
Loop normalizations
Simone Campanoni
simone.campanoni@northwestern.edu

Outline

•Canonical form

• Loop-closed SSA form

•Other forms
2

Let’s look at a problem that loop normalizations will solve

3

Let’s say we want to add some code
to be executed just before jumping into a loop
- (Incorrect) Add code to a predecessor of the header

outside the loop
- (incorrect) Add code to all predecessors of the header 4

Code before a new iteration

Let’s say we want to add some code
to be executed just before every iteration
- (Incorrect) Add code to the successor of the header
 that is within the loop

5

We need to normalize loops
so CATs can expect a single pre-defined shape!

Code before a new iteration

6

First normalization: adding a pre-header

• Optimizations often require code to be executed
once before the loop
• Create a pre-header basic block for every loop

7

Common loop normalization

Pre-header

Body

Header

Header

Body

Pre-header

exit exit

8

Common loop normalization

Pre-header

Body

Header

Header

Body

Pre-header

exit

exit
9

Loop normalization in LLVM

• The loop-simplify pass normalize natural loops
• Output of loop-simplify:
• Pre-header: the only predecessor of the header
• Latch: node executed just before starting a new loop iteration
• Exit node: ensures it is dominated by the header

Header

Body

n1 n2 n3

exit

nX

10

Loop normalization in LLVM

• The loop-simplify pass normalize natural loops
• Output of loop-simplify:
• Pre-header: the only predecessor of the header
• Latch: node executed just before starting a new loop iteration
• Exit node: ensures it is dominated by the header

Pre-header

Body

n1 n2 n3

exit

nX
Header

11

Loop normalization in LLVM

• The loop-simplify pass normalize natural loops
• Output of loop-simplify:
• Pre-header: the only predecessor of the header
• Latch: single node executed just before starting a new loop iteration
• Exit node: ensures it is dominated by the header

Pre-header

Body

n1 n2 n3

exit

nX
Header

Latch
12

Loop normalization in LLVM

• The loop-simplify pass normalize natural loops
• Output of loop-simplify:
• Pre-header: the only predecessor of the header
• Latch: single node executed just before starting a new loop iteration
• Exit node: ensures it is dominated by the header

Pre-header

Body

n1 n2 n3

Exit node

nX

Header
Latch

exit 13

Loop normalization in LLVM

• Pre-header llvm::Loop:getLoopPreheader()
• Header llvm::Loop::getHeader()
• Latch llvm::Loop::getLoopLatch()
• Exit llvm::Loop::getExitBlocks()

Pre-header

Body
Exit node

Header
Latch

opt -loop-simplify bitcode.bc -o normalized.bc
Canonical loop

14

Outline

•Canonical form

• Loop-closed SSA form

•Other forms
15

Further normalizations in LLVM

• Loop representation can be further normalized:
• loop-simplify normalize the shape of the loop
• What about definitions in a loop?

• Problem: updating code in loop might require
to update code outside loops for keeping SSA
• Loop-closed SSA form: no var is used outside of the loop in that it is defined
• Keeping SSA form is expensive with loops
• lcssa insert phi instruction at loop boundaries

for variables defined in a loop body and used outside
• Isolation between optimization performed in and out the loop
• Faster keeping the SSA form

• Propagation of code changes outside the loop blocked by phi instructions

16

Loop pass example

while (){
 d = …
}
…
... = d op ...
... = d op ...
call f(d)

while (){
 d = …

...
if (...){

d = ...
}

}
…
... = d op ...
... = d op ...
call f(d)

A pass needs to add a conditional definition of d

17

Loop pass example

while (){
 d = …
}
…
... = d op ...
... = d op ...
call f(d)

while (){
 d = …

...
if (...){

d = ...
}

}
…
... = d op ...
... = d op ...
call f(d)

while (){
 d = …

...
if (...){

d2 = ...
}

}
…
... = d op ...
... = d op ...
call f(d)

while (){
 d = …

...
if (...){

d2 = ...
}
d3=phi(d,d2)

}
…
... = d op ...
... = d op ...
call f(d)

while (){
 d = …

...
if (...){

d2 = ...
}
d3=phi(d,d2)

}
…
... = d3 op ...
... = d3 op ...
call f(d3)

Changes to
code outside
our loop

This is not in SSA anymore: we must fix it
18

Further normalizations in LLVM

• Loop representation can be further normalized:
• loop-simplify normalize the shape of the loop
• What about definitions in a loop?

• Problem: updating code in loop might require
to update code outside loops for keeping SSA
• Keeping SSA form is expensive with loops
• Loop-closed SSA form: no var is used outside of the loop in that it is defined
• lcssa insert phi instruction at loop boundaries

for variables defined in a loop body and used outside
• Outside code only refers to these PHIs

• Isolation between optimization performed in and out the loop
• Faster keeping the SSA form

• Propagation of code changes outside the loop blocked by phi instructions
19

Loop pass example

while (){
 d = …
}
…
... = d op ...
... = d op ...
call f(d)

Lcssa
normalization

while (){
 d = …
}
d1 = phi(d…)
…
... = d1 op ...
... = d1 op ...
call f(d1)

while (){
 d = …

...
if (...){

d2 = ...
}
d3=phi(d,d2)

}
d1 = phi(d…)
…
... = d1 op ...
... = d1 op ...
call f(d1)

while (){
 d = …

...
if (...){

d2 = ...
}
d3=phi(d,d2)

}
d1 = phi(d3…)
…
... = d1 op ...
... = d1 op ...
call f(d1)

20

Loop-closed SSA form in LLVM

opt -lcssa bitcode.bc -o transformed.bc

llvm::Loop::isLCSSAForm(DT)

formLCSSA(…)

21

Outline

•Canonical form

• Loop-closed SSA form

•Other forms
22

Further normalizations in LLVM

• Scalar evolution normalization

•Whilifier

23

Body… = %2 …

… = %1 …

%1 = phi [%2, %Latch], [0, %PreHeader]

%2 = add %1, 1Latch

{0, +, 1} {1, +, 1}

Pre-header

Body

Exit node

Header

Latch

Pre-header

Body

Exit node

Header

Latch

Always have faith in your ability

Success will come your way eventually

Best of luck!

24

