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Outline

•Canonical form

• Loop-closed SSA form

•Other forms
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Let’s look at a problem that loop normalizations will solve
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Let’s say we want to add some code
to be executed just before jumping into a loop
- (Incorrect) Add code to a predecessor of the header 

outside the loop
- (incorrect) Add code to all predecessors of the header 4



Code before a new iteration

Let’s say we want to add some code
to be executed just before every iteration
- (Incorrect) Add code to the successor of the header 
                     that is within the loop
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We need to normalize loops
so CATs can expect a single pre-defined shape!

Code before a new iteration
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First normalization: adding a pre-header

• Optimizations often require code to be executed
once before the loop
• Create a pre-header basic block for every loop
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Common loop normalization

Pre-header

Body

Header

Header

Body

Pre-header

exit exit
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Common loop normalization

Pre-header

Body

Header

Header

Body

Pre-header

exit

exit
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Loop normalization in LLVM

• The loop-simplify pass normalize natural loops
• Output of loop-simplify:
• Pre-header: the only predecessor of the header
• Latch: node executed just before starting a new loop iteration
• Exit node: ensures it is dominated by the header

Header

Body

n1 n2 n3

exit

nX
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Loop normalization in LLVM

• The loop-simplify pass normalize natural loops
• Output of loop-simplify:
• Pre-header: the only predecessor of the header
• Latch: node executed just before starting a new loop iteration
• Exit node: ensures it is dominated by the header
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Loop normalization in LLVM

• The loop-simplify pass normalize natural loops
• Output of loop-simplify:
• Pre-header: the only predecessor of the header
• Latch: single node executed just before starting a new loop iteration
• Exit node: ensures it is dominated by the header

Pre-header

Body

n1 n2 n3
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nX
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Latch
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Loop normalization in LLVM

• The loop-simplify pass normalize natural loops
• Output of loop-simplify:
• Pre-header: the only predecessor of the header
• Latch: single node executed just before starting a new loop iteration
• Exit node: ensures it is dominated by the header

Pre-header

Body
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Loop normalization in LLVM

• Pre-header  llvm::Loop:getLoopPreheader()
• Header         llvm::Loop::getHeader()
• Latch             llvm::Loop::getLoopLatch()
• Exit                llvm::Loop::getExitBlocks()

Pre-header

Body
Exit node

Header
Latch

opt -loop-simplify bitcode.bc -o normalized.bc
Canonical loop
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Outline

•Canonical form

• Loop-closed SSA form

•Other forms
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Further normalizations in LLVM

• Loop representation can be further normalized:
• loop-simplify normalize the shape of the loop
• What about definitions in a loop?

• Problem: updating code in loop might require
to update code outside loops for keeping SSA
• Loop-closed SSA form: no var is used outside of the loop in that it is defined
• Keeping SSA form is expensive with loops
• lcssa insert phi instruction at loop boundaries

for variables defined in a loop body and used outside
• Isolation between optimization performed in and out the loop
• Faster keeping the SSA form

• Propagation of code changes outside the loop blocked by phi instructions
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Loop pass example

while (){
   d = …
}
…
... = d op ...
... = d op ...
call f(d)

while (){
   d = …

...
if (...){

d = ...
}

}
…
... = d op ...
... = d op ...
call f(d)

A pass needs to add a conditional definition of d

17



Loop pass example

while (){
   d = …
}
…
... = d op ...
... = d op ...
call f(d)

while (){
   d = …

...
if (...){

d = ...
}

}
…
... = d op ...
... = d op ...
call f(d)

while (){
   d = …

...
if (...){

d2 = ...
}

}
…
... = d op ...
... = d op ...
call f(d)

while (){
   d = …

...
if (...){

d2 = ...
}
d3=phi(d,d2)

}
…
... = d op ...
... = d op ...
call f(d)

while (){
   d = …

...
if (...){

d2 = ...
}
d3=phi(d,d2)

}
…
... = d3 op ...
... = d3 op ...
call f(d3)

Changes to 
code outside 
our loop

This is not in SSA anymore: we must fix it
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Further normalizations in LLVM

• Loop representation can be further normalized:
• loop-simplify normalize the shape of the loop
• What about definitions in a loop?

• Problem: updating code in loop might require
to update code outside loops for keeping SSA
• Keeping SSA form is expensive with loops
• Loop-closed SSA form: no var is used outside of the loop in that it is defined
• lcssa insert phi instruction at loop boundaries

for variables defined in a loop body and used outside
• Outside code only refers to these PHIs

• Isolation between optimization performed in and out the loop
• Faster keeping the SSA form

• Propagation of code changes outside the loop blocked by phi instructions
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Loop pass example

while (){
   d = …
}
…
... = d op ...
... = d op ...
call f(d)

Lcssa 
normalization

while (){
   d = …
}
d1 = phi(d…)
…
... = d1 op ...
... = d1 op ...
call f(d1)

while (){
   d = …

...
if (...){

d2 = ...
}
d3=phi(d,d2)

}
d1 = phi(d…)
…
... = d1 op ...
... = d1 op ...
call f(d1)

while (){
   d = …

...
if (...){

d2 = ...
}
d3=phi(d,d2)

}
d1 = phi(d3…)
…
... = d1 op ...
... = d1 op ...
call f(d1)
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Loop-closed SSA form in LLVM

opt -lcssa bitcode.bc -o transformed.bc

llvm::Loop::isLCSSAForm(DT)

formLCSSA(…)
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Outline

•Canonical form

• Loop-closed SSA form

•Other forms
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Further normalizations in LLVM

• Scalar evolution normalization

•Whilifier
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Body… = %2 …

… = %1 …

%1 = phi [%2, %Latch], [0, %PreHeader]

%2 = add %1, 1Latch

{0, +, 1} {1, +, 1}

Pre-header

Body

Exit node

Header

Latch

Pre-header

Body

Exit node

Header

Latch



Always have faith in your ability

Success will come your way eventually

Best of luck!
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