
Loops
Simone Campanoni
simone.campanoni@northwestern.edu

Outline
• Loops

• Identify loops

• Induction variables

2

Impact of optimized code to program

Code transformation

10 seconds

1 second

How much did we optimize the overall program?
• Coverage of optimized code
• 10% coverage: Speedup=~1.10x (100->91 seconds)
• 20% coverage: Speedup=~1.22x (100->82 seconds)
• 90% coverage: Speedup=~5.26x (100->19 seconds)Program

binary
3

90% of time is spent in 10% of code

Hot code
Loop

Cold code

Identify hot code to succeed!!! 4

Loops …
... but where are they?
... How can we find them?

5

Loops in source code

i=0;
while (i < 10){

…
i++;

}

for (i=0; i < 10; i++){
 …
}

i=0;
do {
 …

i++;
} while (i < 10);

S={0,1,…,10}
for (i : S){
 …
}

Is there a LLVM IR instruction “for”?
There is no IR instruction for “loop”

6

• Target optimization:
we need to identify loops

• There is no IR instruction for “loop”
• How to identify an IR loop? 7

Loops in IR

• Loop identification control flow analysis:
• Input: Control-Flow-Graph
• Output: loops in CFG
• Not sensitive to input syntax: a uniform treatment for all loops

• Define a loop in graph terms
• Intuitive properties of a loop
• Single entry point
• Edges must form at least a cycle in CFG

• How to check these properties automatically?

8

Outline
• Loops

• Identify loops

• Induction variables

9

Natural loops in CFG

• Header: node that dominates all other nodes in a loop
Single entry point of a loop

• Back edge: edge (tail -> head) whose head dominates its tail

• Natural loop of a back edge:
the smallest set of nodes that includes
the head and tail of that back edge,
and has no predecessors outside the set,
except for the predecessors of the header.

10

Identify natural loops

① Find the dominator relations in a flow graph

② Identify the back edges

③ Find the natural loop associated with the back edge

11

Immediate dominators

Definition: the immediate dominator of a node n
is the unique node that strictly dominates n (i.e., it isn’t n)
but does not strictly dominate another node that strictly dominates n

1

2

3

CFG Immediate dominators

1

2 3

Dominator tree

12

Identify natural loops

① Find the dominator relations in a flow graph

② Identify the back edges

③ Find the natural loop associated with the back edge

13

Finding back-edges

Definition:
a back-edge is an arc (tail -> head) whose head dominates its tail

(A) Depth-first spanning tree

14

Spanning tree of a graph

Definition:
A tree T is a spanning tree of a graph G if
T is a subgraph of G that contains all the vertices of G.

1

2

3

4
15

Depth-first spanning tree of a graph
Idea:
Make a path as long as possible,
and then go back (backtrack) to add branches also as long as possible.

Algorithm
s = new Stack(); s.add(G.entry); mark(G.entry);
While (!s.empty()){
1: v = s.pop();
2: if (v’ = adjacentNotMarked(v, G)){
3: mark(v’) ; DFST.add((v, v’));
4: s.push(v’);
} }

1

2

3

4
16

Finding back-edges

Definition:
a back-edge is an arc (tail -> head) whose head dominates its tail

(A) Depth-first spanning tree
• Compute retreating edges in CFG:
• Advancing edges: from ancestor to proper descendant
• Retreating edges: from descendant to ancestor

(B) For each retreating edge t->h, check if h dominates t
• If h dominates t, then t->h is a back-edge

1

2

3

4

17

Identify natural loops

① Find the dominator relations in a flow graph

② Identify the back edges

③ Find the natural loop associated with the back edge

18

Finding natural loops

Definition: the natural loop of a back edge is the smallest set of nodes
that includes the head and tail of the back edge,
and has no predecessors outside the set,
except for the predecessors of the header

Let t->h be the back-edge
A. Delete h from the flow graph
B. Find those nodes that can reach t

from the outgoing edges of h
(those nodes plus h form the natural loop of t->h)

1

2

3

4

2 3

1

4

19

Natural loop example

For (int i=0; i < 10; i++){
A();
while (j < 5){

j = B(j);
}

}

1: i < 10

Exit

2: A()

3: j < 5

0: i=0

4: j = B(j)

5: i++

20

Identify inner loops

• If two loops do not have the same header
• They are either disjoint, or
• One is entirely contained (nested within) the other
• Outer loop, inner loop
• Loop nesting relation

•What about if two loops share the same header?
while (a: i < 10){

b: if (i == 5) continue;
c: …

}

Graph/DAG/tree? Why?

21

Loop nesting tree

• Loop-nest tree: each node represents the blocks of a loop,
and parent nodes are enclosing loops.
• The leaves of the tree are the inner-most loops.

1

2

3

4

2,3

1,2,3,4

How to compute the loop-nest tree?

22

Loop nesting forest

void myFunction (){
1: while (…){
2: while (…){ … }

}
…

3: for (…){
4: do {
5: while(…) {…}

} while (…)
}

}

2

1

4

3

5

Outermost
loops

Innermost
loops

23

Defining loops in graphic-theoretic terms

Is it good? Bad? Implications?

L1: …
if (X < 10) goto L2;
goto L1;

L2: ...

if (…) goto L1;
…
do {
 …
L1: …

} while (X < 10);

The good The bad 24

Loops in LLVM

Function Natural loops Merged natural loops
(loops with the same header
 are merged)

25

Identify loops in LLVM

• Rely on other passes to identify loops

• Fetch the result of the LoopInfoWrapperPass analysis

• Iterate over outermost loops

void myFunction (){
1: while (…){
2: while (…){ … }
 }
 …
3: for (…){
4: do {
5: while(…) {…}
 } while (…)
 }
}

26

Loops in LLVM: sub-loops

• Iterate over sub-loops of a loop void myFunction (){
1: while (…){
2: while (…){ … }
 }
 …
3: for (…){
4: do {
5: while(…) {…}
 } while (…)
 }
}

27

Outline
• Loops

• Identify loops

• Induction variables

28

Code example

int myF (int k){
int i;
int s = 0;
for (i=0; i < 100; i++){

s = s + k;
}
return s;

}

O0

Is adding “k” to “s” for every loop iteration really needed?
29

Code example

int myF (int k){
int i;
int s = 0;
for (i=0; i < 100; i++){

s = s + k;
}
return s;

}

Value of s
0
k
2k
3k
4k
…
100k

30

Code example

int myF (int k){
int i;
int s = 0;
s = k * 100;

return s;
}

31

Code example

int myF (int k){
int i;
int s = 0;
for (i=0; i < 100; i++){

s = s + k;
}
return s;

}

O1

int myF (int k){
 int i;
 int s = 0;
 s = k * 100;

 return s;
}

32

Code example 2

int myF (int k){
int i;
int s = 5;
for (i=0; i < 100; i++){

s = s + k;
}
return s;

}

O0

33

Code example 2

int myF (int k){
int i;
int s = 5;
for (i=0; i < 100; i++){

s = s + k;
}
return s;

}

Value of k
5
5 + k
5 + 2k
5 + 3k
5 + 4k
…
5 + 100k

34

Code example 2

int myF (int k){
int i;
int s ;
s = k * 100;
s = s + 5;

return s;
}

35

Code example 2

int myF (int k){
int i;
int s = 5;
for (i=0; i < 100; i++){

s = s + k;
}
return s;

}

O1

int myF (int k){
 int i;
 int s ;
 s = k * 100;
 s = s + 5;

 return s;
}

36

Code example 3

int myF (int k, int iters){
int i;
int s = 5;
for (i=0; i < iters; i++){

s = s + k;
}
return s;

}

O0

37

Code example 3

int myF (int k, int iters){
int i;
int s ;
s = k * iters;
s = s + 5;

return s;
}

38

Code example 3

int myF (int k, int iters){
int i;
int s = 5;
for (i=0; i < iters; i++){

s = s + k;
}
return s;

}

O1

int myF (…){
 int i;
 int s ;
 s = k * iters;
 s = s + 5;

 return s;
}

39

Important information about
variable evolution
int myF (int k){

int i;
int s = 0;
for (i=0; i < 100; i++){

s = s + k;
}
return s;

}

int myF (int k){
 int i;
 int s = 5;
 for (i=0; i < 100; i++){
 s = s + k;
 }
 return s;
}

int myF (int k, int iters){
 int i;
 int s = 5;
 for (i=0; i < iters; i++){
 s = s + k;
 }
 return s;
}

40

• It is important to understand the evolution of variables

• Important transformations are possible
only when variable evolutions are analyzed

• Variables with a specific type of evolution (described next)
are called “induction variables”
• “s” was an induction variable in all prior examples

41

Induction variable observation

• Observation:
Some variables change by a constant amount on each loop iteration
• x initialized at 0; increments by 1
• y initialized at N; increments by 2
• These are all induction variables

• Definition of induction variable (IV):
An IV is a variable that
- increases or decreases by a fixed amount on every iteration of a loop or
- it is a linear function of another IV

• How can we identify IVs automatically?

x = 0 ; y = N;
While (…){
 x++;
 y = y + 2;
}

42

Identify induction variables

Idea
We find induction variables incrementally.
First: we identify the basic cases.

Second: we identify the complex cases.

Set of IVs identified

Set of IVs identified
Iterate the analysis until
we cannot add new IVs

43

Induction variables

• Basic induction variables
• i = i op c
• c is loop invariant

• a.k.a. independent induction variable

• Derived induction variables

What is a loop-invariant?

44

Loop-invariant computations

• Let d be the following definition
(d) t = x

• d is a loop-invariant of a loop L if
(assuming x does not escape)
• x is constant or
• All reaching definitions of x are outside the loop, or
• Only one definition of x reaches d,

and that definition is loop-invariant

45

Loop-invariant computations

• Let d be the following definition
(d) t = x op y

• d is a loop-invariant of a loop L if
(assuming x, y do not escape)
• x and y are constants or
• All reaching definitions of x and y are outside the loop, or
• Only one definition of x (or y) reaches d,

and that definition is loop-invariant

46

Loop-invariant computations

• Let d be the following definition
(d) t = load(x)

• d is a loop-invariant of a loop L if
(assuming x does not escape)
• The memory location pointed by x, mem[x], is constant or
• All reaching definitions of mem[x] are outside the loop, or
• Only one definition of mem[x] reaches d,

and that definition is loop-invariant

47

Loop example
1: if (N>5){ k = 1; z = 4;}
2: else {k = 2; z = 3;}

do {
3: a = 1;
4: y = x + N;
5: b = k + z;
6: c = a * 3;
7: if (N < 0){
8: m = 5;
9: break;

}
10: x++;
11:} while (x < N);

d is a loop-invariant of a loop L if
x and y are constants or
all reaching definitions of x and y are outside the loop, or
only one definition reaches x (or y),
and that definition is loop-invariant

??

48

Loop-invariant computations in LLVM

49

Loop-invariant computations in LLVM

50

Loop-invariant computations in LLVM

51

Induction variables

• Basic induction variables
• i = i op c
• c is loop invariant
• this definition is executed exactly once per iteration
• a.k.a. independent induction variable

• Derived induction variables
• j = i * c1 + c2
• c1 and c2 are loop invariants
• this definition is executed exactly once per iteration
• i is an IV
• a.k.a. dependent induction variable

52

Identify induction variables: step 1

Find the basic IVs
① Scan loop body for defs of the form

x = x + c
where c is loop-invariant and
this definition is executed exactly once per iteration

② Record these basic IVs as
x = (x, 1, c)
this represents the IV: x = x * 1 + c

How can we do?
Can we exploit SSA?

53

Identify induction variables: step 2

Find derived IVs
① Scan for derived IVs of the form

k = i * c1 + c2
where i is an IV and
this is the only definition of k in the loop and
this definition is executed exactly once per iteration

② Record as k = (i, c1, c2)
We say k is in the family of i

54

Code example

int myF1 (int start, int end){

int i = start;
while (i < end){

j = i * 8 + 4;

i++;

}

return j;
}

int myF2 (int start, int end){
 int i = start;
 while (i < end){
 j = i * 8;
 while (j > 0){
 k = j * 42 + i;
 j--;
 }
 i++;
 }
 return j;
}

(i, 1, 1)

(i, 8, 4)

(i, 1, 1)

(i, 8, 0)

(j, 1, -1)

(j, 42, i)

55

Identified induction variables

i: basic j: basic

k: derived from i

z: derived from k

q: derived from i x: derived from j

A forest of induction variables
56

Induction variables in LLVM

• You have up to 1 IV per loop
• This is the IV that control the number of iterations of the loop

• An IV that starts from 0 and it increments by 1 is called canonical

• Potentially many IVs that do not control the #iterations
• They are called auxiliary IVs

int j=0;

for (int i=0; i < N; i++){

 j = j + 42;

}

57

Induction variables in LLVM

58

Induction variables in LLVM

59

Induction variables in LLVM

60

Identification of Induction variables in LLVM

• Based on the analysis called scalar-evolution:
• Scalar evolution:

change in the value of scalar variables over iterations of the loop
• It represents scalar expressions (e.g., x = y op z)
• It supports induction variables (e.g., x = x + 1)

• It lowers the burden of explicitly handling the composition of expressions

• LLVM implementation: ScalarEvolutionWrapperPass

61

Induction variable vs. scalar evolution

• Basic IV (BIV):
It increases or decreases by a fixed amount
on every iteration of a loop

• IV:
A BIV or a linear function of another IV

• Generalized IV (GIV):
It increases or decreases by a given amount
It can depend non-linearly on other BIVs/GIVs
It can have multiple updates

62

Chain of recurrences

It is a formalism to analyse expressions in BIV and GIV
expressing them as Recurrences

n! = 1 x 2 x … x n n! = (n-1)! x n

f(n) = 1 x 2 x … x n f(n) = f(n-1) * n

63

Basic recurrences

int f = k0;
for (int j=0; j < n ; j++){

… = f;
f = f + k1

}

Assuming k1 to be a loop invariant

f(i) =
k0 if i == 0

f(i-1) + k1 if i > 0

i-th value

Basic recurrence = {k0, +, k1}

Starts with k0, and it increments by k1 every time

So what is a chain of references?64

Chain of recurrences
int f = g = k0;
for (int j=0; j < n ; j++){

… = f;
g = g + f;
f = f + k1

}

f(i) =
k0 if i == 0

f(i-1) + k1 if i > 0
Basic recurrence = {k0, +, k1}

g(i) =
k0 if i == 0

g(i-1)+f(i-1) if i > 0
Chain of recurrence = {k0, +, {k0, +, k1}}

{k0, +, k0, +, k1}

This is an IV

This is not an IV

65

Chain of recurrences
for (int x=0; x < n ; x++){

p[x] = x*x*x + 2*x*x + 3*x + 7;
}

x 0 1 2 3 4 5

p[x] 7 13 29 61 115 197

D - 6 16 32 54 82

D2 - - 10 16 22 28

D3 - - - 6 6 6

Chain of recurrence for p[x] = {7, +, 6, +, 10, +, 6}

How can be compute it?

What is the value of p[x] when x is equal to 0? 7
What is the value of p[x] when x is equal to 1? 13
What is the value of p[x] when x is equal to 2? 29
What is the value of p[x] when x is equal to 3? 61
What is the value of p[x] when x is equal to 4? 115
What is the value of p[x] when x is equal to 5? 197

66

Chain of recurrences
for (int x=0; x < n ; x++){

p[x] = x*x*x + 2*x*x + 3*x + 7;
}

x 0 1 2 3 4 5

p[x] 7 13 29 61 115 197

D - 6 16 32 54 82

D2 - - 10 16 22 28

D3 - - - 6 6 6

Chain of recurrence for p[x] = {7, +, 6, +, 10, +, 6}

How can be compute it?

7 13 29 61 115 197

67

Chain of recurrences
for (int x=0; x < n ; x++){

p[x] = x*x*x + 2*x*x + 3*x + 7;
}

x 0 1 2 3 4 5

p[x] 7 13 29 61 115 197

D - 6 16 32 54 82

D2 - - 10 16 22 28

D3 - - - 6 6 6

What is the
increment
between iterations?

6 16 32 54 82

68

Chain of recurrences
for (int x=0; x < n ; x++){

p[x] = x*x*x + 2*x*x + 3*x + 7;
}

x 0 1 2 3 4 5

p[x] 7 13 29 61 115 197

D - 6 16 32 54 82

D2 - - 10 16 22 28

D3 - - - 6 6 6

69

Chain of recurrences
for (int x=0; x < n ; x++){

p[x] = x*x*x + 2*x*x + 3*x + 7;
}

x 0 1 2 3 4 5

p[x] 7 13 29 61 115 197

D - 6 16 32 54 82

D2 - - 10 16 22 28

D3 - - - 6 6 6

70

Chain of recurrences
for (int x=0; x < n ; x++){

p[x] = x*x*x + 2*x*x + 3*x + 7;
}

x 0 1 2 3 4 5

p[x] 7 13 29 61 115 197

D - 6 16 32 54 82

D2 - - 10 16 22 28

D3 - - - 6 6 6

Chain of recurrence = {7, +, 6, +, 10, +, 6}
71

Chain of recurrences

And if you run scalar evolution of LLVM:
Instruction %16 = add nsw i32 %15, 7 is SCEVAddRecExpr
 SCE: {7,+,6,+,10,+,6}<%7>

Chain of recurrence = {7, +, 6, +, 10, +, 6}

72

LLVM scalar evolution example

• SCEV: {A, B, C}<flag>*<%D>
• A: Initial; B: Operator; C: Operand; D: basic block where it get defined

73

LLVM scalar evolution example

• SCEV: {A, B, C}<flag>*<%D>
• A: Initial; B: Operator; C: Operand; D: basic block where it get defined

74

LLVM scalar evolution example: pass deps

75

76

Scalar evolution in LLVM

• Analysis used by
• Induction variable analysis
• Strength reduction
• Vectorization
• …

• SCEVs are modeled by the llvm::SCEV class
• There is a sub-class for each kind of SCEV (e.g., llvm::SCEVAddExpr)

• A SCEV is a tree of SCEVs
• Leafs:

• Constant : llvm:SCEVConstant (e.g., 1)
• Unknown: llvm:SCEVUnknown (e.g., %v = call rand())

• To iterate over a tree: llvm:SCEVVisitor
77

Always have faith in your ability

Success will come your way eventually

Best of luck!

78

