C de analysis
and
transf rmation
|PA example

Simone Campanoni
simone.campanoni@northwestern.edu

Research paper

Title: Practical and Accurate Low-Level Pointer Analysis

Authors:

Bolei Guo, Matthew J. Bridges, Spyridon Triantafyllis, Guilherme Ottoni,
Easwaran Raman, David |. August

CGO, 2005

The two problems for CATs

* Problems:
1. Identifying memory aliases
2. ldentifying callees of indirect calls

e Solutions:
* Solve conservatively 1 first, and then 2
e Solve 1 and 2 at the same time

Alias analysis for C programs

e Usually run once at the source level (the DDG is also computed)

High-Level IR

Low-Level IR

. .

Inlining

Source |

Code

Pointer : SuperBlock .
Analysis Opu | { Formation H Scheduling

Lowering

e ?

Machine
Code

* Compilation passes modify the IR, so they must update the DDG
* Add complexity to each pass
* Updates are conservative

Alias analysis for C programs

char A[10],B[10],C[10];
foo() |

int 1i;

char *p;

for (1=0;1i<10;1i++) {

if (...)
1 p = A;
else
2: p = B;
3: Cl[i] = pli];
4: A[1] = ...;
}

(a) Source code
Instructions 3 and 4 May access

the same memory location

VLLPA:
a low level pointer analysis for C programs

* This paper proposes an alias analysis at the IR level
* |t can be run multiple times
* No conservative updates
* Passes are simpler

No data type information (not very useful for C anyway)

* The first
context-sensitive and[partiallylflow-sensitive]
Iow—levellooints—to analysis algorithm

VLLPA sequence

Pointer points-to sets

g9

OUTIi] ={(p, z) | (a, z) € IN[i]} U (IN[i] —{(p,x) for all x}) P=4d

=P
N

X2 x2
x3 x3

yl x1
Lp=q p<
 GENJ[i] ={} KILL[i] ={ } y2 x3

p q

VLLPA sequence

Pointer points-to sets

>

Memory alias sets

Data dependence graph

Outline

* Abstractions used
* Data-flow intra-procedural analysis
* Inter-procedural analysis

e Fvaluation

Memory abstraction

* Abstract address = memory location at analysis time
* Abstract structure = contiguous set of abstract addresses

* Memory is divided into a set of abstract structures,
each with a uniqgue name

* A single abstract structure can correspond
to multiple blocks at runtime

* Unbounded set of memory blocks -> finite set of abstract names

* An abstract structure is created for each global variable

Activation frame

int myF (int arg0, int arg1){
intvl, v2, v3;

int *p = &vi;
L=Fp

return v1+v2+v3;

Outgoing

sp

Incoming

Outgoing

Locals

Incoming

Locals

Memory abstraction

* Activation frame:
* One abstract structure for each
* Element in the incoming parameter space
* Element in the outgoing parameter space
 Variable in the local variable space

* Heap object allocated:
 Named according to the context (2 call stack depth)

Abstract structures

* <§5,0>
* Sis a structure name
* 0is an offset
typedef struct {
int64 tf1;
int64_t f2;
FmyT;
void myF (void){ void myF (void){
myT *p = (myT *)malloc(sizeof(myT)); p = call malloc(16)
int *q = &(p->f2); q=p+8

What is the abstract address
pointed by p?

<p,0>

What is the abstract address
pointed by q?

<p,8>

13

Abstract structures

* <§5,0>
 Sis a structure name
* 0 is an offset

* VLLPA merges all array elements
* myArray[5] is the same location of myArray[42]
* Conservative assumption
* More aliases
* Much faster analysis

Abstract structures, pointer aliases,
and dependencies

* Two pointers alias if
there is an abstract address that they can both point to

* There is a dependence between two instructions if
the pointers used by them alias

Abstract structures

* <§,0>
* Sis a structure name
* 0is an offset
typedef struct {
int64 tf1;
int64 t f2;
FmyT;
void myF (myT *p){
int *q = &(p->f2);

void myF (void *p){
q=p+38

What is the abstract address
pointed by p?
What is the abstract address
pointed by q?

16

Unknown Initial Values (UIVs)

* They encode the “unknown”

* Represent memory blocks accessible by a function,
but not created by either that function or its callees

e UIVs are created for memory blocks reachable
(directly or indirectly)
through parameters or global variables

Unknown Initial Values (UIVs)

* For a parameter A,
[A] represents the memory block pointed by A

void myF (void *PO){
Varl = PO

Unknown Initial Values (UIVs)

* If [A] has a field at offset o, which is a pointer,
then the following new UIV is created: [A]@o0

void myF (void *PO){
Varl = PO

Var2 = Mem|[Varl+4]

* UIVs are created lazily

Outline

* Data-flow intra-procedural analysis
* Inter-procedural analysis

e Fvaluation

Main challenge

« Common memory operations (array and field accesses)
are not explicit in the code

Vx =Vy + 10 my_struct t *Vy = ...
Vz = Mem|[VX] intb4 t Vz = Vy->myField;

* The analysis has to infer whether a memory operation
“looks like” a field and/or array access

Intra-procedural analysis
* Assume SSA

* One assignment per variable. Therefore
* For each variable, we need to maintain a single points-to set

R(var) = mapping from a variable to a set of abstract addresses
that might point to

void myF (void){

int vi, v2; Egz;;) E i
Lok K. -
ntoeed R(p) ={vi,v2}
int *p = &vi; R(q) ={v2 }
int *q = &v2;

f (rand()) p =
}

Intra-procedural analysis
* Assume SSA

* One assignment per variable. Therefore
* For each variable, we need to maintain a single points-to set

R(var) = mapping from a variable to a set of abstract addresses
that might point to

* Not flow-sensitive for pointers in memory
* Single points-to set for each abstract memory location

M(addr) = mapping from an abstract address to a set of abstract addresses
that might point to

e UIVs of the function analyzed
* |(f) = set of UIVs of function f

Intra-procedural analysis

* Modify R, M, and | with a data-flow analysis

* Varl = Mem[Var2]
R(varl) = { M(<S,0>) | <S,0> €ER(var2) }

* Mem[Varl] = Var2
For each <S,0> € R(Varl):
M(<S,0>) U= R(Var2)

* Varl =Var2 +c
R(Varl) = { <S,o+c> | <S,0> € R(Var2)}

Var2

Varl

Varl

Var2

A

Intra-procedural analysis

* Varl =Var2 + Var3
R(Varl) = { <S,o+c> | <S,0> € R(Var2) and c = infer_offset(Var3)} U
{ <S,0+c> | <S,0> € R(Var3) and c = infer_offset(Var2)}

/

Offset assumed to follow i x | + ¢
| is the size of array elements
c is a constant displacement
(non-zero if the array is a structure field)

e VarX = PHI(Varl, Var2, ... VarN)
* R(VarX) = R(Varl) U R(Var2) U ... U R(VarN)

Termination

e Data-flow analysis can only add new elements in R, M, and |
* They increase monotonically

* To ensure termination: we need an upper bound toR, M, and |
* Finite number of abstract addresses

* Do we have these upper bounds?

Termination: unbounded UIVS? (1) =<[po1 05,

typedef struct T { f <[PO]@4/O>;
u .
int data; T* next; LOOP; <[PO]@4@4,0>
b T rl = ¢ (param0, r2)
_ br rl == 0 EXIT
£(T* 17 UIV: PO o
while (1 != NULL) lr2 = mem[rl+4] |
e jump LOOP
1l = 1l->next; EXIT:
}
(a) List: source (b) List: low-level

If <[UIV],c> € R and <[UIV]@N,c> € R, then remove the latter .

ermination: what about the offsets?
R(r2) ={ <[P0],0>,
<[P0],4>, <[P0],8>, ...

int A[100]; A:
resexve 400
gl() { g:
int *a = A; rl A
while (...) { LOOP
.= *a; r2 = ¢ (rl, r4)
... r3 = mem[r2]
a++; ..
} rd = r2 + 4
} br (...) LOOP
(c) Array: source (d) Array: low-level

If <S,01>€ R and <5,02>€ R and o0l<o02 thenremove<S,02>,

Intra-procedural analysis

* In all equations:

 If <[UIV],c> €ER and
<[UIV]@N,c> € R then remove the latter

Elements of the same list are represented as a single abstract address

e If<S,01>€ R and

<S,02> € R and
ol<o2 then remove <S5,02>

/

Elements of the same array are represented as a single abstract address

29

Outline

* Inter-procedural analysis

e Fvaluation

Intra-procedural analysis
* Assume SSA

* One assignment per variable. Therefore
* For each variable, we need to maintain a single points-to set

R(var) = mapping from a variable to a set of abstract addresses
that might point to

* Not flow-sensitive for pointers in memory
* Single points-to set for each abstract memory location

—— M(addr) = mapping from an abstract address to a set of abstract addresses
that might point to

e UIVs of the function analyzed
—, °* I(f) = set of UIVs of function f

Propagated

VLLPA main blocks

* Intra-procedural analysis:
 Compute R, M, | for every function in isolation

* Inter-procedural analysis:
* Propagate M, | through the call graph
* Map abstract addresses to UlVs
* Update the call graph

VLLPA summary

* Summary: M, |

M(addr) = mapping from an abstract address to a set of abstract addresses
that might point to

I(f) = set of UIVs of function f

* Transfer function

C—(=)

SCCDAG

* We compute SCCs of the call graph

* This SCCDAG is the graph where nodes are
either functions or SCCs

* An SCCDAG has no cycles

Algorithm outline

SCCDAG is traversed in reverse topological order
Unknown initial values (UIV) assumed

Resolve Fun&lion Pointers

LL code Phase 0 } { Phase 1 J { Phase 2] { Phase 3]
Buil; Call Graph Intraprocedural & Propagate Concrete Compute Aliases
Interprocedural Function Names
Analyses

1
First iteration: indirect calls

Call graph is augmented wit
SCCDAG is computed from t

nave no target
n later iterations

he call graph

35

Algorithm outline

SCCDAG is traversed in reverse topological order
Unknown initial values (UIV) assumed

Resolve Fun&tion Pointers

‘ \
LL code Phase 0 } { Phase 1] { Phase 2] { Phase 3]

Build Call Graph Intraprocedural & Propagale Concrete Compute Aliases
Interprocedural Functipn Names
Analyses

|
SCCDAG traversed in topological order to resolve UIVs and indirect calls

36

Algorithm outline

SCCDAG is traversed in reverse topological order
Unknown initial values (UIV) assumed

Resolve Fun&tion Pointers

‘ !
LL code Phase 0 } ,[Phase 1 J { Phase 2 } >[Phase 3]

Build Call Graph Intraprocedural & Propagage Concrete Compute Aliases
Interprocedural Functibn Names
Analyses

M. LR Mapping abstract addresses of F » I
PP toUIVs of G 8

M,
_F { ¢ | .

Algorithm outline

SCCDAG is traversed in reverse topological order
Unknown initial values (UIV) assumed

Resolve Fun&tion Pointers

‘ \
LL code Phase 0 } { Phase 1] { Phase 2] { Phase 3]

Build Call Graph Intraprocedural & Propagale Concrete Compute Aliases
Interprocedural Functipn Names
Analyses

|
SCCDAG traversed in topological order to resolve UlVs and indirect calls

38

Algorithm outline

Resolve Function Pointers

LL COdC{ | Phase 0 } { Phase 1 } { Phase 2 } { Phase 3]

Build Call Graph Intraprocedural & Propagate Concrete C%nputc Aliases
Interprocedural Function Names
Analyses

|
The now complete SCCDAG is traversed once more

in topological order
to compute aliases and dependences

39

Outline

* Abstractions used
e Data-flow intra-procedural analysis
* Inter-procedural analysis

e Evaluation

40

VLLPA evaluation

* Comparing against high-level language alias analysis
* Analysis time

e Accuracy of the analysis

* Performance of the generated binary

Evaluation:
Comparing alias analyses

High-Level IR

Low-Level IR

e

Source
Code

Inlining

Pointer
Analysis

~

_-->@~{
S

SuperBlock
Formation

-

H Scheduling}——E

Lowdring

Evaluation

Machine

Code

42

Evaluation: analysis time

Benchmark # Procs | #Opers | # Indirect

Calls
epicdec 34 3998 0
g721dec 26 2396 1
g721enc 26 2395 1
gsmdec 94 11869 6
gsmenc 94 11869 6
mpeg2dec 114 10223 0
adpcmenc 3 288 0
adpcmdec 3 284 0
rasta 436 42500 7
099.go 372 55879 0
124.m88ksim 239 26663 3
129.compress 18 1211 0
130.1i 351 11953 2
132.ijpeg 473 33780 644
164.gzip 62 7346 2
175.vpr 255 25111 0
176.gcc 2220 463462 197
181.mcf 24 2154 0
186.crafty 110 41370 0
197 .parser 324 22686 0
254.gap 854 145017 1281
255.vortex 923 91864 15
256.bzip2 63 6725 0
300.twolf 167 53950 0

Time (s)
IMPACT

0.150
0.091
0.645

Evaluation: accuracy

Benchmark # Opers VLLPA Arcs
w/ Arcs | More
099.go 13232
124. m88ksim 7161
129.compress 329
130.11 3762
164.gz1p 1953
175.vpr 8166
181.mcf 705
186.crafty 12026
256.bzip2 1535

44

Evaluation: problem of alias analysis
at the source language

High-Level IR Low-Level IR
—= ... Inlining Pomte‘-r‘ ---> Opti SuperBl.ock Scheduling e =
R Analysis Formation
gm:irue \) +Machine
ode
Lowering Code

Evaluation

45

Evaluation: problem of alias analysis
at the source language

- Accurate < Same deps
Unneccessa.ry <+— Better accuracy
. Unneccessarily of VLLPA

Propagated
Apparent deps

generated by
the conservative
pass updates

f the generated binary

ﬁ

Evaluation:

pertormance O

B IMPACT
Hl VELOCITY

ordurg 1oA0 dnpoodg

47

Improved VLLPA in HELIX-RC (ISCA 2014)

(-’
2
N
0
0

100%

|
O
o)

VLLPA

After 2014

* Approximating Flow-Sensitive Pointer Analysis
Using Frequent Itemset Mining
Vaivaswatha Nagaraj and R. Govindarajan
CGO 2015

* ... many others

* A Collaborative Dependence Analysis Framework

Nick Johnson, Jordan Fix, Taewook Oh, Stephen R. Beard, Thomas Jablin, and David I. August
CGO 2017

e SCAF: A Speculation-Aware Collaborative Dependence Analysis Framework

Sotiris Apostolakis , Ziyang Xu , Zujun Tan , Greg Chan, Simone Campanoni, and David |. August
PLDI 2020

Always have faith in your ability

Success will come your way eventually

Best of luck!

