DFA foundation

Simone Campanoni
simonec@eecs.northwestern.edu
We have seen several examples of DFAs

• Are they correct?

• Are they precise?

• Will they always terminate?

• How long will they take to converge?
Outline

• Lattice and data-flow analysis
• DFA correctness
• DFA precision
• DFA complexity
Understanding DFAs

- We need to understand **all** of them
 - Liveness analysis: is it correct? Precision? Convergence?
 - Reaching definitions: is it correct? Precision? Convergence?
 - ...

Idea: create a framework to help reasoning about them

- Provide a single formal model that describes all data-flow analyses
- Formalize the notions of “safe,” “conservative,” and “optimal”
- Correctness proof for DFAs
- Place bounds on time complexity of iterative DFAs
Lattices

• Lattice $L = (V, \leq)$:
 • V is a (possible infinite) set of elements
 • \leq is a binary relation over elements of V

• Lower bound
 • z is a lower bound of x and y iff $z \leq x$ and $z \leq y$

• Upper bound
 • z is a upper bound of x and y iff $x \leq z$ and $y \leq z$

• Operations: meet (\wedge) and join (\vee)
 • $b \vee c$: least upper bound
 • $b \wedge c$: greater lower bound
 • An useful property: if $e \leq b$ and $e \leq c$, then $e \leq b \wedge c$
Lattices

• Lattice $L = (V, \leq)$:
 • V is a (possible infinite) set of elements
 • \leq is a binary relation over elements of V

• Properties of \leq:
 • \leq is a partial order (reflexive, transitive, anti-symmetric)
 • Every pair of elements in V has
 • A unique greatest lower bound (a.k.a. meet) and
 • A unique least upper bound (a.k.a. join)

• Top (T) = unique greatest element of V (if it exists)
• Bottom (\perp) = unique least element of V (if it exists)

• Height of L: longest path from T to \perp
 • Infinite large lattice can still have finite height
Lattices and DFA

• A lattice $L = (V, \leq)$ describes all possible solutions of a given DFA
 • A lattice for reaching definitions
 • Another lattice for liveness analysis
 • ...
 • For DFAs that look for solutions per point in the CFG, then
 1 “lattice instance” per point

• The relation \leq connects all solutions of its related DFA from the best one (T) to the worst one --most conservative one--(\perp)
 • Liveness analysis: *variables that might be used after a given point in the CFG*
 $T = \text{no variable is alive} = \{ \}$
 $\perp = \text{all variables are alive} = V$

• We traverse the lattice of a given DFA to find the correct solution in a given point of the CFG
 • We repeat it for every point in the CFG
Lattice example

- How many apples I must have?
- \(V = \) sets of apples
- \(\leq = \) set inclusion
- \(T = (\text{best case}) = \) all apples
- \(\perp = (\text{worst case}) \) no apples (empty set)

Apples, definitions, variables, expressions ...
Another lattice example

- How many apples I may have?
- $V =$ sets of apples
- $\leq =$ set inclusion
 \[
 \{\text{🍎, 🍏} \} \leq \{\text{🍎, 🍏, 🍐} \}
 \]
- $T =$ no apples (empty set)
- $\bot =$ (most conservative) all apples

Conservativeness

Precision
How can we use this mathematical framework, lattice, to study a DFA?
Use of lattice for DFA

• Define domain of program properties (flow values --- apple sets) computed by data-flow analysis, and organize the domain of elements as a **lattice**

• Define how to traverse this domain to compute the final solution using lattice operations

• Exploit lattice theory in achieving goals
Data-flow analysis and lattice

- Elements of the lattice (V) represent flow values (e.g., an IN[] set)
 - *e.g.*, Sets of apples

\[
T = \{ \{\}, \{\}, \{\} \}
\]

\[
\bot = \{\}
\]
Data-flow analysis and lattice

- Elements of the lattice (V) represent flow values (e.g., an IN[] set)
 - *e.g.*, Sets of live variables for liveness
- ⊥ “worst-case” information
 - *e.g.*, Universal set
- T “best-case” information
 - *e.g.*, Empty set
- If $x \leq y$, then x is a conservative approximation of y
 - *e.g.*, Superset
Data-flow analysis and lattice (reaching defs)

• Elements of the lattice (V) represent flow values (IN[], OUT[])
 • e.g., Sets of definitions

• T represents “best-case” information
 • e.g., Empty set

• ⊥ represents “worst-case” information
 • e.g., Universal set

• If $x \leq y$, then x is a conservative approximation of y
 • e.g., Superset
How do we choose which element in our lattice is the data-flow value of a given point of the input program?
We traverse the lattice

for (each instruction i other than ENTRY) $\text{OUT}[i] = \{ \}$;
We traverse the lattice

for (each instruction i other than ENTRY) $\text{OUT}[i] = \{ \}$;

$T = \{ \}$

$\{ \text{d1} \} \quad \{ \text{d2} \} \quad \{ \text{d3} \}$

$\{ \text{d1, d2} \} \quad \{ \text{d1, d3} \} \quad \{ \text{d2, d3} \}$

$\bot = \{ \text{d1, d2, d3} \}$
Merging information

• New information is found
 • e.g., a new definition (d1) reaches a given point in the CFG

• New information is described as a point in the lattice
 • e.g. {d1}

• We use the “meet” operator (\wedge) of the lattice to merge the new information with the current one
 • e.g., set union
 • Current information: {d2}
 • New information: {d1}
 • Result: $\{d1\} U \{d2\} = \{d1, d2\}$
How can we find new facts/information to iterate over the lattice?
Computing a data-flow value (ideal)

- For a forward problem, consider all possible paths from the entry to a given program point, compute the flow values at the end of each path, and then meet these values together.

- Meet-over-all-paths (MOP) solution at each program point
 - It’s a correct solution
Computing MOP solution for reaching definitions

Entry

V_{entry}

d1

d2

d3

T={ }

{d1}

{d1,d2}

{d1,d2,d3}
The problem of ideal solution

• **Problem**: all preceding paths must be analyzed
 • Exponential blow-up
• To compute the MOP solution in BB2: 0-1-A, 1-2-A
 0-1-B, 1-2-A
 0-1-A, 1-2-B
 0-1-B, 1-2-B
From ideal to practical solution

- **Problem**: all preceding paths must be analyzed
 - Exponential blow-up

- **Solution**: compute meets early (at merge points) rather than at the end
 - Maximum fixed-point (MFP)

\[\text{IN}[i] = \bigcup \text{p a predecessor of } i \text{ OUT}[p]; \]

- **Questions**:
 - Is MFP correct?
 - What’s the precision of MFP?
Outline

• Lattice and data-flow analysis

• DFA correctness

• DFA precision

• DFA complexity
Correctness

\[V_{\text{correct}} \leq V_{\text{MOP}} \]
Correctness \(fs \) is monotonic \(\Rightarrow \) MFP is correct!

• Key idea:
 • “Is MFP correct?” iff \(V_{MFP} \leq V_{MOP} \)

• Focus on merges:
 • \(V_{MOP} = fs(V_{p1}) \land fs(V_{p2}) \)
 • \(V_{MFP} = fs(V_{p1} \land V_{p2}) \)
 • \(V_{MFP} \leq V_{MOP} \) iff \(fs(V_{p1} \land V_{p2}) \leq fs(V_{p1}) \land fs(V_{p2}) \)

• If \(fs \) is monotonic: \(X \leq Y \) then \(fs(X) \leq fs(Y) \)
 • \((V_{p1} \land V_{p2}) \leq V_{p1} \) by definition of meet
 • \((V_{p1} \land V_{p2}) \leq V_{p2} \) by definition of meet
 • So \(fs(V_{p1} \land V_{p2}) \leq fs(V_{p1}) \) and \(fs(V_{p1} \land V_{p2}) \leq fs(V_{p2}) \)
 • Therefore \(fs(V_{p1} \land V_{p2}) \leq fs(V_{p1}) \land fs(V_{p2}) \)
 • And therefore \(V_{MFP} \leq V_{MOP} \)
Monotonicity

• $X \leq Y$ then $fs(X) \leq fs(Y)$

• If the flow function f is applied to two members of V, the result of applying f to the “lesser” of the two members will be under the result of applying f to the “greater” of the two

• More conservative inputs leads to more conservative outputs
 (never more optimistic outputs)
Convergence

• **From lattice theory**
 If f_s is monotonic, then the maximum number of times f_s can be applied w/o reaching a fixed point is $\text{Height}(V) - 1$

• Iterative DFA is guaranteed to terminate if the f_s is monotonic and the lattice has finite height
Outline

• Lattice and data-flow analysis

• DFA correctness

• DFA precision

• DFA complexity
Precision

• V_{MOP}: the best solution
• $V_{\text{MFP}} \leq V_{\text{MOP}}$
 • $fs(V_{p1} \land V_{p2}) \leq fs(V_{p1}) \land fs(V_{p2})$
• Distributive fs over \land
 • $fs(V_{p1} \land V_{p2}) = fs(V_{p1}) \land fs(V_{p2})$
 • $V_{\text{MFP}} = V_{\text{MOP}}$
• Is reaching definition fs distributive?
 • (did having performed \land earlier change anything?)

* is distributive over +
$4 \times (2 + 3) = 4 \times (5) = 20$
$(4 \times 2) + (4 \times 3) = 8 + 12 = 20$

i:v1 = 3
j:v2 = 4

... i and j reach this point
k:v3 = v1 + v2
A new DFA example: reaching constants

• **Goal**
 • Compute the value that a variable must have at a program point (no SSA)

• **Flow values (V)**
 • Set of (variable,constant) pairs

• **Merge function**
 • Intersection

• **Data-flow equations**
 • Effect of node n: \(x = c \)
 • \(\text{KILL}[n] = \{ (x, k) \mid \forall k \} \)
 • \(\text{GEN}[n] = \{ (x, c) \} \)
 • Effect of node n: \(x = y + z \)
 • \(\text{KILL}[n] = \{ (x, k) \mid \forall k \} \)
 • \(\text{GEN}[n] = \{ (x, c) \mid c = \text{valy} + \text{valz}, (y, \text{valy}) \in \text{IN}[n], (z, \text{valz}) \in \text{IN}[n] \} \)

\[v_1 = 3 \]
\[v_2 = 4 \]
\[v_3 = v_1 + v_2 \]
\[v_3 \text{ is 7} \]
Reaching constants: characteristics

• \(\bot = ? \)
• IN = ?
• OUT = ?
• Let’s study this analysis
 • Does it convergence?
 • is \(fs \) monotonic? Has the lattice a finite height?
 • What is the precision of the solution?
 • is \(fs \) distributive?
Outline

• Lattice and data-flow analysis

• DFA correctness

• DFA precision

• DFA complexity
Complexity

OUT[ENTRY] = { };
for (each instruction \(i \) other than ENTRY) OUT[\(i \)] = { };
do {
 for (each instruction \(i \) other than ENTRY) {
 IN[\(i \)] = \(\bigcup \) \(p \) a predecessor of \(i \) OUT[\(p \)];
 OUT[\(i \)] = GEN[\(i \)] \(\cup \) (IN[\(i \)] \(\setminus \) KILL[\(i \)]);
 }
} while (changes to any OUT occur);
Complexity

• N instructions (N definitions at most)
 • Each IN/OUT set has at most N elements
 • Each set-union operation takes O(N) time
 • The for loop body
 • constant # of set operations per node
 • O(N) nodes ⇒ O(N^2) time for the loop
 • Each iteration of the repeat loop can only make the set larger
 • Each iteration modifies in the worst case only one set ⇒ O(N^3)
 • N iterations to reach the fixed point at most

• Worst case: O(N^4)

• Typical case: 2 to 3 iterations with good ordering & sparse sets
 • Between N and N^2

N=500
Worst case: 62,500,000,000
Optimized average case: 500 – 250,000
Optimization: basic blocks

\[
\text{OUT}[\text{ENTRY}] = \{ \};
\]
for (each basic block \(B\) other than \(\text{ENTRY}\)) \(\text{OUT}[B] = \{ \}\);
do {
 for (each basic block \(B\) other than \(\text{ENTRY}\)) {
 \(\text{IN}[B] = \bigcup \{\text{OUT}[p] : p\ \text{is a predecessor of } B\}\);
 \(\text{OUT}[B] = \text{GEN}[B] \cup (\text{IN}[B] - \text{KILL}[B])\);
 }
} while (changes to any \(\text{OUT}\) occur);
Optimization: work list

OUT[ENTRY] = { };
for (each basic block B other than ENTRY) OUT[B] = { };
workList = all basic blocks
while (workList isn’t empty)
 B = pick and remove a block from workList
 oldOUT = OUT[B]
 IN[B] = ∪ \textit{p}, a predecessor of B \textit{OUT}[p];
 if (oldOut != OUT[B]) workList = workList U \{all successors of B\}
}