
DFA foundation
Simone Campanoni
simone.campanoni@northwestern.edu

We have seen several examples of DFAs

• Are they correct?

• Are they precise?

• Will they always terminate?

• How long will they take to converge?

2

Outline

• Lattice and data-flow analysis

• DFA correctness

• DFA precision

• DFA complexity

3

Understanding DFAs

• We need to understand all of them
• Liveness analysis: is it correct? Precision? Convergence?
• Reaching definitions: is it correct? Precision? Convergence?
• …

• Idea: create a framework to help reasoning about them
• Provide a single formal model that describes all data-flow analyses
• Formalize the notions of “correctness,” “conservativeness,” and “optimality”
• Correctness proof for DFAs
• Place bounds on the time complexity of iterative DFAs
• This is not to drive the implementation,

but to reason about data-flow equations

4

Lattice
• Lattice L = (V, ≤):
• V is a (possible infinite) set of elements
• ≤ is a binary relation over elements of V

• Lower bound
• z is a lower bound of x and y iff z ≤ x and z ≤ y

• Upper bound
• z is a upper bound of x and y iff x ≤ z and y ≤ z

• Operations: meet (∧) and join (∨)
• b ∨ c: least upper bound
• b ∧ c: greater lower bound

b c

d

a

e

5

Lattice
• Lattice L = (V, ≤):
• V is a (possible infinite) set of elements
• ≤ is a binary relation over elements of V

• Lower bound
• z is a lower bound of x and y iff z ≤ x and z ≤ y

• Upper bound
• z is a upper bound of x and y iff x ≤ z and y ≤ z

• Operations: meet (∧) and join (∨)
• b ∨ c: least upper bound
• b ∧ c: greater lower bound
• An useful property: if e ≤ b and e ≤ c, then e ≤ b ∧ c

b c

d

a

e

6

Lattice
• Lattice L = (V, ≤):
• V is a (possible infinite) set of elements
• ≤ is a binary relation over elements of V

• Properties of ≤:
• ≤ is a partial order (reflexive, transitive, anti-symmetric)
• Every pair of elements in V has

• An unique greatest lower bound (a.k.a. meet) and
• An unique least upper bound (a.k.a. join)

• Top (T) = unique greatest element of V (if it exists)
• Bottom (⊥) = unique least element of V (if it exists)
• Height of L: longest path from T to ⊥
• Infinite large lattice can still have finite height

b c

d

a

If you know nothing,
this is still a correct,
but conservative, solution

7

Lattice and DFA
• A lattice L = (V, ≤) describes all possible solutions of a given DFA

• A lattice for reaching definitions
• Another lattice for liveness analysis
• …
• For DFAs that look for solutions per point in the CFG:

one “lattice instance” per point

• The relation ≤ connects all solutions of its related DFA
from the best one (T) to the worst one --most conservative one--(⊥)
• Liveness analysis: variables that might be used after a given point in the CFG
T = no variable is alive = { }
⊥ = all variables are alive = V

• To solve a data-flow analysis: we traverse the lattice of a given DFA
to find the correct solution in a given point of the CFG
• We repeat it for every point in the CFG

Why?

8

Lattice example

• How many apples I must have?
• V = sets of apples

• ≤ = set inclusion

• T = (best case) = all apples
• ⊥ = (worst case) no apples (empty set)

Apples, definitions, variables, expressions …

T={ , , }

⊥={ }

{ } { } { }

{ , } { , }{ , }

{ , }{ } ≤

Conservativeness

Precision

9

{ }

{ , }

{ }

T={ }

Another lattice example

• How many apples I may have?
• V = sets of apples

• ≤ = set inclusion

• T = no apples (empty set)
• ⊥ = (most conservative) all apples ⊥={ , , }

{ , } { , }

{ }

{ , }{ , } ≤

Conservativeness

Precision

10

How can we use this mathematical framework
, lattice,

to study a DFA?

11

Use of lattice for DFA

• Define domain of program properties (flow values --- apple sets)
computed by data-flow analysis,
and organize the domain of elements as a lattice

• Define how to traverse this domain to compute the final solution
using lattice operations

• Exploit lattice theory in achieving goals

12

Data-flow analysis and lattice

• Elements of the lattice (V) represent
flow values (e.g., an IN[] set)
• e.g., Sets of apples

T “best-case” information
e.g., Empty set

⊥ “worst-case” information
e.g., Universal set

If x ≤ y, then x is a
conservative approximation of y

e.g., Superset

T={ , , }

⊥={ }

{ } { } { }

{ , }{ , }{ , }

13

{v1,v2} {v1,v3} {v2,v3}

{ v3 }{ v2 }{ v1 }

T={ }

Data-flow analysis and lattice

• Elements of the lattice (V) represent
flow values (e.g., an IN[] set)
• e.g., Sets of live variables for liveness

• ⊥ “worst-case” information
• e.g., Universal set

• T “best-case” information
• e.g., Empty set

• If x ≤ y, then x is a
conservative approximation of y
• e.g., Superset

⊥={v1,v2,v3}

14

Data-flow analysis and lattice (reaching defs)

• Elements of the lattice (V) represent flow values (IN[], OUT[])
• e.g., Sets of definitions

• T represents “best-case” information
• e.g., Empty set

• ⊥ represents “worst-case” information
• e.g., Universal set

• If x ≤ y, then x is a conservative approximation of y
• e.g., Superset

15

How do we choose
which element in our lattice
is the data-flow value

of a given point of the input program?

16

We traverse the lattice

T={ , , }

⊥={ }

{ } { } { }

{ , }{ , }{ , }

We found out
there is no guarantee
we have the green apple

How many apples I must have?

17

We traverse the lattice
for (each instruction i other than ENTRY) OUT[i] = { };

{d1,d3} {d2,d3}

{ d3 }{ d2 }{ d1 }

T={ }

⊥={d1,d2,d3}

{d1,d2}
• New information discovered

while computing the IN/OUT sets
will bring us down in the lattice

• New information is merged into
the current knowledge/state/current-point-in-the-lattice …let’s see how 18

Merging information

• New information is found
• e.g., a new definition (d1) reaches a given point in the CFG

• New information is described as a point in the lattice
• e.g. {d1}

• We use the ”meet” operator (∧) of the lattice
to merge the new information with the current one
• e.g., set union
• Current information: {d2}
• New information: {d1}
• Result: {d1} U {d2} = {d1, d2} 19

We traverse the lattice

{d1,d3} {d2,d3}

{ d3 }{ d2 }{ d1 }

T={ }

⊥={d1,d2,d3}

{d1,d2}
We discover:
a new definition, d1,
reaches our point
in the CFG
• New fact = {d1}
• { } ∧{d1} = {d1}

As long as we know
how to get new information,
then we know
how to traverse the lattice
to converge to the final solution

20

How can we find new facts/information?

21

Computing a data-flow value (ideal)

Entry

Ventry
• For a forward problem,

consider all possible paths
from the entry to a given program point,
compute the flow values
at the end of each path,
and then meet these values
together

• Meet-over-all-paths (MOP)
solution at each program point
• It’s a correct solution

22

Computing MOP solution
for reaching definitions

Entry

Ventry
T={ }

{d1}
d1

d2

d3

{d1,d2}

{d1,d2,d3}
23

The problem of ideal solution

• Problem: all preceding paths must be analyzed
• Exponential blow-up

• To compute the MOP solution in BB2:

BB0

BB1

BB2

Control flow
0-1-A

Control flow
0-1-B

Control flow
1-2-A

Control flow
1-2-B

0-1-A, 1-2-A
0-1-A, 1-2-B
0-1-B, 1-2-A
0-1-B, 1-2-B

VMOP
24

From ideal to practical solution

• Problem: all preceding paths must be analyzed
• Exponential blow-up

• Solution: compute meets early (at merge points)
rather than at the end

• Maximum fixed-point (MFP)

• Questions:
• Is MFP correct?
• What’s the precision of MFP?

IN[i] = ∪p a predecessor of i OUT[p];

BB0

BB1

BB2

Control flow
0-1-A

Control flow
0-1-B

Control flow
1-2-A

Control flow
1-2-B

VMOP

V01A V01B
V01

V012A V012B
VMFP

25

Outline

• Lattice and data-flow analysis

• DFA correctness

• DFA precision

• DFA complexity

26

{d1,d3} {d2,d3}

{ d3 }{ d2 }{ d1 }

T={ }

Correctness

⊥={d1,d2,d3}

Entry

Ventry

d1
d2 {d1,d2}

VMOPVcorrect ≤

27

Correctness
• Key idea:

• “Is MFP correct?” iff VMFP ≤ VMOP

• Both start from Vstart
• Vp1 = fsp1(Vstart)
• Vp2 = fsp2(Vstart)
• VMOP = fsp3(Vp1) ∧ fsp3(Vp2)

28

BB0

BB1

BB2

Control flow p1 Control flow p2

Vp1 Vp2

Vstart

VMOP

Control flow p3

Correctness
• Key idea:

• “Is MFP correct?” iff VMFP ≤ VMOP

• Focus on merges:
• VMOP = fsp3(Vp1) ∧ fsp3(Vp2)
• VMFP = fsp3(Vp1∧ Vp2)
• VMFP ≤ VMOP iff fsp3(Vp1∧ Vp2) ≤ fsp3(Vp1) ∧ fsp3(Vp2)

• If fs is monotonic: X ≤ Y then fs(X) ≤ fs(Y)
• (Vp1∧ Vp2) ≤ Vp1 by definition of meet
• (Vp1∧ Vp2) ≤ Vp2 by definition of meet
• So fsp3(Vp1∧ Vp2) ≤ fsp3(Vp1) and fsp3(Vp1∧ Vp2) ≤ fsp3(Vp2)
• Therefore fs(Vp1∧ Vp2) ≤ fs(Vp1) ∧ fs(Vp2)
• And therefore VMFP ≤ VMOP

Let us compare

Same function

fs is monotonic => MFP is correct!

An useful property: if e ≤ b and e ≤ c, then e ≤ b ∧ c

29

BB0

BB1

BB2

Control flow p1 Control flow p2

VMOP

Vp1 Vp2

VMFP

Vstart

Control flow p3

IN[i] = ∪p a predecessor of i OUT[p];

Monotonicity

• X ≤ Y then fs(X) ≤ fs(Y)

• If the flow function f is applied to two members of V,
the result of applying f to the “lesser” of the two members
will be under the result of applying f to the “greater” of the two

• More conservative inputs
leads to more conservative outputs
(never more optimistic outputs)

30

Convergence

• From lattice theory
If fs is monotonic,
then the maximum number of times fs can be applied
w/o reaching a fixed point is Height(V) – 1

• Iterative DFA is guaranteed to terminate
if the fs is monotonic and
the lattice has finite height

31

Outline

• Lattice and data-flow analysis

• DFA correctness

• DFA precision

• DFA complexity

32

Precision
• VMOP: the best solution
• VMFP ≤ VMOP

• fs(Vp1 ∧ Vp2) ≤ fs(Vp1) ∧ fs(Vp2)

• Distributive fs over ∧
• fs(Vp1 ∧ Vp2) = fs(Vp1) ∧ fs(Vp2)
• VMFP = VMOP

• Is reaching definition fs distributive?
• (did having performed ∧ earlier in the CFG change anything?)

* is distributive over +
4 * (2 + 3) = 4 * (5) = 20

(4 * 2) + (4 * 3) = 8 + 12 = 20

i:v1 = 3 j:v2 = 4

…

i and j
reach this point

k:v3 = v1 + v2

33

A new DFA example: reaching constants

• Goal
• Compute the value that a variable must have at a program point (no SSA)

• Flow values (V)
• Set of (variable,constant) pairs

• Merge function
• Intersection

• Data-flow equations
• Effect of node n: x = c

• KILL[n] = {(x,k)| ∀k}
• GEN[n] = {(x,c)}

• Effect of node n: x = y + z
• KILL[n] = {(x,k)| ∀k}
• GEN[n] = {(x,c) | c=valy+valz, (y, valy) ∈ IN[n], (z, valz) ∈ IN[n]}

v1 = 3 v2 = 4

v3 = v1 + v2 v3 is 7

34

Reaching constants: characteristics

• ⊥ = ?
• IN = ?
• OUT = ?
• Let’s study this analysis
• Does it convergence?
• is fs monotonic? Has the lattice a finite height?

• What is the precision of the solution?
• is fs distributive?

35

Outline

• Lattice and data-flow analysis

• DFA correctness

• DFA precision

• DFA complexity

36

Complexity

OUT[ENTRY] = { };
for (each instruction i other than ENTRY) OUT[i] = { };
do {

for (each instruction i other than ENTRY) {
IN[i] = ∪p a predecessor of i OUT[p];
OUT[i] = GEN[i] ∪ (IN[i] ─ KILL[i]);

}
} while (changes to any OUT occur);

37

Complexity
• N instructions (N definitions at most)
• Complexity of the computation of IN[i]

• Each IN/OUT set has at most
N elements

• Each set-union operation takes
O(N) time

• Constant number of set operations per instruction
• The computation of IN[i] is O(N) time

38

OUT[ENTRY] = { };

for (each instruction i other than ENTRY) OUT[i] = { };

do {
 for (each instruction i other than ENTRY) {
 IN[i] = ∪p a predecessor of i OUT[p];

 OUT[i] = GEN[i] ∪ (IN[i] ─ KILL[i]);
 }

} while (changes to any OUT occur);

Complexity
• N instructions (N definitions at most)
• Complexity of the computation of IN[i]

• O(N)
• Complexity of an iteration

• Constant number of set operations
per iteration

• O(N)

39

OUT[ENTRY] = { };

for (each instruction i other than ENTRY) OUT[i] = { };

do {
 for (each instruction i other than ENTRY) {
 IN[i] = ∪p a predecessor of i OUT[p];

 OUT[i] = GEN[i] ∪ (IN[i] ─ KILL[i]);
 }

} while (changes to any OUT occur);

Complexity
• N instructions (N definitions at most)
• Complexity of the computation of IN[i]

• O(N)
• Complexity of an iteration

• O(N)
• Complexity of an invocation

• O(N) instructions ⇒ O(N2) time per invocation of the loop

40

OUT[ENTRY] = { };

for (each instruction i other than ENTRY) OUT[i] = { };

do {
 for (each instruction i other than ENTRY) {
 IN[i] = ∪p a predecessor of i OUT[p];

 OUT[i] = GEN[i] ∪ (IN[i] ─ KILL[i]);
 }

} while (changes to any OUT occur);

Complexity
• N instructions (N definitions at most)
• Complexity of the computation of IN[i]

• O(N)
• Complexity of an iteration

• O(N)
• Complexity of an invocation

• O(N2)
• Complexity of do-while

• Each do-while iteration modifies in the worst case only one set
• Each modification can only add one element in the worst case
• So the computation of a single set can take up to O(N3)
• There are N sets: O(N4)

41

OUT[ENTRY] = { };

for (each instruction i other than ENTRY) OUT[i] = { };

do {
 for (each instruction i other than ENTRY) {
 IN[i] = ∪p a predecessor of i OUT[p];

 OUT[i] = GEN[i] ∪ (IN[i] ─ KILL[i]);
 }

} while (changes to any OUT occur);

Complexity
• N instructions (N definitions at most)
• Complexity of the computation of IN[i]

• O(N)
• Complexity of an iteration

• O(N)
• Complexity of an invocation

• O(N2)
• Complexity of do-while

• O(N4)

42

OUT[ENTRY] = { };

for (each instruction i other than ENTRY) OUT[i] = { };

do {
 for (each instruction i other than ENTRY) {
 IN[i] = ∪p a predecessor of i OUT[p];

 OUT[i] = GEN[i] ∪ (IN[i] ─ KILL[i]);
 }

} while (changes to any OUT occur);

Complexity
• N instructions (N definitions at most)
• Complexity of do-while

• O(N4)

43

OUT[ENTRY] = { };

for (each instruction i other than ENTRY) OUT[i] = { };

do {
 for (each instruction i other than ENTRY) {
 IN[i] = ∪p a predecessor of i OUT[p];

 OUT[i] = GEN[i] ∪ (IN[i] ─ KILL[i]);
 }

} while (changes to any OUT occur);

Complexity
• N instructions (N definitions at most)
• Complexity of do-while

• Worst case: O(N4)

• Typical case: 2 to 3 invocations with good ordering, work-list, basic-block, and sparse sets
• Between N and N2

44

OUT[ENTRY] = { };

for (each instruction i other than ENTRY) OUT[i] = { };

do {
 for (each instruction i other than ENTRY) {
 IN[i] = ∪p a predecessor of i OUT[p];

 OUT[i] = GEN[i] ∪ (IN[i] ─ KILL[i]);
 }

} while (changes to any OUT occur);

N=500
Worst case: 62,500,000,000
Optimized average case:

500 – 250,000

Always have faith in your ability

Success will come your way eventually

Best of luck!

45

