C de analysis
and
transf rmation
Dependences

Simone Campanoni
simone.campanoni@northwestern.edu

Dependences: the big picture

e Code transformations are designed
to preserve the semantics of the code given as input

* As defined earlier, semantics of a program is the Input=>Outpit mapping

r

2:varY =par2 + parl
l:varX=parl+1

3:varZ =varX + varY
rZ =varX + varY 4: print(varZ)

1l:varX=parl+1 4: print(varZ)
JZ:varY= par2+par1$;
3: varZ = varY + varX 2: varY
(4 print(varZ) ‘

* A dependence A -> B is satisfied if

A will always execute before B A:varX =1;
* |If we satisfy'all dependences]in the code, B: if (parl >5)
then we will preserve T= ’I'C: varX=parl +1

(D: print(varX)

Outline

* Control dependences

* Data dependences

* Introduction to memory alias analysis

Control dependence intuition

* Dependence: C will be executed depending on B

* How to identify C?
(automatically)
* Do we need a DFA?

* We need a
Control Flow Analysis

A:varX=1;

B: if (parl > 5)

C: varX=parl+1l
D: print(varX)

O O

CFG

Dominators

Definition: Node d dominates node n in a graph

if every path from the start node to n goes through d

B

CFG

B

2N

C D

Immediate dominator tree

Are dominators useful to identify
the control dependence between C and B?

B: if (parl >5)
C: wvarX=parl+l
D: print(varX)

Post-Dominators

Assumption: Single exit node in CFG

Definition: Node d post-dominates node n in a graph
if every path from n to the exit node goes through d

B

CFG

D

C

Immediate

post-dominator tree

How can we identify C and B with

2N

B

B: if (parl >5)
C: wvarX=parl+l
D: print(varX)

the post-dominator tree and the CFG?
B determines whether C executes or not

Control dependence in our example

Node C is control-dependent on B because
1. Cisthe successor of B

_ Do you see any problem?
2. Cdoes not post-dominate B

B D B: if (parl > 5)
/\ C: varX=parl+1
D: print(varX)

C C B
l Immediate
D post-dominator tree

CFG

Control dependence in our example

Node C is control-dependent on B because
1. Cisthe successor of B
2. Cdoes not post-dominate B

B D B: if (parl > 5)

/\ C: varX=parl+1
C2: ..

C C2 B D: print(varX)

v v

C2 C

v

D Immediate

CFG post-dominator tree

Why?
Control dependences (almostjcorrect)

A node Y control-depends on another node X if and only if X
1. Thereis a path from X to Y such that /
every node in that path other than X is post-dominated by Y
2. Xis not post-dominated by Y y Exit
B D B: if (parl > 5)
/\ C: varX=parl+1
C2: ..
C C2 B D: print(varX)
¥ Y
C2 C
v
D Immediate

CFG post-dominator tree

Why?

Control dependences (almostjcorrect)

A node Y control-depends on another node X if and only if

1.

2.

There is a path from X to Y such that

every node in that path other than X is post-dominated by Y

X is not post-dominated by Y

B D
7
B
C 7
v C2
C2 7
C
D :
Immediate

CFG post-dominator tree

S

B: while (parl > 5)
C: wvarX=parl+l
C2: ..

D: print(varX)

Control dependences

A node Y control-depends on another node X if and only if

1.

2.

There is a path from X to Y such that

every node in that path other than X is post-dominated by Y

X is not strictly post-dominated by Y

B

C
v
C2

D

CFG

D

v

B

v
C2

v
C

Immediate

post-dominator tree

S

B: while (parl > 5)
C: varX=parl+1l
C2: ..

D: print(varX)

Control dependence graph (CDG)

e Graph (N, E) where
* N are basic blocks
e Exist an edge (x,y) in E if and only if y control-depends on x

B B D

C C C2

v
5 CDG

v An use of CDG:

D Sequential program: fixed order of execution

Goal: remove unnecessary order
CFG Useful for parallelism

Extracting paralle

while (...)
10: ...
if (...){
11:
12:
13:
}
14: ..
}

* Assuming
* no data dependence
* Infinite cores

ism automatically

| Time

* We want to minimize the wall time of our program

while (...)
/1\
o | [1fe.) 14
11 12 13
CDG

Cores

Control dependence graph

* The previous definition of control dependences

A node X is control-dependent on another node Y if and only if

1. Thereis a path from X to Y such that
every node in that path other than X is post-dominated by Y

2. Xis not strictly post-dominated by Y

* Naive implementation:
Iterate over all pair of instructions
Check conditions 1 and 2 for each pair
O(N?)
 Can we do better?

Control dependence graph: algorithm

A node Y control-depends on another node X if and only if

1. Thereis a path from X to Y such that
every node in that path other than X is post-dominated by Y

2. Xis not strictly post-dominated by Y

B D D B (B,C)
/\ /\ (B,C2)

C C2 B C C2

Y Y

C2 [c CDG

v

D Immediate How can we compute

CEG post-dominator tree the CDG?

Outline

* Data dependences

* Introduction to memory alias analysis

Data dependence

Three types of data dependence (assuming int a,b,c):

* Flow (True) dependence : read-after-write
a=c*10;
b:E§%+c;

* Anti Dependency: write-after-read
a=b*4+c;

5?5:15

* Qutput Dependence: write-after-write
a=b *c;
4=b+c+1@

Data dependences

* Gives constraints on parallelism that must be satisfied

* Must be satisfied to have correct program
* How can we satisfy data dependences?

* Any order that does not violate these dependences is correct!

Data dependence graph (DDG)

e Graph (N, E) where
* N are instructions
e Exist an edge (x,y) in E if and only if y is data dependent on x

Differences between CDG and DDG
- Granularity
- Structure vs. content

19

Dependence example

/A\

B
v
C

D

CFG

A
/1\
B C D

CDG

What are the possible executions that
preserve the original semantics of the program?

ABCE
ACBE

ADE
AED

ACEB

DDG

20

Dependence descriptors

e Data vs. control
e RAW, WAR, WAW

Loop-carried data dependences

while(...)] B
DX = ...
J: *p\:‘x +1;

}

while(...){ @
i ¥p=x+1 LC
e

Loop-carried data dependences

while(...){ @
ji*p=x+1; LC Distance =1
X =..

while(...){
i *p=Ali-2] + 1;

i)
LC Distance =2
it All] =...;

K: i++;

4)
Data
dependence -
analysis

_ Y,

N

4)
Code
transformation

\. y,

4)

Code analysis

_

J

Data dependence analysis and others

-
Code

~N

transformation

_

J

(Variable) Data dependences in LLVM

Any idea?

(Memory) Data dependences in LLVM

* Memory data dependences are computed by MemoryDependenceAnalysis
#include ”llvm/Analysis/MemoryDependen&eAnalysis.h"

void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired< MemoryDependenceWrapperPass >();
return;

}
* To get the output of the data dependence analysis:

MemoryDependenceResults &MD = getAnalysis< MemoryDependenceWrapperPass >().getMemDep();

* To get a dependency
MemDepResult memInstDeps = MD.getDependency(memInst);

auto memInst2 = memInstDeps.getInst();

Program dependence graph

* Program Dependence Graph = Control Dependence Graph +
Data Dependences

* Facilitates performing most traditional optimizations

e Constant folding, scalar propagation, common subexpression elimination,
code motion, strength reduction

* Requires only single walk over PDG

Strongly Connected Component (SCC)

Often you need to partition instructions in groups
* Where each group is composed of instructions that depend on each other

i0: while (i <= N)

il: X=Y+1 il: X=Y+1 i2: K=Z%*5
i2: K=Z*5> i3: Y=X*42 i4: Z=K+2
i3: Y=X*42

i4: Z=K+2/

i5: i=i+1

Different colors <-> different cycles in the PDG => different cores

Strongly Connected Component (SCC)

e A directed graph is strongly connected if
there is a path between all pairs of vertices

A

B > C

* A strongly connected component (SCC) of a directed graph is a
maximal strongly connected subgraph

L) Sl

SCCDAG

* From the PDG

 To the SCC identifications

30

SCCDAG

* From the PDG

B

S~

‘>

 To the SCC identifications (‘7
D

C

i0: whiIe (i <= N)

* To the SCCDAG i;:
1£:
13:
14:

i5:

=Y+1
K=27* 59
Y=X*42
/=K+2
i=i+1

31

|[dentify SCCs

° Tarjan's algonthm < In praCtice, th|S IS faSter

* |t utilizes the property that
nodes of a strongly connected component form
a subtree in the DFS spanning tree of the graph

e Complexity: O(|N| + |E|)
* Kosaraju's algorithm

* |t utilizes the property that the transpose graph
(the same graph with the direction of every edge reversed)
has the same strongly connected components as the original graph

* Performs two DFSs on the graph
* |tis similar to the method for finding the topological sorting
e Complexity: O(|N| + |E|)

l[dentify SCCs in LLVM (Tarjan’s algorithm)

* Two template APIs to iterate over SCCs of a graph G:
scc_begin() and scc_end()

for (auto sccl = scc_begin(pdg); sccl I=scc_end(pdg); ++sccl) {
auto const &scc = *secl;

)

* These APIs assurie the method getEntryNode() can be called
from the object given as input
* The return type of getEntryNode() set the type of scc
E.g., if we have the following method for our pdg:MyNodeT */getEntryNode ()
Then scc is of type std::vector<MyNodeT *> and therefore
const std::vector<MyNodeT *> &scc = *sccl;

Outline

* Introduction to memory alias analysis

Memory alias analysis: the problem

* We want to

* Execute j in parallel with i (extracting parallelism)

* Move j before i (code scheduling)

* Does j depend oni?

i (*p)=varA+1
jovarB=(*q) * 2

* Do p and g point to the same memory location? Z

* Does q alias p?

i:objl.f=varA+1
j:varB=obj2.f * 2

~ . e
==

35

Memory alias/data dependence analysis

-
Memory
alias
analysis

\

~N

J

I

Aliases: {
(p, q, strength, location)

}

4)
Data
dependence
analysis

\ Y,

=)

Data dependences: {
(i1, i2, type, strength)
}

Memory alias/data dependence analysis

2: *p2=..

3:vl = *p2

Can we optimize the code
knowing these dependences?

p2 and p1 points to different memory locations always

[Great ?7 (Great A ?7?
mp | MEMOTY | a—— data m)
alias Alishbissés: {1 dependence
IVSi ' : analvsis Data dependences: {
\ana YSIS Y }(p, q, strength, location) \ S Y) }(il, 2, tyde, SrRAgthinust)
Oracle:

Memory alias/data dependence analysis

1: *pl =...
2: *p2=..
3:vl="*p2

(p1, p2, may, 3)
}

Data dependences: {
(2, 3, RAW, must),
(1, 2, WAW, may)

(Not great\ (G reat A
MEMOry | n— data m)
alias Aliases: { dependence
analysis (p1, p2, may, 1) analysis

Nl (p1, p2, may, 2) 2 J/

Oracle:
p2 and p1 points to different memory locations always

Memory alias/data dependence analysis

1: *pl =...
2: *p2=..
3:vl="*p2

(p1, p2, may, 3)
}

Data dependences: {
(2, 3, RAW, must),
(1, 2, WAW, may),
(1, 3, RAW, may)

(Not great\ (Not great

mp | MEMOTY | m—— data m)
alias Aliases: { dependence
analysis (p1, p2, may, 1) analysis
Nl (p1, p2, may, 2) 2 J/

Oracle:
p2 and p1 points to different memory locations always

Analysis output:
Everything depends on everything else

Memory alias/data dependence analysis

Inaccuracies on either memory alias analysis

or data dependence analysis

leads to “apparent” dependences

* More constraints on code transformations

* Reduce the aggressiveness of code transformations
* Reduce performance obtained

Oracle:
p2 and p1 points to different memory locations always

Analysis output:
Everything depends on everything else

40

Memory alias/data dependence analysis

2: *p2=..

3:vl = *p2

Can we optimize the code
knowing these dependences?

Data dependences: {
(2, 3, RAW, must),
(1, 2, WAW, must)

p2 and p1 points to the same memory location always

[Great (Great)
mp | MEMOTY | a—— data m)

alias Aliases: { dependence
analysis (p1, p2, must, 1) analysis

_ Y J (p1, p2, must, 2) \ Y J

(p1, p2, must, 3) }
}
Oracle:

Memory alias/data dependence analysis

1: *pl =...
2: *p2=..
3:vl="*p2

‘We cannot delete instruction 1 ‘

(p1, p2, may, 3)
}

Data dependences: {
(2, 3, RAW, must),
(1, 2, WAW, may),

[Not great\ (G reat A
memory | m— data m)
alias Aliases: { dependence
analysis (p1, p2, may, 1) analysis

Nl (p1, p2, may, 2) 2 /

Oracle:
p2 and p1 points to the same memory location always

42

Memory alias/data dependence analysis

Useless output
e Alias analysis:
a pointer may alias to another one
 Data dependence analysis:
an instruction may depend on another one

.. may ...

lr:s : Fi\

43

Memory alias/data dependence analysis
and code analysis/transformation

Code analysis and transformation

that rely on memory alias analysis
and/or data dependence analysis

must be correct

independently with the accuracy of
memory alias analysis
and/or data dependence analysis

44

Always have faith in your ability

Success will come your way eventually

Best of luck!

