
IPA example
analysis

Simone Campanoni
simone.campanoni@northwestern.edu

Research paper

Title: Practical and Accurate Low-Level Pointer Analysis

Authors:
Bolei Guo, Matthew J. Bridges, Spyridon Triantafyllis, Guilherme Ottoni,
Easwaran Raman, David I. August

CGO, 2005

VLLPA

2

The two problems for CATs

• Problems:
1. Identifying memory aliases
2. Identifying callees of indirect calls

• Solutions:
• Solve conservatively 1 first, and then 2
• Solve 1 and 2 at the same time

VLLPA

3

Alias analysis for C programs

• Usually run once at the source level (the DDG is also computed)

• Compilation passes modify the IR, so they must update the DDG
• Add complexity to each pass
• Updates are conservative

4

Alias analysis for C programs

Instructions 3 and 4 may access
the same memory location 5

VLLPA:
a low level pointer analysis for C programs

• This paper proposes an alias analysis at the IR level
• It can be run multiple times
• No conservative updates
• Passes are simpler
• No data type information (not very useful for C anyway)

• The first
context-sensitive and partially flow-sensitive
low-level points-to analysis algorithm

6

VLLPA sequence

Pointer points-to sets

i: p = q
• GEN[i] = { } KILL[i] = { }

OUT[i] = {(p, z) | (q, z) ∈ IN[i]} U (IN[i] – {(p,x) for all x})

7

VLLPA sequence

Pointer points-to sets Memory alias sets Data dependence graph

8

Outline

• Abstractions used

• Data-flow intra-procedural analysis

• Inter-procedural analysis

• Evaluation

9

Memory abstraction
• Abstract address = memory location at analysis time
• Abstract structure = contiguous set of abstract addresses

• Memory is divided into a set of abstract structures,
each with a unique name
• A single abstract structure can correspond

to multiple blocks at runtime
• Unbounded set of memory blocks -> finite set of abstract names

• An abstract structure is created for each global variable 10

int myF (int arg0, int arg1){
 int v1, v2, v3;
 …

 ...
 return v1+v2+v3;
}

Activation frame

int *p = &v1;
…
… = *p

sp
Outgoing

Incoming

Locals

Outgoing

Incoming

Locals

11

Memory abstraction
• Activation frame:
• One abstract structure for each
• Element in the incoming parameter space
• Element in the outgoing parameter space
• Variable in the local variable space

• Heap object allocated:
• Named according to the context (2 call stack depth)

12

Abstract structures

• <S,o>
• S is a structure name
• o is an offset

typedef struct {

 int64_t f1;

 int64_t f2;

} myT;

void myF (void){

 myT *p = (myT *)malloc(sizeof(myT));

 int *q = &(p->f2);

 …

}

What is the abstract address
pointed by p?
<p,0>
What is the abstract address
pointed by q?
<p,8>

void myF (void){

 p = call malloc(16)

 q = p + 8

 …

} 13

Abstract structures

• <S,o>
• S is a structure name
• o is an offset

• VLLPA merges all array elements
• myArray[5] is the same location of myArray[42]
• Conservative assumption
• More aliases
• Much faster analysis

14

Abstract structures, pointer aliases,
and dependencies

• Two pointers alias if
there is an abstract address that they can both point to

• There is a dependence between two instructions if
the pointers used by them alias

15

Abstract structures

• <S,o>
• S is a structure name
• o is an offset

typedef struct {

 int64_t f1;

 int64_t f2;

} myT;

void myF (myT *p){

 int *q = &(p->f2);

 …

}

What is the abstract address
pointed by p?
What is the abstract address
pointed by q?void myF (void *p){

 q = p + 8

 …

}

16

Unknown Initial Values (UIVs)

• They encode the “unknown”

• Represent memory blocks accessible by a function,
but not created by either that function or its callees

• UIVs are created for memory blocks reachable
(directly or indirectly)
through parameters or global variables

17

Unknown Initial Values (UIVs)

• For a parameter A,
[A] represents the memory block pointed by A

void myF (void *P0){
Var1 = P0
…

}

What is the abstract address
pointed by Var1?
<[P0],0>

18

Unknown Initial Values (UIVs)

• If [A] has a field at offset o, which is a pointer,
then the following new UIV is created: [A]@o

void myF (void *P0){
Var1 = P0
…
Var2 = Mem[Var1+4]
…

}

• UIVs are created lazily

What is the abstract structure
pointed by Var2?
<[P0]@4,0>

Abstract structure pointed by Var1: <[P0],0>

19

Outline

• Abstractions used

• Data-flow intra-procedural analysis

• Inter-procedural analysis

• Evaluation

20

Main challenge

• Common memory operations (array and field accesses)
are not explicit in the code

Vx = Vy + 10
Vz = Mem[Vx]

• The analysis has to infer whether a memory operation
“looks like” a field and/or array access

my_struct_t *Vy = …
int64_t Vz = Vy->myField;

21

Intra-procedural analysis
• Assume SSA
• One assignment per variable. Therefore
• For each variable, we need to maintain a single points-to set
R(var) = mapping from a variable to a set of abstract addresses

that might point to

void myF (void){
 int v1, v2;
 int *p, *q;
 int *p = &v1;
 int *q = &v2;
 if (rand()) p = q;
}

R(v1) = { }
R(v2) = { }
R(p) = { }
R(q) = { }

v1
v2
v1,v2

22

Intra-procedural analysis
• Assume SSA
• One assignment per variable. Therefore
• For each variable, we need to maintain a single points-to set
R(var) = mapping from a variable to a set of abstract addresses

that might point to

• Not flow-sensitive for pointers in memory
• Single points-to set for each abstract memory location
M(addr) = mapping from an abstract address to a set of abstract addresses

that might point to

• UIVs of the function analyzed
• I(f) = set of UIVs of function f 23

Intra-procedural analysis

• Modify R, M, and I with a data-flow analysis
• Var1 = Mem[Var2]

R(var1) = { M(<S,o>) | <S,o> ∈R(var2) }

• Mem[Var1] = Var2
For each <S,o> ∈ R(Var1):

M(<S,o>) ∪= R(Var2)

• Var1 = Var2 + c
R(Var1) = { <S,o+c> | <S,o> ∈ R(Var2)}

Var2

Var1

Var1

Var2

24

Intra-procedural analysis

• Var1 = Var2 + Var3
R(Var1) = { <S,o+c> | <S,o> ∈ R(Var2) and c = infer_offset(Var3)} ∪

{ <S,o+c> | <S,o> ∈ R(Var3) and c = infer_offset(Var2)}

• VarX = PHI(Var1, Var2, … VarN)
• R(VarX) = R(Var1) ∪ R(Var2) ∪ … ∪ R(VarN)

Offset assumed to follow i x l + c
l is the size of array elements
c is a constant displacement
 (non-zero if the array is a structure field)

25

Termination

• Data-flow analysis can only add new elements in R, M, and I
• They increase monotonically

• To ensure termination: we need an upper bound to R, M, and I
• Finite number of abstract addresses

• Do we have these upper bounds?

26

Termination: unbounded UIVs?

UIV: P0

R(r1) ={<[P0],0>,
 <[P0]@4,0>,
 <[P0]@4@4,0>

If <[UIV],c> ∈ R and <[UIV]@N,c> ∈ R , then remove the latter 27

Termination: what about the offsets?
R(r2) ={ <[P0],0>,
 <[P0],4>, <[P0],8>, …

If <S,o1> ∈ R and <S,o2> ∈ R and o1 < o2 then remove <S,o2>28

Intra-procedural analysis

• In all equations:
• If <[UIV],c> ∈ R and

<[UIV]@N,c> ∈ R then remove the latter

• If <S,o1> ∈ R and
<S,o2> ∈ R and
o1 < o2 then remove <S,o2>

Elements of the same array are represented as a single abstract address

Elements of the same list are represented as a single abstract address

29

Outline

• Abstractions used

• Data-flow intra-procedural analysis

• Inter-procedural analysis

• Evaluation

30

Intra-procedural analysis
• Assume SSA
• One assignment per variable. Therefore
• For each variable, we need to maintain a single points-to set
R(var) = mapping from a variable to a set of abstract addresses

that might point to

• Not flow-sensitive for pointers in memory
• Single points-to set for each abstract memory location
M(addr) = mapping from an abstract address to a set of abstract addresses

that might point to

• UIVs of the function analyzed
• I(f) = set of UIVs of function fPr

op
ag

at
ed

31

VLLPA main blocks

• Intra-procedural analysis:
• Compute R, M, I for every function in isolation

• Inter-procedural analysis:
• Propagate M, I through the call graph
• Map abstract addresses to UIVs
• Update the call graph

32

VLLPA summary

• Summary: M, I
M(addr) = mapping from an abstract address to a set of abstract addresses

that might point to
I(f) = set of UIVs of function f

• Transfer function

F1 F2

33

SCCDAG

• We compute SCCs of the call graph

• This SCCDAG is the graph where nodes are
either functions or SCCs

• An SCCDAG has no cycles

34

Algorithm outline

First iteration: indirect calls have no target
Call graph is augmented with later iterations
SCCDAG is computed from the call graph

SCCDAG is traversed in reverse topological order
Unknown initial values (UIV) assumed

35

Algorithm outline

SCCDAG traversed in topological order to resolve UIVs and indirect calls
If any indirect calls change: start over at phase 0

SCCDAG is traversed in reverse topological order
Unknown initial values (UIV) assumed

36

Algorithm outline
SCCDAG is traversed in reverse topological order
Unknown initial values (UIV) assumed

F G

Mg, IgMf, If, Rf
Mapping abstract addresses of F
to UIVs of G

37

Algorithm outline

SCCDAG traversed in topological order to resolve UIVs and indirect calls
If any indirect calls change: start over at phase 0

SCCDAG is traversed in reverse topological order
Unknown initial values (UIV) assumed

38

Algorithm outline

The now complete SCCDAG is traversed once more
in topological order
to compute aliases and dependences

39

Outline

• Abstractions used

• Data-flow intra-procedural analysis

• Inter-procedural analysis

• Evaluation

40

VLLPA evaluation

• Comparing against high-level language alias analysis

• Analysis time

• Accuracy of the analysis

• Performance of the generated binary

41

Evaluation:
Comparing alias analyses

Evaluation

42

Evaluation: analysis time

43

Evaluation: accuracy

44

Evaluation: problem of alias analysis
at the source language

Evaluation

45

Evaluation: problem of alias analysis
at the source language

Same deps

Better accuracy
of VLLPA

Apparent deps
generated by
the conservative
pass updates

46

Evaluation:
performance of the generated binary

47

Improved VLLPA in HELIX-RC (ISCA 2014)

48

After 2014

• Approximating Flow-Sensitive Pointer Analysis
Using Frequent Itemset Mining
Vaivaswatha Nagaraj and R. Govindarajan
CGO 2015

• … many others
• A Collaborative Dependence Analysis Framework

Nick Johnson, Jordan Fix, Taewook Oh, Stephen R. Beard, Thomas Jablin, and David I. August
CGO 2017

• SCAF: A Speculation-Aware Collaborative Dependence Analysis Framework
Sotiris Apostolakis , Ziyang Xu , Zujun Tan , Greg Chan, Simone Campanoni , and David I. August
PLDI 2020

49

Always have faith in your ability

Success will come your way eventually

Best of luck!

50

