C de analysis
and
transf rmation

DFA foundation

Simone Campanoni
simone.campanoni@northwestern.edu

We have seen several examples of DFAs
* Are they correct?

* Are they precise?

* Will they always terminate?

* How long will they take to converge?

Outline

e Lattice and data-flow analysis
* DFA correctness
* DFA precision

* DFA complexity

Understanding DFAs

* We need to understand all of them
* Liveness analysis: is it correct? Precision? Convergence?
* Reaching definitions: is it correct? Precision? Convergence?

* ldea: create a framework to help reasoning about them

* Provide a single formal model that describes all data-flow analyses
Formalize the notions of “correctness,” “conservativeness,” and “optimality”
Correctness proof for DFAs
Place bounds on the time complexity of iterative DFAs

This is not to drive the implementation,
but to reason about data-flow equations

Lattice

e Lattice L = (V, <):
* Vis a (possible infinite) set of elements
e <is a binary relation over elements of V

* Lower bound
* zisalower boundof xandyiffz<xandz<y

* Upper bound

e zisaupperboundofxandyiffx<zandy<z

* Operations: meet (A) and join (V)

* bvc:least upper bound

* bac:greater lower bound

Lattice
e Lattice L = (V, <): N

* Vis a (possible infinite) set of elements
e <is a binary relation over elements of V

* Lower bound
* zisalower boundof xandyiffz<xandz<y

* Upper bound
e zisaupperboundofxandyiffx<zandy<z
* Operations: meet (A) and join (V)
* bvc:least upper bound

* bac:greater lower bound
* An useful property:ife<bande<g,

Lattice
e Lattice L = (V, <): N

* Vis a (possible infinite) set of elements b C

e <is a binary relation over elements of V \/

* Properties of <:

e <is a partial order (reflexive, transitive, anti-symmetric) d
* Every pair of elements in V has
* An unique greatest lower bound (a.k.a. meet) and
* An unique least upper bound (a.k.a. join)
* Top (T) = unique greatest element of V (if it exists)
* Bottom (L) = unique least element of V (if it exists) | if you know nothing,
* Height of L: longest path from T to L this is still a correct,
* Infinite large lattice can still have finite height but conservative, solution

Lattice and DFA

e Alattice L = (V, <) describes all possible solutions of a given DFA
A lattice for reaching definitions
* Another lattice for liveness analysis

e For DFAs that look for solutions per point in the CFG:
one “lattice instance” per point

* The relation < connects all solutions of its related DFA
from the best one (T) to the worst one --most conservative one--(1)

* Liveness analysis: variables that might be used after a given point in the CFG

T =novariableis alive ={}
Why? 1 =all variables are alive =V

* To solve a data-flow analysis: we traverse the lattice of a given DFA
to find the correct solution in a given point of the CFG

* We repeat it for every point in the CFG

Lattice example

* How many apples | must have?

e \/ = sets of appIeS %\
LK O X JCK]
S>< |

e < =setinclusion {b

C K]

T =(best case) = all apples
e 1 = (worst case) no apples (empty set)

Apples, definitions, variables, expressions ...

Precision

-@e®) ||

@ S ®
N
b

Conservativeness
9

{

Another lattice example

Precision
* How many apples | may have? T={) 4

* V = sets of apples

i
@

e < =setinclusion

P

211

* T=no apples (empty set)

= (most conservative) all apples

Conservativeness
10

How can we use this mathematical framework
, lattice,
to study a DFA?

Use of lattice for DFA

* Define domain of program properties (flow values --- apple sets)
computed by data-flow analysis,
and organize the domain of elements as a lattice

* Define how to traverse this domain to compute the final solution
using lattice operations

* Exploit lattice theory in achieving goals

Data-flow analysis and lattice

* Elements of the lattice (V) represent _ &2, 6
flow values (e.g., an IN[] set) T_{b’% ’ }

* e.g., Sets of apples %\
@ @ e
{ .

(¥} @!

\l‘{}/

Data-flow analysis and lattice

* Elements of the lattice (V) represent T={ }
flow values (e.g., an IN[] set)

* e.g., Sets of live variables for liveness %\

* 1 “worst-case” information {vl} {v2} {v3}
* e.g., Universal set

e T “best-case” information
* e.g., Empty set

o

e If x <y, then xTsa
conservative approximation of y

* e.g., Superset

1={v1,v2,v3}

Data-flow analysis and lattice (reaching defs)

* Elements of the lattice (V) represent flow values (IN[], OUT[])
* e.g., Sets of definitions

* T represents “best-case” information
* e.g., Empty set

* | represents “worst-case” information
* e.g., Universal set

* If x <y, then x is a conservative approximation of y
* e.g., Superset

How do we choose
which element in our lattice
is the data-flow value

of a given point of the input program?

We traverse the |lattice

How many apples | must have?

We found out
there is no guarantee

we have the green apple \
1

17

We traverse the |lattice

for (each instruction i other than ENTRY) OUTIi] ={ };

— T={)
{dl} {d2} {d3}

o<\

| o {d1,d2} {d1,d3} {d2,d3}
 New information discovered
while computing the IN/OUT sets \l/

will bring us down in the lattice J_={d 1.d2 d3}
V4 V4

 New information is merged into

the current knowledge/state/current-point-in-the-lattice ..let’s see how

Merging information

* New information is found
* e.g., a new definition (d1) reaches a given point in the CFG

* New information is described as a point in the lattice
e e.g. {d1}

* We use the “meet” operator (/) of the lattice
to merge the new information with the current one

* e.g., set union
e Current information: {d2}

* New information: {d1}
e Result: {d1} U {d2} ={d1, d2}

We traverse the |lattice

We discover:

a new definition, d1,
reaches our point

in the CFG

* New fact = {d1}

« {}A{d1} = {d1}

As long as we know

how to get new information,
T then we know
= p— .

{ } how to traverse the lattice

%\ to converge to the final solution

{dl} {d2} {d3}

o<\

{d1,d2} {d1,d3} {d2,d3}

\l/

1={d1,d2,d3}

How can we find new facts/information?

Computing a data-flow value (ideal)

* For a forward problem,
consider all possible paths

from the entry to a given program point,

compute the flow values

at the end of each path,
and then meet these values

together

Meet-over-all-paths (MOP)

solution at each program point
* |t's a correct solution

Computing MOP solution
for reaching definitions

T={ }

1d1}

{d1,d2}

{d1,d2,d3}

The problem of ideal solution

* Problem: all preceding paths must be analyzed

* Exponential blow-up
* To compute the MOP solution in BB2:

0-1-A, 1-2-A
0-1-A, 1-2-B
0-1-B, 1-2-A
0-1-B, 1-2-B

BBO
Controlflow .- Tz -z 77 -, Control flow
0-1-A f~ e X JT---7 018
<5 =
--- _I-TTT7= 7
Control flow* ~ _ - ‘2 : :: = - =" Control flow
1-2-A g . = 1-2-B

From ideal to practical solution

* Problem: all preceding paths must be analyzed

* Exponential blow-up

* Solution: compute meets early (at merge points)

rather than at the end
* Maximum fixed-point (MFP)

IN[i] = Up a predecessor of i OUT[p];
* Questions:

* |s MFP correct?
 What's the precision of MFP?

BBO
Control flow‘, - ———— = Control flow
O'l'A \\\ (\\~-~-' O'l'B
Voia <5 Vo
SR V4
Control flow® ~ _ _ ¢<_ T ==-"control flow

1-2-A Voioassg ¢~ Voiop 1-2-8

Outline

* DFA correctness
* DFA precision

* DFA complexity

Correctness

Vcorrect < VIVlOP

T={ }

,///”/77\\\\\\

1dl}

o<\

{d1,d2}

\l/

1d2} 1d3}

{d1,d3} {d2,d3}

1={d1,d2,d3}

Correctness

* Key idea:

* “Is MFP correct?” iff Vyep < Vop

* Both start from V.,
* Vplzfspl(vstart)

* Vp2 = fSpZ(Vstart)
* VMOP =fsp3(vp1) /\ f5p3(vp2)

‘<. Control flow p3

-

CO rrectness fsis monotonic => MFP is correct!

. Vstart
. Keyldea'
e “Is MFP correct?” iff Ve < Viop Control flow p1 BBO | Control flow p2
- - /
_) ¢ ¢ ~___"
° FOCUS on merges IN[’] - papredecessoroinUT[p]r ::\ ~ - =
VI\/IOP f5 (1) A f5p3(V ’) Same function Vpl BB1 VIO2
* Viviep < VMOP iff f5p3 Vo1 N\ Vi) <f5p3(Vp1) A fsps(V p2) ¢ ~ < Control flow p3
Let us compare Vv -
. . BB2
. Iffs is monotonic: X <Y then fs(X) < fs(Y) MIFP - Vimor

* (Vo1 A Vp,) £V, by definition of meet
. (V A V ,) < V , by definition of meet
SOfS (V /\ V 2) fS (pl) andfs (V /\ Vp2) f5p3(p2)
Therefore fS(Vp1 N sz) <fs(Vp1) A fs(sz)
And therefore Vy;p < Vyiop

An useful property:ife<bande<c, thene<bac

29

Monotonicity
e X <Y then fs(X) < fs(Y)

* If the flow function f is applied to two members of V,
the result of applying f to the “lesser” of the two members
will be under the result of applying f to the “greater” of the two

* More conservative inputs
leads to more conservative outputs
(never more optimistic outputs)

Convergence

* From lattice theory
If fs is monotonic,
then the maximum number of times fs can be applied
w/o reaching a fixed point is Height(V) — 1

* |terative DFA is guaranteed to terminate
if the fs is monotonic and
the lattice has finite height

Outline

* DFA precision

* DFA complexity

Precision

* Vyop: the best solution * is distributive over +
Voo < Vinop 4%(2+3)=4*(5)=20

° fs(vpl /\ Vp2) st(vpl) /\ fS(VpZ) (4 * 2) + (4 * 3) =8+12=20

* Distributive fs over A
i A Vo) =) A 4 ()]
* Vvier = Vivior _

iand j

* Is reaching definition fs distributive? reach this point
* (did having performed A earlier in the CFG change anything?)

A new DFA example: reaching constants

* Goal
 Compute the value that a variable must have at a program point (no SSA)

* Flow values (V)
» Set of (variable,constant) pairs

* Merge function
* |ntersection

* Data-flow equations v3is 7

* Effectof noden:x=c
e KILL[N] = {(x,k)| YK}
* GEN[n] ={(x,c)}
» Effectof noden:x=y+z
e KILL[N] = {(x,k)| YK}
* GEN[n] ={(x,c) | c=valy+valz, (y, valy) € IN[n], (z, valz) € IN[n]}

vl

1
w

v2=4

Reaching constants: characteristics

el =7
e IN=?
+OUT=?

* Let’s study this analysis

* Does it convergence?

* is fs monotonic? Has the lattice a finite height?
* What is the precision of the solution?

* is fs distributive?

Outline

* DFA complexity

Complexity

OUTI[ENTRY] ={ };
for (each instruction j other than ENTRY) OUTIi] ={};

do {
for (each instruction i other than ENTRY) {
IN[/] = U, a predecessor of i OUTIp];
OUTI[/i] = GEN[i] U (IN[i] = KILL[/]);
}

} while (changes to any OUT occur);

CO m p | exity OUT[ENTRY] ={ };

for (each instruction i other than ENTRY) OUTI[i] ={};

* Ninstructions (N definitions at most) d?oi (each instruction i other than ENTRY) {
e Complexity of the computation of IN[i] —{N[’] = Up a predecessor of i OUT[P];
* Each IN/OUT set has at most OUT[i] = GEN[i] U (IN[i] — KILL[{]);
N elements }
* Each set-union operation takes } while (changes to any OUT occur);
O(N) time

e Constant number of set operations per instruction
* The computation of INJi] is O(N) time

OUT[ENTRY] ={ };
for (each instruction i other than ENTRY) OUTI[i] ={};

. . : e do {
N instructions (N definitions at most) for (each instruction i other than ENTRY) {

* Complexity of the computation of IN[i] {N[i] = Up a predecessor of i OUTIPI;
 O(N) OUTI[i] = GEN[i] U (IN[i] = KILL[{]);

: . : }
* Complexity of an iteration _ } while (changes to any OUT occur);
e Constant number of set operations
per iteration

* O(N)

Complexity

CO m p | exity OUT[ENTRY] ={ };

for (each instruction i other than ENTRY) OUTI[i] ={};
do {

* Ninstructions (N definitions at most) ~for (each instruction i other than ENTRY) {
» Complexity of the computation of IN[i] | IN[i] = Up 2 predecessor of i OUTIPI;
 O(N) OUTI[/i] = GEN[i] U (IN[/] — KILL[/]);
}

Complexity of an iteration
* O(N)

Complexity of an invocation
e O(N) instructions = O(N?) time per invocation of the loop

} while (changes to any OUT occur);

CO m p | exity OUT[ENTRY] ={ };

for (each instruction i other than ENTRY) OUTI[i] ={};

D . L " do {
N instructions (N definitions at most) for (each instruction i other than ENTRY) {

« Complexity of the computation of IN[i] IN[/] = Up a predecessor of i OUT[P];

 O(N) — OUTI[i] = GEN[i] U (IN[i] — KILL[/]);

. L }

* Complexity of an iteration } while (changes to any OUT occur);

° O(N) —
 Complexity of an invocation

* O(N?)

Complexity of do-while
e Each do-while iteration modifies in the worst case only one set
e Each modification can only add one element in the worst case
* So the computation of a single set can take up to O(N3)
* There are N sets: O(N%)

Complexity

N instructions (N definitions at most)

Complexity of the computation of INJi]
* O(N)
Complexity of an iteration
* O(N)
Complexity of an invocation
° O(Nz)
Complexity of do-while
° O(N4)

OUT[ENTRY] ={ };
for (each instruction i other than ENTRY) OUTI[i] ={};

do {
for (each instruction i other than ENTRY) {

IN [’] = Up a predecessor of i OUT[p];

OUT[i] = GEN[i] U (IN[/] — KILL[]);
}

} while (changes to any OUT occur);

CO m p | exity OUT[ENTRY] ={ };

for (each instruction i other than ENTRY) OUTI[i] ={};

. . . e ey do{
N instructions (N definitions at most) for (each instruction i other than ENTRY) {
e Complexity of do-while IN[/] = Up a predecessor of i OUTIP];
* O(N%) OUTI[i] = GEN[/] U (IN[i] — KILL[]);
}

} while (changes to any OUT occur);

OUT[ENTRY] ={ };
for (each instruction i other than ENTRY) OUTI[i] ={};

do {

Complexity

* Ninstructions (N definitions at most) for (each instruction i other than ENTRY) {
e Complexity of do-while IN[/] = Up a predecessor of i OUTIP];
* Worst case: O(N%) }OUT[I'] = GEN[/] U (IN[i] — KILL[]);

} while (changes to any OUT occur);

* Typical case: 2 to 3 invocations with good ordering, work-list, basic-block, and sparse sets

e Between N and N2

N=500
Worst case: 62,500,000,000

Optimized average case:
500 - 250,000

Always have faith in your ability

Success will come your way eventually

Best of luck!

