
Inter-procedural
CAT

Simone Campanoni
simone.campanoni@northwestern.edu

Procedures/functions

• Abstraction
• Cornerstone of programming
• Introduces barriers to analysis

• So far looked at intra-procedural analysis
• Analyzing a single procedure

• Inter-procedural analysis uses calling relationships among procedures
(Call Graph)
• Enables more precise analysis information

void bar (void){
 x = 5;
 px = &x;
 foo(px);
 y = x + 5;
}

Is x constant?

bar

foo

2

Inter-procedural analysis
Goal: Avoid making overly conservative assumptions

about the effects of procedures and the state at call sites
Terminology
int a, e; // Globals
void foo(int *b, int *c){ // Formal parameters
(*b) = e;

}
bar(){
int d; // Local variables
foo(a, d); // Actual parameters

}
3

Inter-procedural analysis vs.
inter-procedural transformation
Inter-procedural analysis
• Gather information across multiple procedures

(up to the entire program)
• Can use this information to improve

intra-procedural analyses and transformation (e.g., CP)

Inter-procedural transformation
• Code transformations that involve multiple procedures

e.g., Inlining, procedure cloning, function specialization

4

Outline

① Sensitivity of analysis

② Single compilation

③ Separate compilations

④ Caller -> callee vs. callee -> caller propagations

⑤ Final remarks
5

Sensitivity of intra-procedural analysis

• Flow-sensitive vs. flow-insensitive

C

A B CA B

6

Flow sensitivity example

Is x constant?
void f (int x){

A: x = 4;
…
B: x = 5;

}

Flow-sensitive analysis
• It can compute one answer for every program point
• x is 4 after A
• x is 5 after B

• Requires iterative data-flow analysis or similar technique

Flow-insensitive analysis
• It computes one answer

for the entire procedure
• x is not constant

• Can compute in linear time
• Less accurate (ignores control flows)

7

Sensitivity of intra-procedural analysis

• Flow-sensitive vs. flow-insensitive

• Path-sensitive vs. path-insensitive
C

A B CA B

8

Path sensitivity example

Is x constant?
if (x == 0)

x = 4; x = 5;

print(x)

Path-sensitive analysis
• Computes one answer for every execution path
• x is 4 at print(x) if you came from the left path
• x is 5 at print(x) if you came from the right path

• Subsumes flow-sensitivity
• Very expensive

Path-insensitive analysis
• Computes one answer for all path

• x is not constant at print(x)
9

Sensitivity of inter-procedural analysis

• Flow-sensitive vs. flow-insensitive

• Path-sensitive vs. path-insensitive

• Context-sensitive vs. context-insensitive

C

A B CA B

10

Context sensitivity example

Is x constant?
a = id(4); b = id(5);

id (x) { return x;}

Context-sensitive analysis
• It can compute one answer for every call-site
• x is 4 in the first call
• x is 5 in the second call

• Re-analyzes callee for each caller

Context-insensitive analysis
• It computes one answer for all call-sites:
• x is not constant

• Perform one analysis independent of callers
• Suffers from unrealizable paths:
• Can mistakenly conclude that id(4) can return 5

because
we merge information from all call-sites 11

Call graph

• First problem: how do we know
what procedures are called from where?
• Especially difficult in higher-order languages,

languages where functions are values
• What about C programs?
• We’ll ignore this for now

• Let’s assume we have a (static) call graph
• Indicates which procedures can call which other procedures,

and from which program points

void foo (int a, int (*p_to_f)(int v)){
 int l = (*p_to_f)(5);
 a = l + 1;
 return a;
}

12

Call graph example
From now on we assume we have a static call graph

13

• From the command line:
opt -dot-callgraph program.bc -disable-output
(see test0)

• From your pass:
• Explicit iteration
• LLVM_callgraph/llvm/[0-4]

Generating a call graph with LLVM

14

DEMO

15

• From the command line:
opt -dot-callgraph program.bc -disable-output
(see test0)

• From your pass:
• Explicit iteration
• LLVM_callgraph/llvm/[0-4]

• CallGraphWrappingPass
• LLVM_callgraph/llvm/[5-6]

Generating a call graph with LLVM

16

Using CallGraphWrappingPass

• Declaring your pass dependence

• Fetching the call graph

17

Using CallGraphWrappingPass

• From a Function to a node of the call graph

• From node to callees

• From node to Function

18

DEMO

19

Outline

① Sensitivity of analysis

② Single compilation

③ Separate compilations

④ Caller -> callee vs. callee -> caller propagations

⑤ Final remarks
20

Intra-procedural dataflow analysis

• How have we been performing reaching definitions so far?

main() {
A: x = 7;
B: r = p();
C: y = 80;
D: t = p();
E: print t, r;
}
int p (void) {
F: m = 1;
G: return m;

}

F

G

IN = {F}

IN = { }

main p

21

1

Intra-procedural dataflow analysis

• How have we been performing reaching definitions so far?

main() {
A: x = 7;
B: r = p();
C: y = 80;
D: t = p();
E: print t, r;
}
int p (void) {
F: m = 1;
G: return 1;

}

A

B

C

D

E

IN = {A}

IN = {A, B}

IN = {A, B, C, D }

IN = {A, B, C}

main p

22

Inter-procedural dataflow analysis
flow-sensitive
• How can we handle procedure calls?
• Obvious idea: make one big CFG (control-flow supergraph)
main() {
A: x = 7;
B: r = p();
C: y = 80;
D: t = p();
E: print t, r;
}
int p (void) {
F: m = 1;
G: return m;

}

A

B

C

D

F

E

IN = {A}

IN = {A, F, C }

IN = {A, F, C}

IN = {A, F, C}

I

IN = {A, F , C }

IN = {A, F, C }

• Better accuracy
• Worst analysis time
• No separate analysis

23

main p

1

1 1

Inter-procedural dataflow analysis
flow-sensitive
• Make one big CFG (control-flow supergraph)
main() {
A: x = 7;
B: r = p(x);
C: y = 80;
D: t = p(y);
E: print t, r;
}
int p (int v) {
F: m = v + 1
G: return m;

}

A

B

C

D

F

E

IN = {A}

IN = {A, F , C}

IN = {A, F, C}

IN = {A, F, C}

I

IN = {A, F, C }

IN = {A, F, C}

24

• Better accuracy
• but not enough

Inter-procedural dataflow analysis
flow-sensitive
• Make one big CFG (control-flow supergraph)
main() {
A: x = 7;
B: r = p(x);
C: y = 80;
D: t = p(y);
E: print t, r;
}
int p (int v) {
F: m = v + 1
G: return m;

}
25

• Better accuracy
• but not enough

• Problem: v is seen from the point of view of all call sites
• How to address this problem?

• Make one big CFG (control-flow supergraph)
main() {
A: x = 7;
B: r = p(x);
C: y = 80;
D: t = p(y);
E: print t, r;
}
int p (int v) {
F: m = v + 1
G: return m;

}

Inter-procedural dataflow analysis
flow/context-sensitive

A

B

C

D

F

E

IN = {A}

IN = {A, B:{F}}

IN = {A, C, B:{F}, D:{F}}

IN = {A, C, B:{F}}

I

IN = {B:{A} , D:{A,C,F}}

• Better accuracy
• More memory/analysis time

26

IN = {B:{A, F}, D:{A,C,F}}

81 8

Inter-procedural dataflow analysis
flow/context-sensitive

main() {
A: x = 7;
B: r = p(x);
C: y = 80;
D: t = p(y);
E: print t, r;
}
int p (int v) {
F: if (v < 10)
G: m = 1;

else
H: m = 2;
I: return m;

}

A

B

C

D

F

E

IN = {A}

IN = {A, B:{G, H}}

IN = {A, C, B:{G,H}, D:{G,H}}

IN = {A, C, B:{G, H}}
GH

I

IN = {B:{A,G,H},
 D:{A,C,G,H}}

IN = {B:{A},
 D:{A,C,G,H}}

IN = {B:{A},D:{A,C,G,H}}

IN={B:{A},
 D:{A,C,G,H}}

27

• Even an inter-procedural flow- and context- sensitive analysis
isn’t able to perform the constant propagation we want
• We need to make our analysis even more complex

• Since this seems hard, let’s try something easier
• Let’s try to follow a simpler solution:
• We copy the body of the callee inside the caller
• Function inlining

28

Inter-procedural code transformation:
function inlining
• Function inlining:
• Use a new copy of a procedure’s CFG at a call site
• Adjust copied code within the caller

(e.g., rename variables, map formal parameters to actual parameters)
void myF (void){

int r0 = myG(3, 4);

int r1 = r0 + 1;
return r1;

}

int myG (int p0, int p1){
 int v0 = p0 + p1;
 return v0;
}Let’s inline

this call

29

Inter-procedural code transformation:
function inlining
• Function inlining:
• Use a new copy of a procedure’s CFG at a call site
• Adjust copied code within the caller

(e.g., rename variables, map formal parameters to actual parameters)
void myF (void){

int p0 = 3; int p1 = 4;
int v0 = p0 + p1;
int r0 = v0;
int r1 = r0 + 1;
return r1;

}

int myG (int p0, int p1){
 int v0 = p0 + p1;
 return v0;
}

int r0 = myG(3, 4);

30

Inter-procedural code transformation:
function inlining
• Function inlining:
• Use a new copy of a procedure’s CFG at a call site
• Adjust copied code within the caller

(e.g., rename variables, map formal parameters to actual parameters)

• In LLVM:
• You don’t need to implement this transformation, it already exists J
• InlineResult InlineFunction(CallBase *, InlineFunctionInfo &, …)

InlineFunctionInfo IFI;
if (InlineFunction(call, IFI).isSuccess()) {
 …
} else { … }

#include "llvm/Transforms/Utils/Cloning.h"
Extra parameters are optional

31

Function inlining in LLVM and alias analysis
• InlineResult InlineFunction(

CallBase &, InlineFunctionInfo &,
AAResults *CalleeAAR = nullptr,
bool InsertLifetime = true , ...)

void f (){

… // pre_g
call g()

… // post_g

}
void g(){

%1 = alloca(…)

… // g_body

}

void f (){
 %1 = alloca()
 … // pre_g
 … // g_body
 … // post_g
}

Function inlining
New
live range of %1

But we know %1 can only
be used (directly or indirectly)
within g_body

32

Inter-procedural code transformation:
function inlining

A

B

C

D

F

E

GH

I

main p

Example of function inlining: inline the callee of B

main() {
A: x = 7;
B: r = p(x);
C: y = 80;
D: t = p(y);
E: print t, r;
}
int p (int v) {
F: if (v < 10)
G: m = 1;

else
H: m = 2;
I: return m;

} 33

Inter-procedural code transformation:
function inlining

A

C

D

F

E

GH

I

main p

F’

G’H’

I’

Another example of function inlining: inline the callee of D

main() {
A: x = 7;
B: r = p(x);
C: y = 80;
D: t = p(y);
E: print t, r;
}
int p (int v) {
F: if (v < 10)
G: m = 1;

else
H: m = 2;
I: return m;

} 34

Inter-procedural code transformation:
function inlining

A

C

F

E

GH

I

main p

F’

G’H’

I’

F’’

G’’H’’

I’’

main() {
A: x = 7;
B: r = p(x);
C: y = 80;
D: t = p(y);
E: print t, r;
}
int p (int v) {
F: if (v < 10)
G: m = 1;

else
H: m = 2;
I: return m;

} 35

Inter-procedural dataflow analysis
flow/context-sensitive

main() {
A: x = 7;
B: r = p(x);
C: y = 80;
D: t = p(y);
E: print t, r;
}
int p (int v) {
F: if (v < 10)
G: m = 1;

else
H: m = 2;
I: return m;

}

A

C

F

E

IN = {A}

IN = {A, G, H}

IN = {A, C, G, H, G’,H’}

IN = {A, C, G, H}

GH

I

F’

G’H’

I’

• What did it change?
• Solutions?

36

Function inlining

• Inlining
• Use a new copy of a procedure’s CFG at each call site
• Useful if not used always

• Problems?
• May be expensive! Exponential increase in size of CFG
• You can’t always determinate callee at compile time (e.g., in OO languages)
• Library source is usually unavailable

• What about recursive procedures?
p(int n) { … p(n-1); … }

• More generally, cycles in the call graph
37

Inter-procedural dataflow analysis
flow/context/path-sensitive

main() {
A: x = 7;
B: r = p(x);
C: y = 80;
D: t = p(y);
E: print t, r;
}
int p (int v) {
F: if (v < 10)
G: m = 1;

else
H: m = 2;
I: return m;

}

A

B

C

D

F

E

IN = {A}

IN = {A, B:{G}}

IN = {A, C, B:{G}, D:{H}}

IN = {A, C, B:{G}}
GH

I

IN = {B:{A,G},
 D:{A,C,B:{G},H}}

IN = {B:{A}}

IN = {B:{A},D:{A,C,B:{G}}}

IN={D:{A,C,B:{G}}}

• Better accuracy
• Much worst analysis time

38

Inter-procedural dataflow analysis
flow/context-sensitive

main() {
A: x = 7;
B: r = p(x);
C: y = 80;
D: t = p(y);
E: print t, r;
}
int p (int v) {
F: if (v < 10)
G: m = 1;

else
H: m = 2;
I: return m;

}

A

B

C

D

F

E

IN = {A}

IN = {A, B:{G, H}}

IN = {A, C, B:{G,H}, D:{G,H}}

IN = {A, C, B:{G, H}}
GH

I

IN = {B:{A,G,H},
 D:{A,C,G,H}}

IN = {B:{A},
 D:{A,C,G,H}}

IN = {B:{A},D:{A,C,G,H}}

IN={B:{A},
 D:{A,C,G,H}}

What about programs with a deep hierarchy of many procedures?
Re-analyze callee for all distinct calling paths
• Pro: precise
• Cons: what’s the analysis time?
• Solution: separate compilation

39

Outline

① Sensitivity of analysis

② Single compilation

③ Separate compilations

④ Caller -> callee vs. callee -> caller propagations

⑤ Final remarks
40

Separate compilation

• Each function is analyzed separately

• The result of the analysis of a function is a “summary node”,
which reports what you need to know about this function

• When you analyze a function F that invokes G,
you use the summary node of G to analyze F

• Typically: the call graph is used to first analyze callees and then callers

41

Summary context: example
• Summary context: summarize effect of called procedure for callers

A

B

C

D

E

IN = {A}

IN = {A, B}

IN = {A, B, C, D }

IN = {A, B, C}

F

IN = {F}

IN = { }
main pmain

p

Summary: p returns 42

Higher accuracy
compared to
intra-procedural

main() {

 A: x = 7;
 B: r = p(x);

 C: y = 80;

 D: t = p(y);
 E: print t, r;

}
int p (int v) {

 F: int v = 42;
 I: return v;
}

I
4242

42

Summary context: example
• Summary context: summarize effect of called procedure for callers

A

B

C

D

F

E

IN = {A}

IN = {A, B}

IN = {A, B, C, D }

IN = {A, B, C}
GH

I

IN = {G, H}

IN = { } IN = { }

IN = { }main pmain

p

Summary: p doesn’t return a constant

main() {
 A: x = 7;
 B: r = p(x);
 C: y = 80;
 D: t = p(y);
 E: print t, r;
}
int p (int v) {
 F: if (v < 10)
 G: m = 1;
 else
 H: m = 2;
 I: return m;
} 43

Separate compilation

• Each function is analyzed separately

• The result of the analysis of a function is a “summary node”,
which reports what you need to know about this function

• We can decide to increase the amount of information
embedded in the summary node

44

Summary context: example 2
• Summary context: summarize effect of called procedure depending

on formal parameters for callers

A

B

C

D

F

E

IN = {A}

IN = {A, B}

IN = {A, B, C, D }

IN = {A, B, C}
GH

I

IN = {G, H}

IN = { } IN = { }

IN = { }main p
main

p

Summary: p returns
Constant 1 if parameter is < 10
Constant 2 otherwise

main() {
 A: x = 7;
 B: r = p(x);
 C: y = 80;
 D: t = p(y);
 E: print t, r;
}
int p (int v) {
 F: if (v < 10)
 G: m = 1;
 else
 H: m = 2;
 I: return m;
}

12

45

Designing an inter-procedural analysis

Sensitivity
e.g., flow

Summary precision
e.g., constant/not-constant depending
 on the formal parameters

What to summarize
e.g., returning values
e.g., memory locations
 modified

Number of
summary nodes

46

Context sensitivity
• Simplest solution: 1 copy per procedure

A

B

C

D

E

IN = {A}

IN = {A, B}

IN = {A, B, C}

main

main() {
 A: x = 7;
 B: r = p(x);
 C: y = 80;
 D: t = p(y);
 E: print t, r;
}
int p (int v) {
 F: if (v < 10)
 G: m = 1;
 else
 H: m = 2;
 I: return m;
}

• Do we have a summary node for p?
• No. Compute it

F

GH

I

IN = {G, H}

IN = { } IN = { }

IN = { }p

Summary: p doesn’t return a constant 47

Context sensitivity
• Simplest solution: 1 copy per procedure

A

B

C

D

E

IN = {A}

IN = {A, B}

IN = {A, B, C, D }

IN = {A, B, C}

main

main() {
 A: x = 7;
 B: r = p(x);
 C: y = 80;
 D: t = p(y);
 E: print t, r;
}
int p (int v) {
 F: if (v < 10)
 G: m = 1;
 else
 H: m = 2;
 I: return m;
}Summary: p doesn’t return a constant

• Do we have a summary node for p?
• Yes. Fetch it

48

Context sensitivity
• Simplest solution: 1 copy per procedure
• Simple solution: make a small number of copies of contexts

(e.g., all callees of a procedure from a caller)

A

B

C

D

E

IN = {A}

main

main() {
 A: x = 7;
 B: r = p(x);
 C: y = 80;
 D: t = p(y);
 E: print t, r;
}
int p (int v) {
 F: if (v < 10)
 G: m = 1;
 else
 H: m = 2;
 I: return m;
}

• Do we have a summary node for p(7)?
• No. Compute it

49

Context sensitivity
• Simplest solution: 1 copy per procedure
• Simple solution: make a small number of copies of contexts

(e.g., all callees of a procedure from a caller)

A

B

C

D

E

IN = {A}

main

main() {
 A: x = 7;
 B: r = p(x);
 C: y = 80;
 D: t = p(y);
 E: print t, r;
}
int p (int v) {
 F: if (v < 10)
 G: m = 1;
 else
 H: m = 2;
 I: return m;
}

F

GH

I

IN = {G}

IN = { }

IN = { }p

50

Context sensitivity
• Simplest solution: 1 copy per procedure
• Simple solution: make a small number of copies of contexts

(e.g., all callees of a procedure from a caller)

A

B

C

D

E

IN = {A}

IN = {A, B}

IN = {A, B, C}

main

main() {
 A: x = 7;
 B: r = p(x);
 C: y = 80;
 D: t = p(y);
 E: print t, r;
}
int p (int v) {
 F: if (v < 10)
 G: m = 1;
 else
 H: m = 2;
 I: return m;
}

Summary: p(7) returns 1

• Do we have a summary node for p(80)?
• No. Compute it

51

Context sensitivity
• Simplest solution: 1 copy per procedure
• Simple solution: make a small number of copies of contexts

(e.g., all callees of a procedure from a caller)

A

B

C

D

E

IN = {A}

main

main() {
 A: x = 7;
 B: r = p(x);
 C: y = 80;
 D: t = p(y);
 E: print t, r;
}
int p (int v) {
 F: if (v < 10)
 G: m = 1;
 else
 H: m = 2;
 I: return m;
}

F

GH

I

IN = {H}

IN = { }

IN = { }p

Summary: p(7) returns 1

IN = {A, B}

IN = {A, B, C}

52

Context sensitivity
• Simplest solution: 1 copy per procedure
• Simple solution: make a small number of copies of contexts

(e.g., all callees of a procedure from a caller)

A

B

C

D

E

IN = {A}

main

main() {
 A: x = 7;
 B: r = p(x);
 C: y = 80;
 D: t = p(y);
 E: print t, r;
}
int p (int v) {
 F: if (v < 10)
 G: m = 1;
 else
 H: m = 2;
 I: return m;
}

Summary: p(7) returns 1
 p(80) returns 2

IN = {A, B}

IN = {A, B, C}

IN = {A, B, C, D }

53

Context sensitivity
• Simplest solution: 1 copy per procedure
• Simple solution: make a small number of copies of contexts

(e.g., all callees of a procedure from a caller)
• Advanced solutions: use context information

to determine when to share a copy
• Choice of what to use for context will produce different tradeoffs

between precision and scalability
• Common choice: approximation of call stack

54

Context sensitivity example

main() {
 1: int v =p(4);
 2: v += p(3);
}
p (int f) {
 3: return q(f)
}
q(int f){
 4: return f;
}

Context 0

call p(4)

call p(3)

Context 1

call q(f)

Context 3

return f

return

return

Context 2

call q(f)

return

Context 4

return f

ENTER main

ENTER p ENTER q

ENTER p

ENTER q

4 4

4

3

3

55

Context sensitivity example

main() {
 1: p();
 2: p();
}
p () {
 3: q()
}
q(){
 4: return;
}

Context 0

call p()

call p()

Context 1

call q() Context 3

return

return

return

Context 2

call q()

return

ENTER main

ENTER p

ENTER q

ENTER p

4

3

56

Other contexts

• Context sensitivity distinguishes between
different calls of the same procedure
• Choice of contexts determines which calls are differentiated

• Other choices of context are possible
• Caller stack

• Less precise than call-site stack
• E.g., context “2::2” and “2::3” would both be “fib::fib”

• Object sensitivity: which object is the target of the method call?
• For OO languages
• Maintains precision for some common OO patterns
• Requires pointer analysis to determine which objects are possible targets
• Can use a stack (i.e., target of methods on call stack)

57

Designing an inter-procedural analysis

Sensitivity
e.g., context

Summary information
e.g., constant/not-constant
e.g., no summary (single compilation)

What to summarize

How to
propagate

Number of
summary nodes

58

Outline

① Sensitivity of analysis

② Single compilation

③ Separate compilations

④ Caller -> callee vs. callee -> caller propagations

⑤ Final remarks
59

Inter-procedural analysis

• What to propagate through the call graph

• How to propagate through the call graph

• Example

60

Two types of information

• Track information that flows into a procedure
• Also known as propagation problems
e.g., What formals are constant?
e.g., Which formals are aliased to globals?

• Track information that flows out of a procedure
• Also known as side effect problems
e.g., Which globals are def’d/used by a procedure?
e.g., Which locals are def’d/used by a procedure?
e.g., Which actual parameters are def’d by a procedure?

Summary: p(7) returns 1
 p(80) returns 2

Summary: p modifies
Global @X if parameter is < 10

61

Summary examples

• Propagation Summaries
• MAY-ALIAS: The set of formals that may be aliased to globals and each other
• MUST-ALIAS: The set of formals that are definitely aliased to globals

and each other
• CONSTANT: The set of formals that must be constant

• Side-effect Summaries
• MOD: The set of variables possibly modified (defined) by a call to a procedure
• REF: The set of variables possibly read (used) by a call to a procedure
• KILL: The set of variables that are definitely killed by a procedure

(e.g., in the liveness sense)

62

Inter-procedural analysis

• What to propagate through the call graph

• How to propagate through the call graph

• Example

63

Computing inter-procedural summaries
• Top-down (from callers to callees)
• Summarize information about the caller (MAY-ALIAS, MUST-ALIAS)
• Use this information inside the procedure body

int a;
void foo(int &b, &c){
. . .

}
foo(a,a);

• Bottom-up (from callees to callers)
• Summarize the effects of a call (MOD, REF, KILL)
• Use this information around procedure calls

x = 7;
foo(x);
y = x + 3; 64

Bi-directional inter-procedural summaries

• Inter-procedural Constant Propagation (ICP)
• Information flows from caller to callee and back
int a, b, c, d;
void foo(e){

a = b + c;
d = e + 2;

}
foo(3);

• Inter-procedural Alias Analysis
• Forward propagation: aliasing due to reference parameters
• Side-effects: points-to relationships due to multi-level pointers

The calling context tells us that the formal e is bound
to the constant 3, which enables constant
propagation within foo()
After calling foo() we know that the constant 5 (3+2)
propagates to the global d

65

Inter-procedural analysis

• What to propagate through the call graph

• How to propagate through the call graph

• Example

66

Example: identify functions that
might be affected by randomness

Problem:
Identify functions that might directly or indirectly invoke rand()

Output:
The set of functions affected by rand() and the length of the shortest
path in the call graph to an invocation to rand().

How can we do it?

You can find the solution shown in the next slides here: LLVM_callgraph
67

Example: identify functions that
might be affected by rand()

Main

p3

p1

printf

p2

q

rand

Level 0

Level 1

Level 2

Level 2

Level 3

68

Example: identify functions that
might be affected by rand()

Functions affected:
Level 0: q
Level 1: p1
Level 2: p2
Level 2: main

 Level 3: p3

Functions not affected:

69

Example: identify functions that
might get affected by rand()

Data structures:

Summary

70

Example: identify functions that
might get affected by rand()

Functions affected:
Level 0: q
Level 1: p1
Level 2: p2
Level 3: p3
Level 2: main

Functions not affected:

71

Example: identify functions that
might get affected by rand()

Intra-procedural
analysis

Inter-procedural
analysis

72

Example: identify functions that
might get affected by rand()

73

Example: identify functions that
might get affected by rand()

74

Example: identify functions that
might get affected by rand()

75

Example: identify functions that
might get affected by rand()

76

Example: identify functions that
might get affected by rand()

77

Example: identify functions that
might get affected by rand()

78

Computing inter-procedural summaries
• Top-down
• Summarize information about the caller (MAY-ALIAS, MUST-ALIAS)
• Use this information inside the procedure body

int a;
void foo(int &b, &c){
. . .

}
foo(a,a);

• Bottom-up
• Summarize the effects of a call (MOD, REF, KILL)
• Use this information around procedure calls

x = 7;
foo(x);
y = x + 3;

Is our pass Top-down or bottom-up?

79

Outline

① Sensitivity of inter-procedural analysis

② Single compilation

③ Separate compilations

④ Caller -> callee vs. callee -> caller propagations

⑤ Final remarks
80

What about cycles in the call graph?

81

Handling cycles in the call graph

• Long story short: iterate until a fixed point is reached
• It can take a while for naïve solutions …

• Strongly connected components:
A directed graph is called strongly connected
if there is a path in each direction
between each pair of vertices of the graph

A B C D

E F G H

82

Handling cycles in the call graph

To reach the fixed point faster:
① Identify strongly-connected-components (SCC)
② do{

For each SCC in SCCs:
Iterate among functions within SCC

Iterate among every node in the call graph
} while (anyChange);

A B C D

E F G H

83

Indirect calls

void foo (int a, int (*p_to_f)(int v)){
int l = (*p_to_f)(5);
a = l + 1;
return a;

}
• How can we identify

indirect calls in LLVM?

Is l constant?

84

Indirect calls

void foo (int a, int (*p_to_f)(int v)){
int l = (*p_to_f)(5);
a = l + 1;
return a;

}
• How can we identify

indirect calls in LLVM?
• How can we handle

indirect calls?

Is l constant?

85

Procedure cloning

• Step 1: clone a function
• A new function is created that is the exact clone of another one

with only one difference:
The name of the clone function is different then the original function

• Step 2: specialize the clone for a particular set of callers
• Create a customized version of procedure for particular call sites
• Compromise between inlining and inter-procedural optimization

void f (int p){
 int x = p + 3;
 …
}

void f_2 (int p){
 int x = p + 3;
 …
}

void f_2 (void){
 int x = 10;
 …
}

void foo (){
 f(7)
 f(7)
}

void foo (){
 f_2();
 f_2();
}

Cloning Specialization

86

Procedure cloning

• Pros
• Less code bloat than inlining
• Recursion is not an issue (as compared to inlining)
• Better caller/callee optimization potential (versus inter-procedural analysis)

• Cons
• Still some code bloat (versus inter-procedural analysis)
• May have to do inter-procedural analysis anyway

e.g. Inter-procedural constant propagation can guide cloning

87

Example: transform functions with level >=3
to be not affected by rand()

myF0(){
 …
 v = rand()
 …
}

myF1(){
 …
 myF0()
 …
}

myF2(){
 …
 myF1()
 …
}

myF3(){
 …
 myF2()
 …
}

myF0’(){
 …
 v = 1
 …
}

myF1’(){
 …
 myF0’()
 …
}

myF2’(){
 …
 myF1’()
 …
}

myF3(){
 …
 myF2’()
 …
}

myFx(){
 …
 myF0()
 …
}

myF0(){
 …
 v = rand()
 …
}

myFx(){
 …
 myF0()
 …
}

88

Specialization

Ideas?

Example: transform functions with level >=3
 to be not affected by rand()

89

Previous inter-procedural analysis

Inter-procedural transformation

Example: transform functions with level >=3
to be not affected by rand()

90

Example: transform functions with level >=3
to be not affected by rand()

91

Checking if
- the callee is rand()

- Substitute call rand() with 1

- The callee invokes
another function F2 at level – 1

- Clone F2: F2’
- Call F2’ instead of F2
- Make F2’ not affected by rand

Example: transform functions with level >=3
 to be not affected by rand()

92

Example: transform functions with level >=3
to be not affected by rand()

93

Example: transform functions with level >=3
to be not affected by rand()

94

Example: transform functions with level >=3
to be not affected by rand()

95

Another solution using function inlining

myF0(){
 …
 v = rand()
 …
}

myF1(){
 …
 myF0()
 …
}

myF2(){
 …
 myF1()
 …
}

myF3(){
 …
 myF2()
 …
}

myF3(){
 …
 v = 1
 …
}

myFx(){
 …
 myF0()
 …
}

myF0(){
 …
 v =
 …
}

myFx(){
 …
 myF0()
 …
}

96

Previous inter-procedural analysis

Inter-procedural transformation

Another solution using function inlining

97

Another solution using function inlining

98

99

100

Today’s compilers

• Most old compilers avoid inter-procedural analysis
• It’s expensive and complex
• Not beneficial for most classical optimizations
• Separate compilation + inter-procedural analysis requires recompilation analysis

[Burke and Torczon’93]
• Can’t analyze library code

• When are inter-procedural analyses useful?
• Pointer analysis
• Constant propagation
• Object-oriented class analysis
• Security and error checking
• Program understanding and re-factoring
• Code compaction
• Parallelization
• Vectorization

Modern uses of compilers

101

Other trends

• Cost of only having intra-procedural passes is growing
• More functions than in the past and they’re smaller (OO languages)
• Modern machines demand precise information (memory op aliasing)

• Cost of inlining is growing
• Code bloat degrades efficacy of many modern structures
• Procedures are being used more extensively

• Programs are becoming larger
• Cost of inter-procedural analysis is shrinking
• Faster/more parallel machines
• Better methods

102

Always have faith in your ability

Success will come your way eventually

Best of luck!

103

