

Simone Campanoni simone.campanoni@northwestern.edu

We have seen several examples of DFAs

- Are they correct?
- Are they precise?
- Will they always terminate?
- How long will they take to converge?

Outline

• Lattice and data-flow analysis

• DFA correctness

- DFA precision
- DFA complexity

Understanding DFAs

- We need to understand all of them
 - Liveness analysis: is it correct? Precision? Convergence?
 - Reaching definitions: is it correct? Precision? Convergence?
 - ...
- Idea: create a framework to help reasoning about them
 - Provide a single formal model that describes all data-flow analyses
 - Formalize the notions of "correctness," "conservativeness," and "optimality"
 - Correctness proof for DFAs
 - Place bounds on the time complexity of iterative DFAs
 - This is not to drive the implementation, but to reason about data-flow equations

Lattice

- Lattice L = (V, \leq):
 - V is a (possible infinite) set of elements
 - \leq is a binary relation over elements of V
- Lower bound
 - z is a lower bound of x and y iff $z \le x$ and $z \le y$
- Upper bound
 - z is a upper bound of x and y iff $x \le z$ and $y \le z$
- Operations: meet (Λ) and join (V)
 - b v c: least upper bound
 - b ^ c: greater lower bound -

Lattice

- Lattice L = (V, ≤):
 - V is a (possible infinite) set of elements
 - \leq is a binary relation over elements of V
- Lower bound
 - z is a lower bound of x and y iff $z \le x$ and $z \le y$
- Upper bound
 - z is a upper bound of x and y iff $x \le z$ and $y \le z$
- Operations: meet (Λ) and join (V)
 - $b \lor c$: least upper bound
 - $b \land c$: greater lower bound
 - An useful property: if $e \le b$ and $e \le c$, then $e \le b \land c$

Lattice

- Lattice L = (V, \leq):
 - V is a (possible infinite) set of elements
 - ≤ is a binary relation over elements of V
- Properties of \leq :
 - ≤ is a partial order (reflexive, transitive, anti-symmetric)
 - Every pair of elements in V has
 - An unique greatest lower bound (a.k.a. meet) and
 - An unique least upper bound (a.k.a. join)
- Top (T) = unique greatest element of V (if it exists)
- Bottom (\perp) = unique least element of V (if it exists) [*If you know nothing,*
- Height of L: longest path from T to \bot
 - Infinite large lattice can still have finite height

If you know nothing, this is still a correct, but conservative, solution

Lattice and DFA

- A lattice $L = (V, \leq)$ describes all possible solutions of a given DFA
 - A lattice for reaching definitions
 - Another lattice for liveness analysis
 - ...
 - For DFAs that look for solutions per point in the CFG: one "lattice instance" per point
- The relation ≤ connects all solutions of its related DFA from the best one (T) to the worst one --most conservative one--(⊥)
 - Liveness analysis: variables that might be used after a given point in the CFG
 - T = no variable is alive = { }

Why? \perp = all variables are alive = V

- To solve a data-flow analysis: we traverse the lattice of a given DFA to find the correct solution in a given point of the CFG
 - We repeat it **for every point** in the CFG

Lattice example

- How many apples I must have?
- V = sets of apples
- ≤ = set inclusion
- $\{\bigcirc\} \leq \{ \emptyset, \bigcirc\}$ • T = (best case) = all apples
- ⊥ = (worst case) no apples (empty set)

Apples, definitions, variables, expressions ...

Another lattice example

- How many apples I may have?
- V = sets of apples
- ≤ = set inclusion
- T = no apples (empty set)
- ⊥ = (most conservative) all apples

10

Precision

How can we use this mathematical framework , lattice, to study a DFA?

Use of lattice for DFA

- Define domain of program properties (flow values --- apple sets) computed by data-flow analysis, and organize the domain of elements as a lattice
- Define how to traverse this domain to compute the final solution using lattice operations
- Exploit lattice theory in achieving goals

Data-flow analysis and lattice

- Elements of the lattice (V) represent flow values (e.g., an IN[] set)
 - e.g., Sets of apples

Data-flow analysis and lattice

- Elements of the lattice (V) represent flow values (e.g., an IN[] set)
 - *e.g.*, Sets of live variables for liveness
- \perp "worst-case" information
 - e.g., Universal set
- T "best-case" information
 - e.g., Empty set
- If x ≤ y, then x is a conservative approximation of y –
 - e.g., Superset

{ v3 }

{v2,v3}

T={ }

{ v2 }

{v1,v3}

 $\perp = \{v1, v2, v3\}$

{ v1

{v1,v2}

Data-flow analysis and lattice (reaching defs)

- Elements of the lattice (V) represent flow values (IN[], OUT[])
 - e.g., Sets of definitions
- T represents "best-case" information
 - e.g., Empty set
- ⊥ represents "worst-case" information
 - *e.g.*, Universal set
- If $x \le y$, then x is a conservative approximation of y
 - e.g., Superset

How do we choose which element in our lattice is the data-flow value of a given point of the input program?

We traverse the lattice

How many apples I must have?

We found out there is no guarantee we have the green apple

We traverse the lattice

for (each instruction i other than ENTRY) OUT[i] = { };

the current knowledge/state/current-point-in-the-lattice

...let's see how

Merging information

- New information is found
 - e.g., a new definition (d1) reaches a given point in the CFG
- New information is described as a point in the lattice
 e.g. {d1}
- We use the "meet" operator (Λ) of the lattice to merge the new information with the current one
 - e.g., set union
 - Current information: {d2}
 - New information: {d1}
 - Result: {d1} U {d2} = {d1, d2}

We traverse the lattice

{ d1

 $\{d1, d2\}$

T={ }

{ d2 }

 $\perp = \{d1, d2, d3\}$

{ d3 }

 $\{d1,d3\} \{d2,d3\}$

As long as we know how to get new information, then we know how to traverse the lattice to converge to the final solution

We discover: a new definition, d1, reaches our point in the CFG

- New fact = {d1}
- $\{\} \land \{d1\} = \{d1\}$

How can we find new facts/information?

Computing a data-flow value (ideal)

- For a forward problem, consider all possible paths from the entry to a given program point, compute the flow values at the end of each path, and then meet these values together
- Meet-over-all-paths (MOP) solution at each program point
 - It's a correct solution

Computing MOP solution for reaching definitions

The problem of ideal solution

- Problem: all preceding paths must be analyzed
 - Exponential blow-up
- To compute the MOP solution in BB2:

0-1-A, 1-2-A 0-1-A, 1-2-B 0-1-B, 1-2-A 0-1-B, 1-2-B

From ideal to practical solution

- Problem: all preceding paths must be analyzed
 - Exponential blow-up
- Solution: compute meets early (at merge points) rather than at the end
 - Maximum fixed-point (MFP)

 $IN[i] = \bigcup_{p \text{ a predecessor of } i} OUT[p];$

- Questions:
 - Is MFP correct?
 - What's the precision of MFP?

Outline

• Lattice and data-flow analysis

• DFA correctness

- DFA precision
- DFA complexity

Correctness

 $V_{correct} \leq V_{MOP}$

Correctness

- Key idea:
 - "Is MFP correct?" iff $V_{MFP} \le V_{MOP}$
- Both start from V_{start}
 - $V_{p1} = fs_{p1}(V_{start})$
 - $V_{p2} = fs_{p2}(V_{start})$
 - $V_{MOP} = fs_{p3}(V_{p1}) \wedge fs_{p3}(V_{p2})$

Correctness *fs* is monotonic => MFP is correct!

Monotonicity

- $X \leq Y$ then $fs(X) \leq fs(Y)$
- If the flow function f is applied to two members of V, the result of applying f to the "lesser" of the two members will be under the result of applying f to the "greater" of the two
- More conservative inputs leads to more conservative outputs (never more optimistic outputs)

Convergence

• From lattice theory

If *fs* is monotonic, then the maximum number of times *fs* can be applied w/o reaching a fixed point is Height(V) - 1

 Iterative DFA is guaranteed to terminate if the fs is monotonic and the lattice has finite height

Outline

• Lattice and data-flow analysis

• DFA correctness

- DFA precision
- DFA complexity

Precision

- V_{MOP} : the best solution
- $V_{MFP} \le V_{MOP}$
 - $fs(V_{p1} \land V_{p2}) \leq fs(V_{p1}) \land fs(V_{p2})$
- Distributive fs over \wedge
 - $fs(V_{p1} \land V_{p2}) = fs(V_{p1}) \land fs(V_{p2})$
 - $V_{MFP} = V_{MOP}$
- Is reaching definition *fs* distributive?
 - (did having performed Λ earlier in the CFG change anything?)

* is distributive over +
4 * (2 + 3) = 4 * (5) = 20
(4 * 2) + (4 * 3) = 8 + 12 = 20

A new DFA example: reaching constants

- Goal
 - Compute the value that a variable must have at a program point (no SSA)
- Flow values (V)
 - Set of (variable, constant) pairs
- Merge function
 - Intersection
- Data-flow equations
 - Effect of node n: x = c
 - KILL[n] = $\{(x,k) | \forall k\}$
 - GEN[n] = {(x,c)}
 - Effect of node n: x = y + z
 - KILL[n] = $\{(x,k) | \forall k\}$
 - $GEN[n] = \{(x,c) \mid c=valy+valz, (y, valy) \in IN[n], (z, valz) \in IN[n]\}$

Reaching constants: characteristics

- _ = ?
- IN = ?
- OUT = ?
- Let's study this analysis
 - Does it convergence?
 - is *fs* monotonic? Has the lattice a finite height?
 - What is the precision of the solution?
 - is fs distributive?

Outline

• Lattice and data-flow analysis

• DFA correctness

• DFA precision

• DFA complexity

```
OUT[ENTRY] = \{ \};
for (each instruction i other than ENTRY) OUT[i] = \{\};
do {
 for (each instruction i other than ENTRY) {
  IN[i] = U_{p \text{ a predecessor of } i} OUT[p];
  OUT[i] = GEN[i] \cup (IN[i] - KILL[i]);
 }
} while (changes to any OUT occur);
```

- N instructions (N definitions at most)
- Complexity of the computation of IN[i]
 - Each IN/OUT set has at most N elements
 - Each set-union operation takes O(N) time
 - Constant number of set operations per instruction
 - The computation of IN[i] is O(N) time

```
OUT[ENTRY] = { };
```

for (each instruction i other than ENTRY) OUT[i] = { };

```
do {
  for (each instruction i other than ENTRY) {
    IN[i] = U<sub>p a predecessor of i</sub> OUT[p];
    OUT[i] = GEN[i] U (IN[i] - KILL[i]);
  }
```

- N instructions (N definitions at most)
- Complexity of the computation of IN[i]
 - O(N)
- Complexity of an iteration
 - Constant number of set operations per iteration
 - O(N)

OUT[ENTRY] = { };

for (each instruction i other than ENTRY) OUT[i] = { };

```
do {
  for (each instruction i other than ENTRY) {
    IN[i] = U<sub>p a predecessor of i</sub> OUT[p];
    OUT[i] = GEN[i] U (IN[i] - KILL[i]);
```

- N instructions (N definitions at most)
- Complexity of the computation of IN[i]
 - O(N)
- Complexity of an iteration
 - O(N)
- Complexity of an invocation
 - O(N) instructions \Rightarrow O(N²) time per invocation of the loop

```
OUT[ENTRY] = { };
for (each instruction i other than ENTRY) OUT[i] = { };
do {
for (each instruction i other than ENTRY) {
IN[i] = U<sub>p a predecessor of i OUT[p];
OUT[i] = GEN[i] U (IN[i] - KILL[i]);
}</sub>
```

- N instructions (N definitions at most)
- Complexity of the computation of IN[i]
 - O(N)
- Complexity of an iteration
 - O(N)
- Complexity of an invocation
 - O(N²)
- Complexity of do-while
 - Each do-while iteration modifies in the worst case only one set
 - Each modification can only add one element in the worst case
 - So the computation of a single set can take up to O(N³)
 - There are N sets: O(N⁴)

```
OUT[ENTRY] = { };
```

for (each instruction i other than ENTRY) OUT[i] = { };

```
do {
  for (each instruction i other than ENTRY) {
    IN[i] = U<sub>p a predecessor of i</sub> OUT[p];
```

```
OUT[i] = GEN[i] \cup (IN[i] - KILL[i]);
```

- N instructions (N definitions at most)
- Complexity of the computation of IN[i]
 - O(N)
- Complexity of an iteration
 - O(N)
- Complexity of an invocation
 - O(N²)
- Complexity of do-while
 - O(N⁴)

```
OUT[ENTRY] = { };
for (each instruction i other than ENTRY) OUT[i] = { };
do {
  for (each instruction i other than ENTRY) {
    IN[i] = U<sub>p a predecessor of i OUT[p];
    OUT[i] = GEN[i] U (IN[i] - KILL[i]);
  }
} while (changes to any OUT occur);</sub>
```

- N instructions (N definitions at most)
- Complexity of do-while
 - O(N⁴)

```
OUT[ENTRY] = { };
for (each instruction i other than ENTRY) OUT[i] = { };
do {
  for (each instruction i other than ENTRY) {
    IN[i] = U<sub>p a predecessor of i OUT[p];
    OUT[i] = GEN[i] U (IN[i] - KILL[i]);
  }
} while (changes to any OUT occur);</sub>
```

- N instructions (N definitions at most)
- Complexity of do-while
 - Worst case: O(N⁴)

```
OUT[ENTRY] = { };
for (each instruction i other than ENTRY) OUT[i] = { };
do {
  for (each instruction i other than ENTRY) {
    IN[i] = U<sub>p a predecessor of i OUT[p];
    OUT[i] = GEN[i] U (IN[i] - KILL[i]);
  }
} while (changes to any OUT occur);</sub>
```

- Typical case: 2 to 3 invocations with good ordering, work-list, basic-block, and sparse sets
 - Between N and N²

N=500 Worst case: 62,500,000,000 Optimized average case: 500 – 250,000 Always have faith in your ability

Success will come your way eventually

Best of luck!