

DFA foundation

Simone Campanoni
simone.campanoni@northwestern.edu

We have seen several examples of DFAs

- Are they correct?
- Are they precise?
- Will they always terminate?
- How long will they take to converge?

Outline

- Lattice and data-flow analysis
- DFA correctness
- DFA precision
- DFA complexity

Understanding DFAs

- We need to understand all of them
- Liveness analysis: is it correct? Precision? Convergence?
- Reaching definitions: is it correct? Precision? Convergence?
- ...
- Idea: create a framework to help reasoning about them
- Provide a single formal model that describes all data-flow analyses
- Formalize the notions of "correctness," "conservativeness," and "optimality"
- Correctness proof for DFAs
- Place bounds on the time complexity of iterative DFAs
- This is not to drive the implementation, but to reason about data-flow equations

Lattice

- Lattice $\mathrm{L}=(\mathrm{V}, \leq)$:
- V is a (possible infinite) set of elements
- \leq is a binary relation over elements of V
- Lower bound
- z is a lower bound of x and y iff $z \leq x$ and $z \leq y$
- Upper bound
- z is a upper bound of x and y iff $x \leq z$ and $y \leq z$
- Operations: meet (\wedge) and join (V)
- bvc: least upper bound
- b^c: greater lower bound

Lattice

- Lattice L = (V, \leq):
- V is a (possible infinite) set of elements
- \leq is a binary relation over elements of V
- Lower bound
- z is a lower bound of x and y iff $z \leq x$ and $z \leq y$
- Upper bound
- z is a upper bound of x and y iff $x \leq z$ and $y \leq z$
- Operations: meet (\wedge) and join (V)
- bv c: least upper bound
- b^c: greater lower bound
- An useful property: if $e \leq b$ and $e \leq c$, then $e \leq b \wedge c$

Lattice

- Lattice L = (V, \leq):
- V is a (possible infinite) set of elements
- \leq is a binary relation over elements of V
- Properties of \leq :

- \leq is a partial order (reflexive, transitive, anti-symmetric)
- Every pair of elements in V has
- An unique greatest lower bound (a.k.a. meet) and
- An unique least upper bound (a.k.a. join)
- Top (T) = unique greatest element of V (if it exists)
- Bottom (\perp) = unique least element of V (if it exists) If you know nothing,
- Height of L : longest path from T to \perp
- Infinite large lattice can still have finite height
this is still a correct, but conservative, solution

Lattice and DFA

- A lattice $L=(V, \leq)$ describes all possible solutions of a given DFA
- A lattice for reaching definitions
- Another lattice for liveness analysis
- ...
- For DFAs that look for solutions per point in the CFG: one "lattice instance" per point
- The relation \leq connects all solutions of its related DFA
from the best one (T) to the worst one --most conservative one--(\perp)
- Liveness analysis: variables that might be used after a given point in the CFG
T = no variable is alive $=\{ \}$
Why? $\perp=$ all variables are alive $=\mathrm{V}$
- To solve a data-flow analysis: we traverse the lattice of a given DFA to find the correct solution in a given point of the CFG
- We repeat it for every point in the CFG

Lattice example

Precision

- How many apples I must have?
- $\mathrm{V}=$ sets of apples
- $\leq=$ set inclusion

- $\mathrm{T}=$ (best case) $=$ all apples
- \perp = (worst case) no apples (empty set)

Apples, definitions, variables, expressions ...

Another lattice example

Precision

- How many apples I may have?
- $\mathrm{V}=$ sets of apples
- $\leq=$ set inclusion

$$
\{0,\} \leq\{0
$$

- $\mathrm{T}=$ no apples (empty set)
- \perp = (most conservative) all apples

How can we use this mathematical framework
, lattice, to study a DFA?

Use of lattice for DFA

- Define domain of program properties (flow values --- apple sets) computed by data-flow analysis, and organize the domain of elements as a lattice
- Define how to traverse this domain to compute the final solution using lattice operations
- Exploit lattice theory in achieving goals

Data-flow analysis and lattice

- Elements of the lattice (V) represent flow values (e.g., an IN[] set)
- e.g., Sets of apples

Data-flow analysis and lattice

- Elements of the lattice (V) represent flow values (e.g., an IN[] set)
- e.g., Sets of live variables for liveness
- \perp "worst-case" information
- e.g., Universal set
- T "best-case" information
- e.g., Empty set

$$
\perp=\{\mathrm{v} 1, \mathrm{v} 2, \mathrm{v} 3\}
$$

- e.g., Superset

Data-flow analysis and lattice (reaching defs)

- Elements of the lattice (V) represent flow values (IN[], OUT[])
- e.g., Sets of definitions
- T represents "best-case" information
- e.g., Empty set
- \perp represents "worst-case" information
- e.g., Universal set
- If $x \leq y$, then x is a conservative approximation of y
- e.g., Superset

How do we choose which element in our lattice is the data-flow value of a given point of the input program?

We traverse the lattice

How many apples I must have?

We found out
there is no guarantee we have the green apple

We traverse the lattice

for (each instruction i other than ENTRY) OUT[i] = \{ \};

- New information is merged into the current knowledge/state/current-point-in-the-lattice

Merging information

- New information is found
- e.g., a new definition (d1) reaches a given point in the CFG
- New information is described as a point in the lattice
- e.g. \{d1\}
- We use the "meet" operator (\wedge) of the lattice to merge the new information with the current one
- e.g., set union
- Current information: \{d2\}
- New information: \{d1\}
- Result: $\{\mathrm{d} 1\} \mathrm{U}\{\mathrm{d} 2\}=\{\mathrm{d} 1, \mathrm{~d} 2\}$

We traverse the lattice

As long as we know
how to get new information,

How can we find new facts/information?

Computing a data-flow value (ideal)

- For a forward problem, consider all possible paths from the entry to a given program point, compute the flow values at the end of each path, and then meet these values together
- Meet-over-all-paths (MOP) solution at each program point

- It's a correct solution

Computing MOP solution for reaching definitions

\{d1, d2,d3\}

The problem of ideal solution

- Problem: all preceding paths must be analyzed
- Exponential blow-up
- To compute the MOP solution in BB2:
$0-1-\mathrm{A}, 1-2-\mathrm{A}$
$0-1-A, 1-2-B$
$0-1-B, 1-2-A$
0-1-B, 1-2-B

From ideal to practical solution

- Problem: all preceding paths must be analyzed
- Exponential blow-up
- Solution: compute meets early (at merge points) rather than at the end
- Maximum fixed-point (MFP)

IN $[i]=U_{p \text { a predecessor of } i}$ OUT[p];

- Questions:
- Is MFP correct?
- What's the precision of MFP?

Outline

- Lattice and data-flow analysis
- DFA correctness
- DFA precision
- DFA complexity

Correctness

$\mathrm{V}_{\text {correct }} \leq \mathrm{V}_{\mathrm{MOP}}$

Correctness

- Key idea:
- "Is MFP correct?" iff $\mathrm{V}_{\text {MFP }} \leq \mathrm{V}_{\text {MOP }}$
- Both start from $\mathrm{V}_{\text {start }}$
- $\mathrm{V}_{\mathrm{p} 1}=f s_{p 1}\left(\mathrm{~V}_{\mathrm{start}}\right)$
- $\mathrm{V}_{\mathrm{p} 2}=f s_{p 2}\left(\mathrm{~V}_{\mathrm{start}}\right)$
- $\mathrm{V}_{\text {MOP }}=f s_{p 3}\left(\mathrm{~V}_{\mathrm{p} 1}\right) \wedge f f_{p 3}\left(\mathrm{~V}_{\mathrm{p} 2}\right)$

Correctness $f s$ is monotonic => MFP is correct!

- Key idea:
- "Is MFP correct?" iff $\mathrm{V}_{\text {MFP }} \leq \mathrm{V}_{\text {MOP }}$
- If $f s$ is monotonic: $\mathrm{X} \leq \mathrm{Y}$ then $f s(\mathrm{X}) \leq f s(\mathrm{Y})$

- $\left(\mathrm{V}_{\mathrm{p} 1} \wedge \mathrm{~V}_{\mathrm{p} 2}\right) \leq \mathrm{V}_{\mathrm{p} 1}$ by definition of meet
- $\left(\mathrm{V}_{\mathrm{p} 1} \wedge \mathrm{~V}_{\mathrm{p} 2}\right) \leq \mathrm{V}_{\mathrm{p} 2}$ by definition of meet
- So $f s_{p 3}\left(V_{p 1} \wedge \mathrm{~V}_{\mathrm{p} 2}\right) \leq f s_{p 3}\left(\mathrm{~V}_{\mathrm{p} 1}\right)$ and $f s_{p 3}\left(\mathrm{~V}_{\mathrm{p} 1} \wedge \mathrm{~V}_{\mathrm{p} 2}\right) \leq f s_{p 3}\left(\mathrm{~V}_{\mathrm{p} 2}\right)$
- Therefore $f s\left(\vee_{p 1} \wedge V_{p 2}\right) \leq f s\left(V_{p 1}\right) \wedge f s\left(V_{p 2}\right)$
- And therefore $\mathrm{V}_{\text {MFP }} \leq \mathrm{V}_{\text {MOP }}$

```
An useful property: if e sb and e sc, then e \leqb^c
```


Monotonicity

- $\mathrm{X} \leq \mathrm{Y}$ then $f s(\mathrm{X}) \leq f s(\mathrm{Y})$
- If the flow function f is applied to two members of V , the result of applying f to the "lesser" of the two members will be under the result of applying f to the "greater" of the two
- More conservative inputs leads to more conservative outputs (never more optimistic outputs)

Convergence

- From lattice theory

If $f s$ is monotonic, then the maximum number of times $f s$ can be applied w/o reaching a fixed point is $\operatorname{Height(V)-1}$

- Iterative DFA is guaranteed to terminate if the fs is monotonic and the lattice has finite height

Outline

- Lattice and data-flow analysis
- DFA correctness
- DFA precision
- DFA complexity

Precision

- $\mathrm{V}_{\text {MOP: }}$ the best solution
- $\mathrm{V}_{\text {MFP }} \leq \mathrm{V}_{\text {MOP }}$
- $f s\left(V_{p 1} \wedge V_{p 2}\right) \leq f s\left(V_{p 1}\right) \wedge f s\left(V_{p 2}\right)$

$$
\begin{aligned}
& * \text { is distributive over + } \\
& 4 *(2+3)=4^{*}(5)=20 \\
& (4 * 2)+(4 * 3)=8+12=20
\end{aligned}
$$

- Distributive $f s$ over \wedge
- $f s\left(V_{p 1} \wedge V_{p 2}\right)=f s\left(V_{p 1}\right) \wedge f s\left(\vee_{p 2}\right)$
- $\mathrm{V}_{\mathrm{MFP}}=\mathrm{V}_{\mathrm{MOP}}$
- Is reaching definition $f s$ distributive?

- (did having performed \wedge earlier in the CFG change anything?)

A new DFA example: reaching constants

- Goal
- Compute the value that a variable must have at a program point (no SSA)
- Flow values (V)
- Set of (variable,constant) pairs
- Merge function
- Intersection
- Data-flow equations

- Effect of node n : $x=c$
- $\operatorname{KILL}[\mathrm{n}]=\{(\mathrm{x}, \mathrm{k}) \mid \forall \mathrm{k}\}$
- GEN[n] $=\{(\mathrm{x}, \mathrm{c})\}$
- Effect of node $n: x=y+z$
- $\operatorname{KILL}[\mathrm{n}]=\{(\mathrm{x}, \mathrm{k}) \mid \forall \mathrm{k}\}$
- $\operatorname{GEN}[n]=\{(\mathrm{x}, \mathrm{c}) \mid \mathrm{c}=\mathrm{valy}+\mathrm{valz},(\mathrm{y}$, valy $) \in \operatorname{IN}[\mathrm{n}],(\mathrm{z}$, valz) $\in \operatorname{IN}[\mathrm{n}]\}$

Reaching constants: characteristics

- \perp = ?
- $\mathrm{IN}=$?
- OUT = ?
- Let's study this analysis
- Does it convergence?
- is $f s$ monotonic? Has the lattice a finite height?
-What is the precision of the solution?
- is fs distributive?

Outline

- Lattice and data-flow analysis
- DFA correctness
- DFA precision
- DFA complexity

Complexity

```
OUT[ENTRY] = { };
for (each instruction i other than ENTRY) OUT[i] = { };
do {
    for (each instruction i other than ENTRY) {
        IN[i] = U p a predecessor of };\mathrm{ OUT[p];
        OUT[i] = GEN[i] U (IN[i] - KILL[i]);
    }
} while (changes to any OUT occur);
```


Complexity

- N instructions (N definitions at most)
- Complexity of the computation of IN[i]
- Each IN/OUT set has at most N elements
- Each set-union operation takes

```
OUT[ENTRY] = { };
for (each instruction i other than ENTRY) OUT[i] = {};
do {
    for (each instruction i other than ENTRY) {
    IN[i] = U P p predecessor of; OUT[p];
    OUT[i] = GEN[i] U (IN[i] - KILL[i]);
    }
} while (changes to any OUT occur);
``` O(N) time
- Constant number of set operations per instruction
- The computation of \(\operatorname{IN}[\mathrm{i}]\) is \(\mathrm{O}(\mathrm{N})\) time

\section*{Complexity}
- \(N\) instructions (N definitions at most)
- Complexity of the computation of \(\operatorname{IN}[i]\)
- O(N)
- Complexity of an iteration
- Constant number of set operations

OUT[ENTRY] = \{\};
for (each instruction \(i\) other than ENTRY) OUT \([i]=\{ \}\);
do \{
for (each instruction \(i\) other than ENTRY) \{
\(T \mathrm{~T}[i]=\mathrm{U}_{\text {pa predecessor of } ;} \mathrm{OUT}[p]\);
OUT[i] = GEN[i] U (IN[i] - KILL[i]);
\}
\} while (changes to any OUT occur); per iteration
- O(N)

\section*{Complexity}
- \(N\) instructions (N definitions at most)
- Complexity of the computation of IN[i]
- O(N)
- Complexity of an iteration
- O(N)
```

OUT[ENTRY] = { };
for (each instruction i other than ENTRY) OUT[i] = { };
do {
for (each instruction i other than ENTRY) {
IN[i] = U O predecessoro of; OUT[p];
OUT[i] = GEN[i] \cup (IN[i] - KILL[i]);
}
} while (changes to any OUT occur);

```
- Complexity of an invocation
- \(\mathrm{O}(\mathrm{N})\) instructions \(\Rightarrow \mathrm{O}\left(\mathrm{N}^{2}\right)\) time per invocation of the loop

\section*{Complexity}
```

OUT[ENTRY] = { };
for (each instruction i other than ENTRY) OUT[i] = { };

```
- N instructions (N definitions at most)
- Complexity of the computation of IN[i]
- O(N)
- Complexity of an iteration
- O(N)
```

do {
for (each instruction i other than ENTRY) {
IN[i] = U p a predecessor of }i\mathrm{ OUT[p];
OUT[i] = GEN[i] U (IN[i] - KILL[i]);
}
} while (changes to any OUT occur);

```
- Complexity of an invocation
- O(N2)
- Complexity of do-while
- Each do-while iteration modifies in the worst case only one set
- Each modification can only add one element in the worst case
- So the computation of a single set can take up to \(\mathrm{O}\left(\mathrm{N}^{3}\right)\)
- There are N sets: \(\mathrm{O}\left(\mathrm{N}^{4}\right)\)

\section*{Complexity}
- N instructions (N definitions at most)
- Complexity of the computation of IN[i]
- O(N)
- Complexity of an iteration
- O(N)
```

OUT[ENTRY] = { };
for (each instruction i other than ENTRY) OUT[i] = {};
do {
for (each instruction i other than ENTRY) {
IN [i] = U O p predecessor of iOUT[p];
OUT[i] = GEN[i] U (IN[i] - KILL[i]);
}
} while (changes to any OUT occur);

```
- Complexity of an invocation
- \(\mathrm{O}\left(\mathrm{N}^{2}\right)\)
- Complexity of do-while
- \(\mathrm{O}\left(\mathrm{N}^{4}\right)\)

\section*{Complexity}
- \(N\) instructions (N definitions at most)
- Complexity of do-while
- \(\mathrm{O}\left(\mathrm{N}^{4}\right)\)
```

OUT[ENTRY] = { };
for (each instruction i other than ENTRY) OUT[i] = { };
do {
for (each instruction i other than ENTRY) {
IN [i] = U O p predecessor of iOUT[p];
OUT[i] = GEN[i] U (IN[i] - KILL[i]);
}
} while (changes to any OUT occur);

```

\section*{Complexity}
- \(N\) instructions (N definitions at most)
- Complexity of do-while
- Worst case: \(\mathrm{O}\left(\mathrm{N}^{4}\right)\)
```

OUT[ENTRY] = { };
for (each instruction i other than ENTRY) OUT[i] = { };
do {
for (each instruction i other than ENTRY) {
IN [i] = U O p predecessor of iOUT[p];
OUT[i] = GEN[i] U (IN[i] - KILL[i]);
}
} while (changes to any OUT occur);

```
- Typical case: 2 to 3 invocations with good ordering, work-list, basic-block, and sparse sets
- Between N and \(\mathrm{N}^{2}\)
\[
\begin{aligned}
& \mathrm{N}=500 \\
& \text { Worst case: } 62,500,000,000 \\
& \text { Optimized average case: } \\
& \quad 500-250,000
\end{aligned}
\]

Always have faith in your ability

Success will come your way eventually

\section*{Best of luck!}```

