Loops

Simone Campanoni
simone.campanoni@northwestern.edu
Outline

• Loops
 • Identify loops
 • Induction variables
Impact of optimized code to program

How much did we optimize the overall program?
- Coverage of optimized code
 - 10% coverage: Speedup=~1.10x (100->91 seconds)
 - 20% coverage: Speedup=~1.22x (100->82 seconds)
 - 90% coverage: Speedup=~5.26x (100->19 seconds)
90% of time is spent in 10% of code

Cold code

Loop

Hot code

Identify hot code to succeed!!!
Loops ...
... but where are they?
... How can we find them?
Loops in source code

Is there a LLVM IR instruction “for”? There is no IR instruction for “loop”
Target optimization:
we need to identify loops
There is no IR instruction for “loop”
How to identify an IR loop?

```c
#include <stdio.h>

int main (){
    for (int i=0; i < 10; i++) {
        printf("Hello world\n");
    }
    return 0;
}
```
Loops in IR

• Loop identification control flow analysis:
 • Input: Control-Flow-Graph
 • Output: loops in CFG
 • Not sensitive to input syntax: a uniform treatment for all loops

• Define a loop in graph terms

• Intuitive properties of a loop
 • Single entry point
 • Edges must form at least a cycle in CFG

• How to check these properties automatically?
Outline

• Loops

• Identify loops

• Induction variables
Natural loops in CFG

• **Header**: node that dominates all other nodes in a loop
 Single entry point of a loop

• **Back edge**: edge (tail -> head) whose head dominates its tail

• **Natural loop** of a back edge: the smallest set of nodes that includes the head and tail of that back edge, and has no predecessors outside the set, except for the predecessors of the header.
Identify natural loops

① Find the dominator relations in a flow graph

② Identify the back edges

③ Find the natural loop associated with the back edge
Immediate dominators

Definition: the immediate dominator of a node \(n \) is the unique node that strictly dominates \(n \) (i.e., it isn’t \(n \)) but does not strictly dominate another node that strictly dominates \(n \).
Identify natural loops

① Find the dominator relations in a flow graph

② Identify the back edges

③ Find the natural loop associated with the back edge
Finding back-edges

Definition:
a back-edge is an arc (tail -> head) whose head dominates its tail

(A) Depth-first spanning tree
Spanning tree of a graph

Definition:
A tree T is a *spanning tree* of a graph G if T is a subgraph of G that contains all the vertices of G.
Depth-first spanning tree of a graph

Idea:
Make a path as long as possible, and then go back (backtrack) to add branches also as long as possible.

Algorithm

```
s = new Stack();  s.add(G.entry);  mark(G.entry);
While (!s.empty()){
  1:  v = s.pop();
  2:  if (v' = adjacentNotMarked(v, G)){
  3:     mark(v');  DFST.add((v, v'));
  4:     s.push(v');
}
```
Finding back-edges

Definition:
a back-edge is an arc (tail -> head) whose head dominates its tail

(A) Depth-first spanning tree
 • Compute retreating edges in CFG:
 • **Advancing edges**: from ancestor to proper descendant
 • **Retreating edges**: from descendant to ancestor

(B) For each retreating edge t->h, check if h dominates t
 • If h dominates t, then t->h is a back-edge
Identify natural loops

1. Find the dominator relations in a flow graph

2. Identify the back edges

3. Find the natural loop associated with the back edge
Finding natural loops

Definition: the natural loop of a back edge is the smallest set of nodes that includes the head and tail of the back edge, and has no predecessors outside the set, except for the predecessors of the header.

Let $t \rightarrow h$ be the back-edge.

A. Delete h from the flow graph.

B. Find those nodes that can reach t from the outgoing edges of h (those nodes plus h form the natural loop of $t \rightarrow h$).
Natural loop example

For (int i=0; i < 10; i++){
 A();
 while (j < 5){
 j = B(j);
 }
}

Identify inner loops

• If two loops do not have the same header
 • They are either disjoint, or
 • One is entirely contained (nested within) the other
 • Outer loop, inner loop
 • Loop nesting relation
 Graph/DAG/tree? Why?

• What about if two loops share the same header?

while (a: i < 10){
 b: if (i == 5) continue;
 c: ...
}

Loop nesting tree

- **Loop-nest tree**: each node represents the blocks of a loop, and parent nodes are enclosing loops.
- The leaves of the tree are the inner-most loops.

How to compute the loop-nest tree?
Loop nesting forest

```c
void myFunction (){
    1: while (...){
        2:    while (...){ ... }
        }
        ... 
    3: for (...){
    4:    do {
        5:        while(...) { ... }
        } while (...)
        }
    }
```
Defining loops in graphic-theoretic terms

Is it good? Bad? Implications?

L1: ...
 if (X < 10) goto L2;
 goto L1;
L2: ...

The good

if (...) goto L1;
...
do {
 ...
 L1: ...
} while (X < 10);

The bad
Loops in LLVM

Function \iff Natural loops \iff Merged natural loops (loops with the same header are merged)
Identify loops in LLVM

• Rely on other passes to identify loops

```cpp
#include "llvm/Analysis/LoopInfo.h"

void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addRequired<LoopInfoWrapperPass>();
    AU.setPreservesAll();
}
```

• Fetch the result of the LoopInfoWrapperPass analysis

```cpp
LoopInfo& LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
```

• Iterate over outermost loops

```cpp
for (auto i : LI) {
    Loop *loop = &*i;
    ...
}
```
Loops in LLVM: sub-loops

• Iterate over sub-loops of a loop

```cpp
vector<Loop *> subLoops = loop->getSubLoops();
for (auto j : subLoops) {
    Loop *subloop = &*j;
    ...
}
```

```cpp
void myFunction (){
1: while (...){
2:     while (...){ ... }
     }
     ...
3: for (...){
4:    do {
5:        while(...) {...
            } while (...)
            }
     }
}
```
Outline

• Loops

• Identify loops

• Induction variables
int myF (int k){
 int i;
 int s = 0;
 for (i=0; i < 100; i++){
 s = s + k;
 }
 return s;
}
Code example

```c
int myF (int k){
    int i;
    int s = 0;
    for (i=0; i < 100; i++){
        s = s + k;
    }
    return s;
}
```

Value of s
0
k
2k
3k
4k
...
100k
int myF (int k){
 int i;
 int s = 0;
 s = k * 100;

 return s;
}

int myF (int k) {
 int i;
 int s = 0;
 for (i=0; i < 100; i++) {
 s = s + k;
 }
 return s;
}
Code example 2

```c
int myF (int k){
    int i;
    int s = 5;
    for (i=0; i < 100; i++){
        s = s + k;
    }
    return s;
}
```
Code example 2

```c
int myF (int k){
    int i;
    int s = 5;
    for (i=0; i < 100; i++){
        s = s + k;
    }
    return s;
}
```

<table>
<thead>
<tr>
<th>Value of k</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
</tr>
<tr>
<td>5 + k</td>
</tr>
<tr>
<td>5 + 2k</td>
</tr>
<tr>
<td>5 + 3k</td>
</tr>
<tr>
<td>5 + 4k</td>
</tr>
<tr>
<td>...</td>
</tr>
<tr>
<td>5 + 100k</td>
</tr>
</tbody>
</table>
Code example 2

```c
int myF (int k){
    int i;
    int s;
    s = k * 100;
    s = s + 5;

    return s;
}
```
Code example 2

```c
int myF (int k){
    int i;
    int s = 5;
    for (i=0; i < 100; i++){
        s = s + k;
    }
    return s;
}
```

```c
int myF (int k){
    int i;
    int s;
    s = k * 100;
    s = s + 5;
    return s;
}
```
int myF (int k, int iters) {
 int i;
 int s = 5;
 for (i=0; i < iters; i++) {
 s = s + k;
 }
 return s;
}
int myF (int k, int iters){
 int i;
 int s ;
 s = k * iters;
 s = s + 5;

 return s;
}
Code example 3

```c
int myF (int k, int iters){
    int i;
    int s = 5;
    for (i=0; i < iters; i++){
        s = s + k;
    }
    return s;
}
```

```c
int myF (...){
    int i;
    int s;
    s = k * iters;
    s = s + 5;
    return s;
}
```
Important information about variable evolution

```c
int myF (int k){
    int i;
    int s = 0;
    for (i=0; i < 100; i++){
        s = s + k;
    }
    return s;
}
```

```c
int myF (int k){
    int i;
    int s = 5;
    for (i=0; i < 100; i++){
        s = s + k;
    }
    return s;
}
```

```c
int myF (int k, int iters){
    int i;
    int s = 5;
    for (i=0; i < iters; i++){
        s = s + k;
    }
    return s;
}
```
• It is important to understand the evolution of variables

• Important transformations are possible only when variable evolutions are analyzed

• Variables with a specific type of evolution (described next) are called "induction variables"
 • “s” was an induction variable in all prior examples
Induction variable observation

• **Observation:**
 Some variables change by a constant amount on each loop iteration
 - x initialized at 0; increments by 1
 - y initialized at N; increments by 2
 - These are all induction variables

• **Definition of induction variable (IV):**
 An IV is a variable that
 - increases or decreases by a fixed amount on every iteration of a loop or
 - it is a linear function of another IV

• How can we identify IVs automatically?

```plaintext
x = 0 ; y = N;
While (...){
  x++;  
  y = y + 2;
}  
```
Identify induction variables

Idea

We find induction variables incrementally. First: we identify the basic cases.

Second: we identify the complex cases.

Set of IVs identified

Set of IVs identified

Iterate the analysis until we cannot add new IVs
Induction variables

• Basic induction variables
 • $i = i \text{ op } c$
 • c is loop invariant
 - a.k.a. independent induction variable

 What is a loop-invariant?

• Derived induction variables
Loop-invariant computations

• Let \(d \) be the following definition

(\(d \)) \(t = x \)

• \(d \) is a loop-invariant of a loop \(L \) if
 (assuming \(x \) does not escape)
 • \(x \) is constant or
 • All reaching definitions of \(x \) are outside the loop, or
 • Only one definition of \(x \) reaches \(d \),
 and that definition is loop-invariant
Loop-invariant computations

• Let d be the following definition

$$(d) \ t = x \ op \ y$$

• d is a loop-invariant of a loop L if

(assuming x, y do not escape)

• x and y are constants or

• All reaching definitions of x and y are outside the loop, or

• Only one definition of x (or y) reaches d, and that definition is loop-invariant
Loop-invariant computations

• Let d be the following definition

 $(d) \ t = \text{load}(x)$

• d is a loop-invariant of a loop L if
 (assuming x does not escape)

 • The memory location pointed by x, $\text{mem}[x]$, is constant or
 • All reaching definitions of $\text{mem}[x]$ are outside the loop, or
 • Only one definition of $\text{mem}[x]$ reaches d, and that definition is loop-invariant
Loop example

1: if (N>5) { k = 1; z = 4; }
2: else { k = 2; z = 3; }
3: do {
4: a = 1;
5: y = x + N;
6: b = k + z;
7: c = a * 3;
8: if (N < 0) {
9: m = 5;
10: break;
11: }
12: x++;
13: } while (x < N);
Loop-invariant computations in LLVM

```c
for (auto bbi = loop->block_begin(); bbi != loop->block_end(); ++bbi){
  BasicBlock *bb = *bbi;
  for (auto& instr_iter : *bb){
    auto instr = &instr_iter;
  }
}
```
Loop-invariant computations in LLVM

```c
for (auto bbi = loop->block_begin(); bbi != loop->block_end(); ++bbi) {
    BasicBlock *bb = *bbi;
    for (auto& instr_iter : *bb) {
        auto instr = &instr_iter;
        if (loop->isLoopInvariant(instr)) {
            errs() << prefix << " ";
            instr->print(errs());
            errs() << "\n";
        }
    }
}
```
Loop-invariant computations in LLVM

```c
for (auto bbi = loop->block_begin(); bbi != loop->block_end(); ++bbi) {
  BasicBlock *bb = *bbi;
  for (auto & instr_iter : *bb) {
    auto instr = &instr_iter;
    if (loop->isLoopInvariant(instr)) {
      errs() << prefix << " ";
      instr->print(errs());
      errs() << "\n";
    } else if (loop->hasLoopInvariantOperands(instr)) {
      errs() << prefix << "Operand invariants";
      instr->print(errs());
      errs() << "\n";
    }
  }
}
```
Induction variables

• Basic induction variables
 • \(i = i \text{ op } c \)
 • \(c \) is loop invariant
 • this definition is executed exactly once per iteration
 • a.k.a. independent induction variable

• Derived induction variables
 • \(j = i \times c_1 + c_2 \)
 • \(c_1 \) and \(c_2 \) are loop invariants
 • this definition is executed exactly once per iteration
 • \(i \) is an IV
 • a.k.a. dependent induction variable
Identify induction variables: step 1

Find the basic IVs

① Scan loop body for defs of the form
 \[x = x + c \]
 where \(c \) is loop-invariant and
 this definition is executed exactly once per iteration

② Record these basic IVs as
 \[x = (x, 1, c) \]
 this represents the IV: \(x = x \ast 1 + c \)

How can we do? Can we exploit SSA?
Identify induction variables: step 2

Find derived IVs

① Scan for derived IVs of the form
 \[k = i \times c1 + c2 \]
 where i is an IV and
 this is the only definition of k in the loop and
 this definition is executed exactly once per iteration

② Record as \(k = (i, c1, c2) \)
 We say k is in the family of i
int myF1 (int start, int end){
 int i = start;
 while (i < end){
 j = i * 8 + 4;
 i++;
 }
 return j;
}

int myF2 (int start, int end){
 int i = start;
 while (i < end){
 j = i * 8;
 while (j > 0){
 k = j * 42 + i;
 j--;
 }
 i++;
 }
 return j;
}
Identified induction variables

A forest of induction variables
Induction variables in LLVM

• You have up to 1 IV per loop
 • This is the IV that control the number of iterations of the loop

```c
int j=0;
for (int i=0; i < N; i++){
   j = j + 42;
}
```

• An IV that starts from 0 and it increments by 1 is called **canonical**

• Potentially many IVs that do not control the #iterations
 • They are called **auxiliary** IVs
Induction variables in LLVM

```cpp
bool runOnFunction(Function &F) override {
    auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
    ScalarEvolution *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();

    errs() << "Function: " << F.getName() << "\n";
    for (auto i = LI.begin(); i != LI.end(); ++i){
        auto loop = *i;
    }
}

return false;
}```
bool runOnFunction(Function &F) override {
  auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
  ScalarEvolution *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();

  errs() << "Function: " << F.getName() << "\n";
  for (auto i = LI.begin(); i != LI.end(); ++i){
    auto loop = *i;
    errs() << " Loop\n";
    errs() << "   Header = " << *loop->getHeader() << "\n";
    auto IV = loop->getInductionVariable(*SE);
    if (IV != nullptr){
      errs() << "   IV = " << *IV << "\n";
    }
  }

  for (auto bb : loop->getBlocks()){  
    for (auto &inst : *bb){
      auto phi = dyn_cast<PHINode>(&inst);
      if (phi == nullptr){
        continue ;
      }
      if (loop->isAuxiliaryInductionVariable(*phi, *SE)){
        errs() << " Auxiliary IV = " << *phi << "\n";
      }
    }
  }
  return false;
}
Induction variables in LLVM

```c
void getAnalysisUsage(AnalysisUsage &AU) const override {
 AU.addRequired<LoopInfoWrapperPass>();
 AU.addRequired<ScalarEvolutionWrapperPass>();
 AU.setPreservesAll();
}
```
Identification of Induction variables in LLVM

• Based on the analysis called scalar-evolution:
  • Scalar evolution: change in the value of scalar variables over iterations of the loop
  • It represents scalar expressions (e.g., \( x = y \text{ op } z \))
    • It supports induction variables (e.g., \( x = x + 1 \))
    • It lowers the burden of explicitly handling the composition of expressions

• LLVM implementation: ScalarEvolutionWrapperPass
Induction variable vs. scalar evolution

• Basic IV (BIV):
  It increases or decreases by a fixed amount
  on every iteration of a loop

• IV:
  A BIV or a linear function of another IV

• Generalized IV (GIV):
  It increases or decreases by a given amount
  It can depend non-linearly on other BIVs/GIVs
  It can have multiple updates
Chain of recurrences

It is a formalism to analyse expressions in BIV and GIV expressing them as **Recurrences**

\[
\begin{align*}
n! &= 1 \times 2 \times \ldots \times n & n! &= (n-1)! \times n \\
f(n) &= 1 \times 2 \times \ldots \times n & f(n) &= f(n-1) \times n
\end{align*}
\]
Basic recurrences

```java
int f = k0;
for (int j=0; j < n ; j++){
 ... = f;
 f = f + k1
}
```

Assuming k1 to be a loop invariant

\[
f(i) = \begin{cases} 
  k0 & \text{if } i == 0 \\
  f(i-1) + k1 & \text{if } i > 0
\end{cases}
\]

Basic recurrence = \{k0, +, k1\}

Starts with k0, and it increments by k1 every time

So what is a chain of references?
Chain of recurrences

```java
int f = g = k0;
for (int j=0; j < n; j++){
 ... = f;
 g = g + f;
 f = f + k1
}
```

Basic recurrence = \{k0, +, k1\}

Chain of recurrence = \{k0, +, \{k0, +, k1\}\} \\
\downarrow \\
\{k0, +, k0, +, k1\}

This is an IV

This is not an IV
Chain of recurrences

```java
for (int x=0; x < n ; x++){
 p[x] = x*x*x + 2*x*x + 3*x + 7;
}
```

How can be compute it?

Chain of recurrence for \( p[x] = \{7, +, 6, +, 10, +, 6\} \)

<table>
<thead>
<tr>
<th>x</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7</td>
<td>13</td>
<td>29</td>
<td>61</td>
<td>115</td>
<td>197</td>
</tr>
</tbody>
</table>

What is the value of \( p[x] \) when \( x \) is equal to 0? 
What is the value of \( p[x] \) when \( x \) is equal to 1? 
What is the value of \( p[x] \) when \( x \) is equal to 2? 
What is the value of \( p[x] \) when \( x \) is equal to 3? 
What is the value of \( p[x] \) when \( x \) is equal to 4? 
What is the value of \( p[x] \) when \( x \) is equal to 5?
Chain of recurrences

for (int x=0; x < n ; x++){
    p[x] = x*x*x + 2*x*x + 3*x + 7;
}

Chain of recurrence for p[x] = \{7, +, 6, +, 10, +, 6\}

<table>
<thead>
<tr>
<th>x</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7</td>
<td>13</td>
<td>29</td>
<td>61</td>
<td>115</td>
<td>197</td>
</tr>
</tbody>
</table>
Chain of recurrences

for (int x=0; x < n ; x++){
    \( p[x] = x^3 + 2x^2 + 3x + 7; \)
}

<table>
<thead>
<tr>
<th>x</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>( p[x] )</td>
<td>7</td>
<td>13</td>
<td>29</td>
<td>61</td>
<td>115</td>
<td>197</td>
</tr>
</tbody>
</table>

What is the increment between iterations?
Chain of recurrences

for (int x=0; x < n ; x++){  
    p[x] = x*x*x + 2*x*x + 3*x + 7;  
}

<table>
<thead>
<tr>
<th>x</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>p[x]</td>
<td>7</td>
<td>13</td>
<td>29</td>
<td>61</td>
<td>115</td>
<td>197</td>
</tr>
<tr>
<td>D</td>
<td>-</td>
<td>6</td>
<td>16</td>
<td>32</td>
<td>54</td>
<td>82</td>
</tr>
</tbody>
</table>
Chain of recurrences

for (int x=0; x < n; x++)
    
p[x] = x*x*x + 2*x*x + 3*x + 7;

\[\begin{array}{llllll}
x & 0 & 1 & 2 & 3 & 4 & 5 \\
p[x] & 7 & 13 & 29 & 61 & 115 & 197 \\
D & - & 6 & 16 & 32 & 54 & 82 \\
D^2 & - & - & 10 & 16 & 22 & 28 \\
\end{array}\]
Chain of recurrences

for (int x=0; x < n ; x++){
    p[x] = x*x*x + 2*x*x + 3*x + 7;
}

<table>
<thead>
<tr>
<th>x</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>p[x]</td>
<td>7</td>
<td>13</td>
<td>29</td>
<td>61</td>
<td>115</td>
<td>197</td>
</tr>
<tr>
<td>D</td>
<td>-</td>
<td>6</td>
<td>16</td>
<td>32</td>
<td>54</td>
<td>82</td>
</tr>
<tr>
<td>D^2</td>
<td>-</td>
<td>-</td>
<td>10</td>
<td>16</td>
<td>22</td>
<td>28</td>
</tr>
<tr>
<td>D^3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
</tbody>
</table>

Chain of recurrence = \{7, +, 6, +, 10, +, 6\}
Chain of recurrences

Chain of recurrence = \{7, +, 6, +, 10, +, 6\}

And if you run scalar evolution of LLVM:

Instruction  \%16 = add nsw i32 \%15, 7 is SCEVAddRecExpr
SCE: \{7,+,6,+,10,+,6\}<\%7>
LLVM scalar evolution example

- SCEV: \{A, B, C\}<flag>*<%D>
  - A: Initial; B: Operator; C: Operand; D: basic block where it gets defined

```c
#include <stdio.h>
int main (int argc, char *argv[]) {
 for (int i = 0; i < argc; i++){
 printf("ciao\n");
 }
 return 0;
}
```

```c
#define i32 @main(i32 %argc, i8** %argv) #0 {
 br label %1
 ;<label>:1
 %i.0 = phi i32 [0, %0], [%6, %5]
 %2 = icmp slt i32 %i.0, %argc
 br i1 %2, label %3, label %7
 ;<label>:3
 %4 = call i32 (i8*, ...) @printf(i8* getelementptr inbounds ([6 x i8], [6 x i8] * @.str, i32 0, i32 0))
 br label %5
 ;<label>:5
 %6 = add nsw i32 %i.0, 1
 br label %1
 ;<label>:7
 ret i32 0
}
```
LLVM scalar evolution example

- SCEV: \{A, B, C\}<flag>*<%D>
  - A: Initial; B: Operator; C: Operand; D: basic block where it get defined
LLVM scalar evolution example: pass deps

```cpp
void getAnalysisUsage(AnalysisUsage &AU) const override {
 AU.addRequired<LoopInfoWrapperPass>();
 AU.addRequired<ScalarEvolutionWrapperPass>();
 AU.setPreservesAll();
}
```
bool runOnFunction(Function &F) override {
    LoopInfo& LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
    ScalarEvolution *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();

    errs() << "Function: " << F.getName() << "\n";
    for (auto i = LI.begin(); i != LI.end(); ++i){
        Loop *loop = *i;
        errs() << " New loop\n";
        for (auto bbi = loop->block_begin(); bbi != loop->block_end(); ++bbi){
            BasicBlock *bb = *bbi;
            for (BasicBlock::iterator i = bb->begin(); i != bb->end(); ++i){
                Instruction *inst = &*i:
                const SCEV *S = SE->getSCEV(inst):
                if (auto *AR = dyn_cast<SCEVAddRecExpr>(S)){
                    errs() << " Instruction ";
                    i->print(errs());
                    errs() << " is SCEVAddRecExpr\n";

                    errs() << " SCE: " ;
                    AR->print(errs());
                    errs() << "\n";
                }
            }
        }
    }

    return false;
}
Scalar evolution in LLVM

• Analysis used by
  • Induction variable analysis
  • Strength reduction
  • Vectorization
  • …

• SCEVs are modeled by the \texttt{llvm::SCEV} class
  • There is a sub-class for each kind of SCEV (e.g., \texttt{llvm::SCEVAddExpr})

• A SCEV is a tree of SCEVs
  • Leaf nodes:
    • Constant : \texttt{llvm:SCEVConstant} (e.g., 1)
    • Unknown: \texttt{llvm:SCEVUnknown} (e.g., %v = call rand())
  • To iterate over a tree: \texttt{llvm:SCEVVisitor}
Always have faith in your ability

Success will come your way eventually

Best of luck!