
Loop
transformations

Simone Campanoni
simone.campanoni@northwestern.edu

Outline

• Simple loop transformations

• Loop invariants based transformations

• Induction variables based transformations

•Complex loop transformations
2

Simple loop transformations

Simple loop transformations are used to
• Increase performance/energy savings

and/or

• Unblock other transformations
• E.g., increase the number of constant propagations
• E.g., Extract thread-level parallelism from sequential code
• E.g., Generate vector instructions

3

Loop unrolling

%a=cmp %a, 4
branch %a

Body

%a=add %a, 1

for (a=0; a < 4; a++){
 … // Body
}

%a = 0

Unrolling
factor: 2

%a=cmp %a, 4
branch %a

Body

%a=add %a, 2

%a = 0

Body

4

Loop unrolling in LLVM: requirements

• The loop you want to unroll must be in LCSSA form

5

Loop unrolling in LLVM: dependences

6

Loop unrolling in LLVM: headers

7

Loop unrolling in LLVM

Get the results of the required analyses

8

Fetch a loop

9

Loop unrolling in LLVM: API

Loop to unroll
Unrolling
options

Unrolling factor

It is 0, or the number of iterations per invocation

10

Loop unrolling in LLVM: result

11

Loop unrolling in LLVM: example

Body

Body

Body

12

Loop unrolling in LLVM: Demo

• Detail: Loops/README
• Pass: Loops/llvm/7
• C program: Loops/code/12
• C program: Loops/code/0

13

Loop unrolling in LLVM: example 2 i=0
If (argc > 0)

i++
Body
if (i == argc)

i++
Body
if (i == argc)

return r

i=0
If (argc > 0)

i++
Body
if (i == argc)

return r

There is still the same amount of loop overhead!
14

Loop unrolling in LLVM: the runtime checks

true

15

Loop unrolling in LLVM: example 3 i_rest = i & 3
i_mul = i – i_rest
If (i_mul > 0)

auto n=0
for (;n<i_mul; n+=4){
 Body
 Body
 Body
 Body
}

for(auto m=0;m<i_rest;m++){
 Body
}

return r

If (argc > 0)

i=0
If (argc > 0)

i++
Body
if (i == argc)

return r

Runtime
checks

16

Loop unrolling in LLVM: API

Normalize the generated loop to LCSSA
17

Loop peeling

%a=cmp %a, 10
branch %a

Body

%a=add %a, 1

%a=cmp %a, %10
branch %a

%a=add %a, 1

Body

Peeling factor: 1

Body
%a = add %a, 1

18

Loop peeling in LLVM

• API

• No trip count
• No flags
• (almost) always possible
• To check if you can peel, invoke the following API: bool canPeel(Loop *loop)

19

Loop peeling in LLVM: example

20

Fetching analyses outputs
from a module pass
• From a function pass

• From a module pass

21

Outline

• Simple loop transformations

• Loop invariants based transformations

• Induction variables based transformations

•Complex loop transformations
22

Optimizations in small, hot loops

• Most programs: 90% of time is spent in few, small, hot loops
while (){

statement 1
statement 2
statement 3

}
• Deleting a single statement from a small, hot loop

might have a big impact
(100 seconds -> 70 seconds)

23

Loop example
1: if (N>5){ k = 1; z = 4;}
2: else {k = 2; z = 3;}

do {
3: a = 1;
4: y = x + N;
5: b = k + z;
6: c = a * 3;
7: if (N < 0){
8: m = 5;
9: break;

}
10: x++;
11:} while (x < N);

• Observation: each statement in that loop will
contribute to the program execution time

• Idea: what about moving statements
from inside a loop to outside it?

• Which statements can be moved
outside our loop?

• How to identify them automatically?
(code analysis)

• How to move them?
(code transformation)

24

Hoisting code

• In order to “hoist” a loop-invariant computation out of a loop,
we need a place to put it
• We could copy it to all immediate predecessors of the loop header...

• ...But we can avoid code duplication (and bugs)
by taking advantage of loop normalization
that guarantees the existence of the pre-header

Header

n1 n2 n3
for (auto pBB : predecessors(H)){
 p = pBB->getTerminator();
 inv->moveBefore(p);
}

Is it correct?

25

Hoisting code

• In order to “hoist” a loop-invariant computation out of a loop,
we need a place to put it
• We could copy it to all immediate predecessors of the loop header...

• ...but we can avoid code duplication (and bugs)
by taking advantage of loop normalization
that guarantees the existence of the pre-header

pBB = loop->getLoopPreheader();
p = pBB->getTerminator();
inv->moveBefore(p);

Pre-header

Body
Exit node

Header
Latch

26

Can we hoist
all invariant instructions of a loop L
in the pre-header of L?

for (inv : invariants(loop)){
 pBB = loop->getLoopPreheader();
 p = pBB->getTerminator();
 inv->moveBefore(p);
}

Pre-header

Body
Exit node

Header
Latch

27

Hoisting conditions
• For a loop-invariant definition
(d) t = x op y
• Assuming no SSA, we can hoist d into the loop’s pre-header if

1. d dominates all loop exits at which t is live-out, and
2. there is only one definition of t in the loop, and
3. t is not live-out of the pre-header

??

28

t=0

i=i+1
t=a*b
M[i] = t
i < t

x = t

t=0
t = a*b

i=i+1
M[i] = t
i < t

x = t

Loop invariant code motion

Hoisting conditions
• For a loop-invariant definition
(d) t = x op y
• Assuming no SSA, we can hoist d into the loop’s pre-header if

1. d dominates all loop exits at which t is live-out, and
2. there is only one definition of t in the loop, and
3. t is not live-out of the pre-header

29

t=0

i >= t

x = t

Loop invariant code motion

i=i+1

t=a*b

M[i] = t
1,3

Hoisting conditions
• For a loop-invariant definition
(d) t = x op y
• Assuming no SSA, we can hoist d into the loop’s pre-header if

1. d dominates all loop exits at which t is live-out, and
2. there is only one definition of t in the loop, and
3. t is not live-out of the pre-header

30

Loop invariant code motion

t=0

i=i+1
t=a*b
M[i] = t
t = 0
M[j] = t
i < t

x = t

2

Hoisting conditions
• For a loop-invariant definition
(d) t = x op y
• Assuming SSA, we can hoist d into the loop’s pre-header if

1. d dominates all loop exits at which t is live-out, and
2. there is only one definition of t in the loop, and
3. t is not live-out of the pre-header

Loop invariant code motion

31

Hoisting conditions
• For a loop-invariant definition
(d) t = x op y
• Assuming SSA, we can hoist d into the loop’s pre-header if

t is not live-out of the pre-header

Loop invariant code motion

32

Hoisting conditions
• For a loop-invariant definition
(d) t = load X
• Assuming SSA, we can hoist d into the loop’s pre-header if

Loop invariant code motion

33

??

Outline

• Simple loop transformations

• Loop invariants based transformations

• Induction variables based transformations

•Complex loop transformations
34

Loop example
1: if (N>5){ k = 1; z = 4;}
2: else {k = 2; z = 3;}

do {
3: a = 1;
4: y = x + N;
5: b = k + z;
6: c = a * 3;
7: if (N < 0){
8: m = 5;
9: break;

}
10: x++;
11:} while (x < N);

Do we have to execute 10 for every iteration?

Do we have to execute 4 for every iteration?

Assuming a,b,c,m are used after our code

35

Loop example
1: if (N>5){ k = 1; z = 4;}
2: else {k = 2; z = 3;}

do {
3: a = 1;
4: y = x + N;
5: b = k + z;
6: c = a * 3;
7: if (N < 0){
8: m = 5;
9: break;

}
10: x++;
11:} while (x < N);

Do we have to execute 10 for every iteration?

Do we have to execute 4 for every iteration?

y=N

Compute manually values of x and y
for every iteration
What do you see?

36

Loop example
1: if (N>5){ k = 1; z = 4;}
2: else {k = 2; z = 3;}

do {
3: a = 1;
4:
5: b = k + z;
6: c = a * 3;
7: if (N < 0){
8: m = 5;
9: break;

}
10: x++;y++;
11:} while (x < N);

Do we have to execute 10 for every iteration?

Do we have to execute 4 for every iteration?

y=N

37

Loop example
1: if (N>5){ k = 1; z = 4;}
2: else {k = 2; z = 3;}

do {
3: a = 1;
4:
5: b = k + z;
6: c = a * 3;
7: if (N < 0){
8: m = 5;
9: break;

}
10: x++;y++;
11:} while (y < (2*N));

Do we have to execute 10 for every iteration?

Do we have to execute 4 for every iteration?

y=N

38

Loop example
1: if (N>5){ k = 1; z = 4;}
2: else {k = 2; z = 3;}

do {
3: a = 1;
4:
5: b = k + z;
6: c = a * 3;
7: if (N < 0){
8: m = 5;
9: break;

}
10: y++;
11:} while (y < (2*N));

Do we have to execute 10 for every iteration?

Do we have to execute 4 for every iteration?

y=N

39

Loop example
1: if (N>5){ k = 1; z = 4;}
2: else {k = 2; z = 3;}

do {
3: a = 1;
4:
5: b = k + z;
6: c = a * 3;
7: if (N < 0){
8: m = 5;
9: break;

}
10: y++;
11:} while (y < tmp);

Do we have to execute 10 for every iteration?

Do we have to execute 4 for every iteration?

y=N;tmp=2*N;

x, y are induction variables

40

Is the code transformation worth it?
1: if (N>5){ k = 1; z = 4;}
2: else {k = 2; z = 3;}
A :y=N;tmp=2*N;

do {
3: a = 1;

5: b = k + z;
6: c = a * 3;
7: if (N < 0){
8: m = 5;
9: break;

}
10: y++;
11:} while (y < tmp);

1: if (N>5){ k = 1; z = 4;}
2: else {k = 2; z = 3;}

 do {
3: a = 1;
4: y = x + N;
5: b = k + z;
 6: c = a * 3;
 7: if (N < 0){
 8: m = 5;
 9: break;
 }
10: x++;
11:} while (x < N);

Induction variable
elimination

41

… and after Loop Invariant Code Motion ...
1: if (N>5){ k = 1; z = 4;}
2: else {k = 2; z = 3;}
A :y=N;tmp=2*N;
3 :a=1;
5 :b=k+z;
6: c=a*3;

do{
7: if (N < 0){
8: m = 5;
9: break;

}
10: y++;
11:} while (y < tmp);

1: if (N>5){ k = 1; z = 4;}
2: else {k = 2; z = 3;}

 do {
3: a = 1;
4: y = x + N;
5: b = k + z;
 6: c = a * 3;
 7: if (N < 0){
 8: m = 5;
 9: break;
 }
10: x++;
11:} while (x < N);

42

… and with a better Loop Invariant Code Motion ...
1: if (N>5){ k = 1; z = 4;}
2: else {k = 2; z = 3;}
A :y=N;tmp=2*N;
3 :a=1;
5 :b=k+z;
6: c=a*3;
7: if (N < 0){
8: m=5;

}

do{
10: y++;
11:} while (y < tmp);

1: if (N>5){ k = 1; z = 4;}
2: else {k = 2; z = 3;}

 do {
3: a = 1;
4: y = x + N;
5: b = k + z;
 6: c = a * 3;
 7: if (N < 0){
 8: m = 5;
 9: break;
 }
10: x++;
11:} while (x < N);

43

… and after dead code elimination ...
1: if (N>5){ k = 1; z = 4;}
2: else {k = 2; z = 3;}

3 :a=1;
5 :b=k+z;
6: c=a*3;
7: if (N < 0){
8: m=5;

}

1: if (N>5){ k = 1; z = 4;}
2: else {k = 2; z = 3;}

 do {
3: a = 1;
4: y = x + N;
5: b = k + z;
 6: c = a * 3;
 7: if (N < 0){
 8: m = 5;
 9: break;
 }
10: x++;
11:} while (x < N);

Assuming a,b,c,m are used after our code

44

Induction variable elimination

• Suppose we have a loop variable
• i initially set to i0; each iteration i = i + 1

• and a variable that linearly depends on it
• x = i * c1 + c2

•We can
• Initialize x = io * c1 + c2

• Increment x by c1 each iteration

Loop invariants

45

Is it faster?

On some hardware, adds are faster than multiplies
• Strength reduction

1: i = io 2: do {
3: i = i + 1;

...
A: x = i* c1 + c2
B:} while (i < maxI);

1: i = io N1:x = io * c1 + c2
2: do {

3: i = i + 1;
...

A: x = x + c1
B:} while (i < maxI);

46

Induction variable elimination: step 1

①Iterate over IVs
k = j * c1 + c2

• where the IV j =(i, a, b), and
• this is the only def of k in the loop, and
• there is no def of i between the def of j and the def of k

②Record as k = (i, a*c1, b*c1+c2)

i = …
…
j = i …
…
k = j …

Run induction variable identification

47

Induction variable elimination: step 2

For an induction variable k = (i, c1, c2)
① Initialize k = i * c1 + c2 in the pre-header

② Replace k’s def in the loop by k = k + c1
• Make sure to do this after i’s definition

48

Outline

• Simple loop transformations

• Loop invariants based transformations

• Induction variables based transformations

•Complex loop transformations
49

Loop transformations

• Restructure a loop to expose more optimization opportunities
and/or transform the “loop overhead”
• Loop unrolling, loop peeling, …

• Reorganize a loop to improve memory utilization
• Cache blocking, skewing, loop reversal

• Distribute a loop over cores/processors
• DOACROSS, DOALL, DSWP, HELIX

50

…
varX = array[5];
...

• How many clock cycles will it take?

51

CPU
registers

Cache

DRAM

Disk

8 B

64 B

4-8 KB

~1ns

~4 ns

~60 ns

~8 ms

(assuming 1-level
 of cache
 as simplification)

Loop transformations
for memory optimizations

Goal: improve cache performance
• Temporal locality

A resource that has just been referenced
will more likely be referenced again in the near future

• Spatial locality
The likelihood of referencing a resource is higher
if a resource near it was just referenced

• Ideally, a compiler generates code
with high temporal and spatial locality
for the target architecture
• What to minimize: bad replacement decisions

52

What a compiler can do

• Time:
• When is an object accessed?

• Space:
• Where does an object exist in the address space?
• What is the data layout of an object in memory?

• These are the two “knobs” a compiler can manipulate

53

First understand cache behavior ...

•When do cache misses occur?
• Use locality analysis

• Can we change the visitation order
to produce better behavior?
• Evaluate costs

• Does the new visitation order still produce correct results?
• Use dependence analysis

54

… and then rely on loop transformations

• loop interchange
• cache blocking
• loop fusion
• loop reversal
• ...

55

Code example

double A[N][N], B[N][N];
…
for i = 0 to N-1{

for j = 0 to N-1{
... = A[i][j] ...

}
}

Iteration space for A

56

How can we represent the different memory accesses of
between all loop iterations?

A[0][0]
A[0][1]
…
A[1][0]
A[1][1]
…

Code example

double A[N][N], B[N][N];
…
for i = 0 to N-1{

for j = 0 to N-1{
... = A[i][j] ...

}
}

Iteration space for A

57

i

j

Memory access performed at the iteration i=0 and j=0

Code example

double A[N][N], B[N][N];
…
for i = 0 to N-1{

for j = 0 to N-1{
... = A[i][j] ...

}
}

Iteration space for A

58

i

j

Memory access performed at the iteration i=0 and j=1

Code example

double A[N][N], B[N][N];
…
for i = 0 to N-1{

for j = 0 to N-1{
... = A[i][j] ...

}
}

Iteration space for A

59

i

j

Code example

double A[N][N], B[N][N];
…
for i = 0 to N-1{

for j = 0 to N-1{
... = A[i][j] ...

}
}

Iteration space for A

60

i

j

for i = 0 to N-1
for j = 0 to N-1

… = A[j][i] …

Assumptions: N is large; A is row-major; 8 elements per cache line

61

i

j

Cache hit
(low #cycles)
Cache miss
(high #cycles)

for i = 0 to N-1
for j = 0 to N-1

… = A[j][i] …

Assumptions: N is large; A is row-major; 8 elements per cache line

62

i

j

Cache hit
(low #cycles)
Cache miss
(high #cycles)

For j = 0 to N-1
 for i = 0 to N-1
 … = A[j][i] …

i

j

for i = 0 to N-1
for j = 0 to N-1

… = A[j][i] …

Assumptions: N is large; A is row-major; 8 elements per cache line

63

i

j

Cache hit
(low #cycles)
Cache miss
(high #cycles)

For j = 0 to N-1
 for i = 0 to N-1
 … = A[j][i] …

i

j

Loop interchange

A[][] in C? Java?

Java (similar in C)

To create a matrix:
double [][] A = new double[3][3];

A is an array of arrays
A is not a 2 dimensional array!

64

Java (similar in C)

To create a matrix:
double [][] A = new double[3][];
A[0] = new double[3];
A[1] = new double[3];
A[2] = new double[3];

65

Java (similar in C)

To create a matrix:
double [][] A = new double[3][];
A[0] = new double[10];
A[1] = new double[5];
A[2] = new double[42];

A is a jagged array

66

C#: [][] vs. [,]

double [][] A = new double[3][];
A[0] = new double[3];
A[1] = new double[3];
A[2] = new double[3];

double [,] A = new double[3,3];

The compiler can easily choose between
raw-major vs. column-major

67

68

for i = 0 to N-1
for j = 0 to N-1

f(A[i], A[j])

69

i

j

Cache hit
(low #cycles)
Cache miss
(high #cycles)

Assumptions: N is large; 8 elements per cache line

for i = 0 to N-1
for j = 0 to N-1

f(A[i], A[j])

70

i

j

Cache hit
(low #cycles)
Cache miss
(high #cycles)

Assumptions: N is large; 8 elements per cache line

for i = 0 to N-1
for j = 0 to N-1

f(A[i], A[j])

71

i

j

Cache hit
(low #cycles)
Cache miss
(high #cycles)

Assumptions: N is large; 8 elements per cache line

for JJ = 0 to N-1 by B
 for i = 0 to N-1
 for j = JJ to min(N-1,JJ+B-1)

f(A[i], A[j])

i

j

for i = 0 to N-1
for j = 0 to N-1

f(A[i], A[j])

72

i

j

Cache hit
(low #cycles)
Cache miss
(high #cycles)

Assumptions: N is large; 8 elements per cache line

for JJ = 0 to N-1 by B
 for i = 0 to N-1
 for j = JJ to min(N-1,JJ+B-1)

f(A[i], A[j])

i

j

Loop fusion

for i = 0 to N-1
 C[i] = A[i]*2 + B[i]

for i = 0 to N-1
 D[i] = A[i] * 2

for i = 0 to N-1
 C[i] = A[i] * 2 + B[i]
 D[i] = A[i] * 2

• Reduce loop overhead
• Improve locality by combining loops that reference the same array
• Increase the granularity of work done in a loop

73

Loop transformations

• They manipulate the order of memory accesses

• They can change both temporal and spatial localities

• They can enable or disable parallelism

74

Always have faith in your ability

Success will come your way eventually

Best of luck!

75

