
LLVM
Simone Campanoni
simone.campanoni@northwestern.edu

Outline

• Introduction to LLVM

•Homework steps

•Hacking LLVM with CAT

2

LLVM
• LLVM is a great, hackable compilation framework
• For C, C++, Objective-C, Swift, Rust, …

• But it’s also (this is not a complete list)
• A dynamic compiler
• A compiler for bytecode languages (e.g., Java and CIL bytecode)

• LLVM IR
• LLVM is modular and well documented
• Started from UIUC, it’s now the research tool of choice
• It’s an industrial-strength codebase

Apple, AMD, Intel, NVIDIA, …
3

http://awards.acm.org/award_winners/lattner_5074762.cfm

Tools built with LLVM
• clang: compile C/C++ code as well as OpenMP code
• clang-format: to format C/C++ code
• clang-tidy: to detect and fix bug-prone patterns, performance, portability and maintainability issues
• clangd: to make editors (e.g., vim) smart
• clang-rename: to refactor C/C++ code
• SAFECode: memory checker
• lldb: debugger
• lld: linker
• polly: parallelizing compiler for numerical and regular workloads (e.g., matrix multiplication)
• libclc: OpenCL standard library
• dragonegg: integrate GCC parsers
• vmkit: bytecode virtual machines
• … and many more

4

LLVM common use at 10000 feet

clang

Source files

Binary 5

LLVM common use at 10000 feet

clang

Source files

Binary 6

LLVM common use at 10000 feet

clang

Source files

Binary

Lib/tool 2

Lib/tool 4Lib/tool…Lib/tool 3

Lib/tool 1
Lib/tool…

Lib/tool…
Lib/tool…

Lib/tool…

Lib/tool…
LLVMMost of them talk IR

7

LLVM internals

• An LLVM tool includes a compilation pipeline
• Each stage: reads something as input and

generates something as output
• To develop a stage: specify how to transform the input

to generate the output

• Most complexity in linking stages
is kept outside the development of a stage

• In this class: we’ll look at concepts and internals of middle-end
But some of them are still valid for front-end/back-end

8

LLVM and other compilers

• LLVM middle-end is designed around it’s IR

Front-end (Clang)
IR

Middle-end

IR

Back-end
Machine code

IR

Pass

Pass

IR

IR
…

Pass
manager

9

A middle-end pass in LLVM

• A compilation pass reads
and (sometime) modifies the bitcode (LLVM IR)

• If you want to analyze code:
you need to understand the IR

• If you want to modify the bitcode:
you need to understand the IR

10

Adding a pass

• Internally

• Externally
• More convenient to develop (compile-debug loop is much faster!)

clang vmkit …

clang vmkit …

11

Pass types

Use the “smallest” one for your CAT
• CallGraphSCCPass
•ModulePass
• FunctionPass
• LoopPass
• BasicBlockPass

int bar (void){
 return foo(2);
}
int foo (int p){
 return p+1;
}

12

Pass manager

• The pass manager orchestrates passes

• It builds the pipeline of passes in the middle-end

• The pipeline is created by respecting the dependences
declared by each pass

Pass X depends on Y
Y will be invoked before X

13

Learning LLVM
• Login (e.g., hanlon.wot.eecs.northwestern.edu) and play with LLVM
• LLVM 14.0.6 is installed in /home/software/llvm
• Add the following code in both ~/.bash_profile and ~/.bashrc files
LLVM_HOME=/home/software/llvm
export PATH=$LLVM_HOME/bin:$PATH
export LD_LIBRARY_PATH=$LLVM_HOME/lib:$LD_LIBRARY_PATH

• Get familiar with LLVM documentation
• Doxygen pages (API docs)
• Language reference manual (IR)
• Programmer’s manual (LLVM-specific data structures, tools)
• Writing an LLVM pass

• Read the documentation
• Read the documentation

14

http://llvm.org/doxygen/
http://llvm.org/docs/LangRef.html
http://llvm.org/docs/ProgrammersManual.html
http://llvm.org/docs/WritingAnLLVMPass.html
http://llvm.org/docs/index.html
http://llvm.org/docs/index.html

LLVM summary

• LLVM is an industrial-strength compiler
also used in academia
• Very hard to know in detail every component
• Focus on what’s important for your goal
• Become a ninja at jumping around the documentation

• It’s well organized, documented
with a large community behind it

• Basic C++ skills are required
15

Final tips

• LLVM includes a LOT of passes
• Analyses
• Transformations
• Normalization

• Take advantage of existing code
• I have a pointer to something. What is it?

getName() works on most things
errs() << TheThingYouDon’tKnow ;

16

Outline

• Introduction to LLVM

•Homework steps

•Hacking LLVM with CAT

17

Homework: build your own compiler

• You have a skeleton of a compiler (cat-c) built upon clang
• https://github.com/scampanoni/LLVM_middleend_template
• Switch to the branch v14: git checkout v14
• This extends only the middle-end of clang by adding a new pass
• This new pass will be invoked as last pass in the middle-end

(independently whether you use O0, O1, O2, …)

• You will extend this skeleton to do all of your assignments

• You can only rely on what’s included in LLVM
(no external tools/analyses/transformations)

18

https://github.com/scampanoni/LLVM_middleend_template

Homework: build your own compiler

To install cat-c (this needs to be done only once):
1. Login to a machine

(e.g., hanlon.wot.eecs.northwestern.edu)
2. Clone the git repository:

git clone https://github.com/scampanoni/LLVM_middleend_template.git cat-c
3. Compile it and install it:

cd cat-c ; ./run_me.sh
4. Add the cat-c compiler to your environment

I. echo "export PATH=~/CAT/bin:$PATH" >> ~/.bash_profile
II. Logout and login back

19

Homework: build your own compiler

To use cat-c
1. Login to a machine

(e.g., hanlon.wot.eecs.northwestern.edu)
2. You need to use “cat-c” rather than “clang” in your command line

(that’s it)
• For example, if before you run:

clang myprogram.c –o myprogram
• Now you need to run:

cat-c myprogram.c –o myprogram
• The only difference between cat-c and clang is that

cat-c invokes a new pass at the end of the middle-end
20

Homework: build your own compiler

cat-c

Source files

Binary

clang

CAT A bash
script

LLVM IR

Your
work

21

The cat-c structure

CAT
Your
work 22

CatPass.cpp

F.getName()

23

Your cat-c compiler

cat-c

Source files

Binary

clang

CAT A bash
script

Your
work

24

Using your cat-c compiler

To do more than a hello world pass: modify
25

Homework: build your own compiler

To modify cat-c
1. Modify cat-c/src/CatPass.cpp

cd cat-c/build ; vim ../src/CatPass.cpp

2. Go to the build directory
cd cat-c/build

3. Recompile your CAT and install it
make install

26

10 assignments: from H0 to H9

• Hi depends on Hi-1
• For every assignment:
• You have to modify your previous CatPass.cpp
• You have to pass all tests distributed

• Assignment i: Hi.tar.bz2
• The description of the homework (Hi.pdf)
• The tests you have to pass (tests)

• Each assignment is an LLVM pass

27

Outline

• Introduction to LLVM

•Homework steps

•Hacking LLVM with CAT

28

LLVM middle-end is designed around its IR

Front-end (Clang)
IR

Middle-end

IR

Back-end
Machine code

IR

Pass

Pass

IR

IR
…

29

LLVM tools to read/generate IR

• clang to generate/optimize/translate LLVM IR code
• To generate binaries from source code or IR code
• Check Makefile you have in LLVM_introduction.tar.bz2 (Canvas)

• lli to execute (interpret/JIT) LLVM IR code
lli FILE.bc

• llc to generate assembly from LLVM IR code
llc FILE.bc
or
clang FILE.bc

30

LLVM tools to read/generate IR

• opt to analyze/transform LLVM IR code
• Read LLVM IR file
• Load external passes
• Run specified passes
• Respect pass order you specify as input

• opt -pass1 -pass2 FILE.ll

• Optionally generate transformed IR
• Useful passes

• opt -view-cfg FILE.ll
• opt -view-dom FILE.ll

• opt -help

31

LLVM IR

• RISC-based
• Instructions operate on variables

C

LLVM IR

32

LLVM IR

• RISC-based
• Instructions operate on variables
• Load and store to access memory

LLVM IR

C
33

LLVM IR

• RISC-based
• Instructions operate on variables
• Load and store to access memory

LLVM IR

C

It seems IR variables are 1:1 with C variables
but they aren’t

34

LLVM IR

• RISC-based
• Instructions operate on variables
• Load and store to access memory

• Include a few high level instructions
• Function calls (invoke)
• Pointer arithmetics (getelementptr)
• Switch semantic (switch)

35

LLVM IR (2)

• Strongly typed for variables
• No assignments of variables with different types
• You need to explicitly cast variables

• No class hierarchy for memory objects

• Variables
• Global (@myVar)
• Local to a function (%myVar)
• Function parameter (define i32 @myF (i32 %myPar))

36

LLVM IR (3)

• A program is composed by modules (Module), one per source file
clang –emit-llvm –c myFile1.c –o myFile1.bc
clang –emit-llvm –c myFile2.c –o myFile2.bc

• Modules can be merged
llvm-link myFile1.bc myFile2.bc –o mergedModule.bc

37

LLVM IR (4)

LLVM organizes “compiler concepts” in containers
• A module is a container of functions
• Given an object Module &M
for (Function &f : M){ }
Function *sqrtF = M.getFunction(“sqrt”)
• Given an object Function *f
Module *m = f->getParent();

• More concepts will come later

38

LLVM IR (5)

• 3 different (but 100% equivalent) formats
• Assembly: human-readable format (FILENAME.ll)
• Bitcode: machine binary on-disk (FILENAME.bc)
• In memory: in memory binary

• Generating IR
• clang for C and C++ languages (similar options w.r.t. GCC)
• Different front-ends available

(e.g., flang)

39

LLVM IR (6)

Print IR concepts: << operator
• To print Function *f

errs() << *f << “\n”;
• To print Function &f

errs() << f << “\n”;
• To print Instruction *i

errs() << *i << “\n”;
• To print Module *m

errs() << *m << “\n”;

40

Functions and instructions

runOnFunction’s job is to analyze/transform a function F
… by analyzing/transforming its instructions

41

Functions and instructions

runOnFunction’s job is to analyze/transform a function F
… by analyzing/transforming its instructions

Iteration order:
Follows the order
used to store
instructions
in a function F

42

Instructions in LLVM
• All instructions are instances of the class llvm::Instruction

• Different instructions are instances
of different sub-classes: #include "llvm/IR/Instructions.h"

Instruction

BinaryOperator

ReturnInst

43

Instructions in LLVM
• All instructions are instances of llvm::Instruction

• Different instructions are instances
of different sub-classes

• Each instruction sub-class has extra methods
for this type of instructions
• E.g., Function * CallInst::getCalledFunction()

44

Instructions in LLVM

• You need to cast Instruction objects to access
instruction-specific methods
• LLVM redefined casting: #include "llvm/Support/Casting.h"
• bool isa<CLASS>(objectPointer)

• CLASS *ptrCasted = cast<CLASS>(objectPointer)

• CLASS *ptrCasted = dyn_cast<CLASS>(objectPointer)

45

A great alternative to casting:
the visitor pattern

46

Now you are ready for your first assignment!

In Canvas: homework/H0.tar.bz2

Test your code in
one of the machine available for this class
(e.g., hanlon.wot.eecs.northwestern.edu)

47

Let’s start hacking LLVM with CAT

As Linus Torvalds says …

Talk is cheap. Show me the code.

LLVM examples: LLVM_introduction.tar.bz2

48

Always have faith in your ability

Success will come your way eventually

Best of luck!

49

