tree of the graph
• Complexity: O(|N| + |E|)

• Kosaraju's algorithm
• It utilizes the property that the transpose graph

(the same graph with the direction of every edge reversed)
has the same strongly connected components as the original graph
• Performs two DFSs on the graph
• It is similar to the method for finding the topological sorting
• Complexity: O(|N| + |E|)

In practice, this is faster

32

Identify SCCs in LLVM (Tarjan’s algorithm)

• Two template APIs to iterate over SCCs of a graph G:
scc_begin() and scc_end()
for (auto sccI = scc_begin(pdg); sccI != scc_end(pdg); ++sccI) {

auto const &scc = *sccI;
}
• These APIs assume the method getEntryNode() can be called

from the object given as input
• The return type of getEntryNode() set the type of scc

E.g., if we have the following method for our pdg:MyNodeT * getEntryNode ()
Then scc is of type std::vector<MyNodeT *>
const std::vector<MyNodeT *> &scc = *sccI;

and therefore

33

Outline

•Control dependences

•Data dependences

• Introduction to memory alias analysis
34

• We want to
• Execute j in parallel with i (extracting parallelism)
• Move j before i (code scheduling)

• Does j depend on i ?

• Do p and q point to the same memory location?
• Does q alias p?

Memory alias analysis: the problem

i: (*p) = varA + 1
j: varB = (*q) * 2

i: obj1.f = varA + 1
j: varB= obj2.f * 2

35

Memory alias/data dependence analysis

Memory
alias
analysis

Data
dependence
analysis

Code

Aliases: {
 (p, q, strength, location)
 }

Data dependences: {
 (i1, i2, type, strength)
}

36

Data dependences: {
 (2, 3, RAW, must)
}

Memory alias/data dependence analysis

Great
memory
alias
analysis

Great
data
dependence
analysis

1: *p1 = ...
2: *p2 = …
3: v1 = *p2 Aliases: { }

Oracle:
p2 and p1 points to different memory locations always

Aliases: {
 (p, q, strength, location)
 }

Data dependences: {
 (i1, i2, type, strength)
}

?? ??

Can we optimize the code
knowing these dependences?

37

Memory alias/data dependence analysis

Not great
memory
alias
analysis

Great
data
dependence
analysis

1: *p1 = ...
2: *p2 = …
3: v1 = *p2 Aliases: {

 (p1, p2, may, 1)
 (p1, p2, may, 2)
 (p1, p2, may, 3)
}

Data dependences: {
 (2, 3, RAW, must),
 (1, 2, WAW, may)
}

Oracle:
p2 and p1 points to different memory locations always

38

Memory alias/data dependence analysis

Not great
memory
alias
analysis

Not great
data
dependence
analysis

1: *p1 = ...
2: *p2 = …
3: v1 = *p2 Aliases: {

 (p1, p2, may, 1)
 (p1, p2, may, 2)
 (p1, p2, may, 3)
}

Data dependences: {
 (2, 3, RAW, must),
 (1, 2, WAW, may),
 (1, 3, RAW, may)
}

Oracle:
p2 and p1 points to different memory locations always
Analysis output:
Everything depends on everything else 39

Memory alias/data dependence analysis

Oracle:
p2 and p1 points to different memory locations always
Analysis output:
Everything depends on everything else

Inaccuracies on either memory alias analysis
or data dependence analysis
leads to “apparent” dependences
• More constraints on code transformations
• Reduce the aggressiveness of code transformations
• Reduce performance obtained

40

Memory alias/data dependence analysis

Great
memory
alias
analysis

Great
data
dependence
analysis

1: *p1 = ...
2: *p2 = …
3: v1 = *p2

Oracle:
p2 and p1 points to the same memory location always

Aliases: {
 (p1, p2, must, 1)
 (p1, p2, must, 2)
 (p1, p2, must, 3)
}

Data dependences: {
 (2, 3, RAW, must),
 (1, 2, WAW, must)
}

Can we optimize the code
knowing these dependences?

41

Memory alias/data dependence analysis

Not great
memory
alias
analysis

Great
data
dependence
analysis

1: *p1 = ...
2: *p2 = …
3: v1 = *p2

Oracle:
p2 and p1 points to the same memory location always

Aliases: {
 (p1, p2, may, 1)
 (p1, p2, may, 2)
 (p1, p2, may, 3)
}

Data dependences: {
 (2, 3, RAW, must),
 (1, 2, WAW, may),
}

We cannot delete instruction 1

42

Memory alias/data dependence analysis

Useless output
• Alias analysis:

a pointer may alias to another one
• Data dependence analysis:

an instruction may depend on another one

… may ...

43

Memory alias/data dependence analysis
and code analysis/transformation

Code analysis and transformation
that rely on memory alias analysis
and/or data dependence analysis

must be correct

independently with the accuracy of
memory alias analysis
and/or data dependence analysis

44

Always have faith in your ability

Success will come your way eventually

Best of luck!

45

