DFA foundation

Simone Campanoni
simonec@eeecs.northwestern.edu
We have seen several examples of DFAs

• Are they correct?

• Are they precise?

• Will they always terminate?

• How long will they take to converge?
Outline

• Lattice and data-flow analysis

• DFA correctness

• DFA precision

• DFA complexity
Understanding DFAs

• We need to understand **all** of them
 • Liveness analysis: is it correct? Precision? Convergence?
 • Reaching definitions: is it correct? Precision? Convergence?
 • ...

• **Idea**: create a framework to help reasoning about them
 • Provide a single formal model that describes all data-flow analyses
 • Formalize the notions of “correctness,” “conservativeness,” and “optimality”
 • Correctness proof for DFAs
 • Place bounds on time complexity of iterative DFAs
Lattice

• Lattice $L = (V, \leq)$:
 • V is a (possible infinite) set of elements
 • \leq is a binary relation over elements of V
• Lower bound
 • z is a lower bound of x and y iff $z \leq x$ and $z \leq y$
• Upper bound
 • z is a upper bound of x and y iff $x \leq z$ and $y \leq z$
• Operations: meet (\wedge) and join (\lor)
 • $b \lor c$: least upper bound
 • $b \land c$: greater lower bound
• An useful property: if $e \leq b$ and $e \leq c$, then $e \leq b \land c$
Lattice

• Lattice $L = (V, \leq)$:
 • V is a (possible infinite) set of elements
 • \leq is a binary relation over elements of V

• Properties of \leq:
 • \leq is a partial order (reflexive, transitive, anti-symmetric)
 • Every pair of elements in V has
 • An unique greatest lower bound (a.k.a. meet) and
 • An unique least upper bound (a.k.a. join)

• Top (T) = unique greatest element of V (if it exists)
• Bottom (\bot) = unique least element of V (if it exists)
• Height of L: longest path from T to \bot
 • Infinite large lattice can still have finite height
Lattice and DFA

• A lattice $L = (V, \leq)$ describes all possible solutions of a given DFA
 • A lattice for reaching definitions
 • Another lattice for liveness analysis
 • ...
 • For DFAs that look for solutions per point in the CFG, then one “lattice instance” per point

• The relation \leq connects all solutions of its related DFA from the best one (T) to the worst one --most conservative one--(\perp)
 • Liveness analysis: variables that might be used after a given point in the CFG
 T = no variable is alive = $\{\}$
 \perp = all variables are alive = V

• We traverse the lattice of a given DFA to find the correct solution in a given point of the CFG
 • We repeat it for every point in the CFG
Lattice example

• How many apples I must have?
• $V =$ sets of apples
• $\leq =$ set inclusion
 $\{\text{apple}\} \leq \{\text{apple, apple}\}$
• $T =$ (best case) = all apples
• $\bot =$ (worst case) no apples (empty set)

Apples, definitions, variables, expressions ...
Another lattice example

- How many apples I may have?
- $V =$ sets of apples
- $\leq =$ set inclusion
- $T =$ no apples (empty set)
- $\bot =$ (most conservative) all apples
How can we use this mathematical framework, lattice, to study a DFA?
Use of lattice for DFA

• Define domain of program properties (flow values --- apple sets) computed by data-flow analysis, and organize the domain of elements as a **lattice**

• Define how to traverse this domain to compute the final solution using lattice operations

• Exploit lattice theory in achieving goals
Data-flow analysis and lattice

• Elements of the lattice (V) represent flow values (e.g., an \(\text{IN[]} \) set)
 • \textit{e.g.}, Sets of apples

\[T = \{ \{ \}, \{ \text{apple} \}, \{ \text{green apple} \} \} \]
\[\bot = \{ \} \]
Data-flow analysis and lattice

- Elements of the lattice (V) represent flow values (e.g., an IN[] set)
 - *e.g.*, Sets of live variables for liveness
- \perp "worst-case" information
 - *e.g.*, Universal set
- T "best-case" information
 - *e.g.*, Empty set
- If $x \leq y$, then x is a conservative approximation of y
 - *e.g.*, Superset

\[
T = \{ \} \\
\perp = \{ v_1, v_2, v_3 \}
\]

\[
\begin{align*}
&\{ v_1 \} & \{ v_2 \} & \{ v_3 \} \\
&\{ v_1, v_2 \} & \{ v_1, v_3 \} & \{ v_2, v_3 \} \\
&\perp = \{ v_1, v_2, v_3 \}
\end{align*}
\]
Data-flow analysis and lattice (reaching defs)

• Elements of the lattice (V) represent flow values (IN[], OUT[])
 • e.g., Sets of definitions

• T represents “best-case” information
 • e.g., Empty set

• ⊥ represents “worst-case” information
 • e.g., Universal set

• If x ≤ y, then x is a conservative approximation of y
 • e.g., Superset
How do we choose which element in our lattice is the data-flow value of a given point of the input program?
We traverse the lattice

How many apples I must have?

We found out there is no guarantee we have the green apple.
We traverse the lattice

for (each instruction i other than ENTRY) $\text{OUT}[i] = \{ \}$;

$T = \{ \}$

$\{ d1 \}$ $\{ d2 \}$ $\{ d3 \}$

{d1,d2} {d1,d3} {d2,d3}

$\bot = \{ d1, d2, d3 \}$
Merging information

• New information is found
 • e.g., a new definition (d1) reaches a given point in the CFG

• New information is described as a point in the lattice
 • e.g. {d1}

• We use the ”meet” operator (\(\wedge\)) of the lattice to merge the new information with the current one
 • e.g., set union
 • Current information: {d2}
 • New information: {d1}
 • Result: {d1} U {d2} = {d1, d2}
We traverse the lattice

As long as we know how to get new information, then we know how to traverse the lattice to converge to the final solution

A new definition, d1, reaches our point in the CFG

\[T = \{ \} \]

\[\bot = \{ d_1, d_2, d_3 \} \]
How can we find new facts/information?
Computing a data-flow value (ideal)

- For a forward problem, consider all possible paths from the entry to a given program point, compute the flow values at the end of each path, and then meet these values together.

- Meet-over-all-paths (MOP) solution at each program point:
 - It’s a correct solution.
Computing MOP solution for reaching definitions

\[V_{\text{entry}} \]

\[T = \{ \} \]
\[\{d1\} \]
\[\{d1,d2\} \]
\[\{d1,d2,d3\} \]
The problem of ideal solution

- **Problem**: all preceding paths must be analyzed
 - Exponential blow-up
- To compute the MOP solution in BB2:
 - 0-1-A, 1-2-A
 - 0-1-A, 1-2-B
 - 0-1-B, 1-2-A
 - 0-1-B, 1-2-B
From ideal to practical solution

- **Problem**: all preceding paths must be analyzed
 - Exponential blow-up

- **Solution**: compute meets early (at merge points) rather than at the end
 - Maximum fixed-point (MFP)

- **Questions**:
 - Is MFP correct?
 - What’s the precision of MFP?

\[
IN[i] = \bigcup_{p \text{ a predecessor of } i} OUT[p];
\]
Outline

• Lattice and data-flow analysis

• DFA correctness

• DFA precision

• DFA complexity
Correctness

\[V_{\text{correct}} \leq V_{\text{MOP}} \]
Correctness \(fs \) is monotonic => MFP is correct!

- **Key idea:**
 - “Is MFP correct?” iff \(V_{MFP} \leq V_{MOP} \)

- **Focus on merges:**
 - \(V_{MOP} = fs(V_{p1}) \land fs(V_{p2}) \)
 - \(V_{MFP} = fs(V_{p1} \land V_{p2}) \)
 - \(V_{MFP} \leq V_{MOP} \) iff \(fs(V_{p1} \land V_{p2}) \leq fs(V_{p1}) \land fs(V_{p2}) \)

- **If \(fs \) is monotonic: \(X \leq Y \) then \(fs(X) \leq fs(Y) \)
 - \((V_{p1} \land V_{p2}) \leq V_{p1} \) by definition of meet
 - \((V_{p1} \land V_{p2}) \leq V_{p2} \) by definition of meet
 - So \(fs(V_{p1} \land V_{p2}) \leq fs(V_{p1}) \) and \(fs(V_{p1} \land V_{p2}) \leq fs(V_{p2}) \)
 - Therefore \(fs(V_{p1} \land V_{p2}) \leq fs(V_{p1}) \land fs(V_{p2}) \)
 - And therefore \(V_{MFP} \leq V_{MOP} \)
Monotonicity

• $X \leq Y$ then $f_s(X) \leq f_s(Y)$

• If the flow function f is applied to two members of V, the result of applying f to the “lesser” of the two members will be under the result of applying f to the “greater” of the two

• More conservative inputs leads to more conservative outputs (never more optimistic outputs)
Convergence

• **From lattice theory**
 If f_s is monotonic, then the maximum number of times f_s can be applied w/o reaching a fixed point is $\text{Height}(V) - 1$

• Iterative DFA is guaranteed to terminate if the f_s is monotonic and the lattice has finite height
Outline

• Lattice and data-flow analysis

• DFA correctness

• DFA precision

• DFA complexity
Precision

• V_{MOP}: the best solution

• $V_{MFP} \leq V_{MOP}$
 • $fs(V_{p1} \land V_{p2}) \leq fs(V_{p1}) \land fs(V_{p2})$

• Distributive fs over \land
 • $fs(V_{p1} \land V_{p2}) = fs(V_{p1}) \land fs(V_{p2})$
 • $V_{MFP} = V_{MOP}$

• Is reaching definition fs distributive?
 • (did having performed \land earlier change anything?)

* is distributive over $+$

$4 \times (2 + 3) = 4 \times (5) = 20$

$(4 \times 2) + (4 \times 3) = 8 + 12 = 20$
A new DFA example: reaching constants

• Goal
 • Compute the value that a variable must have at a program point (no SSA)

• Flow values (V)
 • Set of (variable,constant) pairs

• Merge function
 • Intersection

• Data-flow equations
 • Effect of node n: $x = c$
 • $\text{KILL}[n] = \{(x,k) \mid \forall k\}$
 • $\text{GEN}[n] = \{(x,c)\}$
 • Effect of node n: $x = y + z$
 • $\text{KILL}[n] = \{(x,k) \mid \forall k\}$
 • $\text{GEN}[n] = \{(x,c) \mid c = \text{val}_y + \text{val}_z, (y, \text{val}_y) \in \text{IN}[n], (z, \text{val}_z) \in \text{IN}[n]\}$

$v1 = 3$
$v2 = 4$
$v3 = v1 + v2$
v3 is 7
Reaching constants: characteristics

• \(\bot = ? \)
• \(\text{IN} = ? \)
• \(\text{OUT} = ? \)
• Let’s study this analysis
 • Does it convergence?
 • is \(fs \) monotonic? Has the lattice a finite height?
 • What is the precision of the solution?
 • is \(fs \) distributive?
Outline

• Lattice and data-flow analysis

• DFA correctness

• DFA precision

• DFA complexity
Complexity

\[
\text{OUT}[\text{ENTRY}] = \{ \}; \\
\text{for (each instruction } i \text{ other than ENTRY) } \text{OUT}[i] = \{ \}; \\
\text{do } \{ \\
\quad \text{for (each instruction } i \text{ other than ENTRY) } \{ \\
\quad \quad \text{IN}[i] = \bigcup_{p \text{ a predecessor of } i} \text{OUT}[p]; \\
\quad \quad \text{OUT}[i] = \text{GEN}[i] \cup (\text{IN}[i] - \text{KILL}[i]); \\
\quad \} \\
\} \text{ while (changes to any OUT occur);} \\
\]
Complexity

• N instructions (N definitions at most)
 • Each IN/OUT set has at most N elements
 • Each set-union operation takes O(N) time
 • The for loop body
 • constant # of set operations per node
 • O(N) nodes ⇒ O(N^2) time for the loop
 • Each iteration of the repeat loop can only make the set larger
 • Each iteration modifies in the worst case only one set ⇒ O(N^3)
 • N iterations to reach the fixed point at most

• Worst case: O(N^4)
• Typical case: 2 to 3 iterations with good ordering & sparse sets
 • Between N and N^2

N=500
Worst case: 62,500,000,000
Optimized average case: 500 – 250,000
Optimization: basic blocks

\text{OUT}[ENTRY] = \{ \};

\text{for (each basic block } B \text{ other than } ENTRY \text{) } \text{OUT}[B] = \{ \};

\text{do } \{
\text{ for (each basic block } B \text{ other than } ENTRY \text{) } \{
\text{ \text{IN \[B\] } = \bigcup \text{ predecessor of } B \text{ } \text{OUT}[p];}
\text{ \text{OUT}[B] = GEN[B] \cup (\text{IN}[B] - KILL[B]);}
\text{ } \}
\text{ } \}
\text{while (changes to any OUT occur);}
Optimization: work list

\[
\text{OUT}[\text{ENTRY}] = \{ \};
\]

for (each basic block \(B\) other than \(\text{ENTRY}\)) \(\text{OUT}[B] = \{ \}\);

workList = all basic blocks

while (workList isn’t empty)

\(B = \text{pick and remove a block from workList}\)

\(\text{oldOUT} = \text{OUT}[B]\)

\(\text{IN}[B] = \bigcup_{\text{a predecessor of } B} \text{OUT}[p];\)

\(\text{OUT}[B] = \text{GEN}[B] \cup (\text{IN}[B] - \text{KILL}[B]);\)

if (oldOut != OUT[B]) workList = workList U \{\text{all successors of } B\}

\}