
SSA
Simone Campanoni
simone.campanoni@northwestern.edu

Outline

• SSA and why?

• SSA in LLVM

• Generate SSA code

2

LLVM IR (4)

• It’s a Static Single Assignment (SSA) representation

• First constraint of an SSA representation:
A variable is set only by one instruction
in the whole function body

3

LLVM IR: SSA and not SSA example
float myF (float par1, float par2, float par3){

return (par1 * par2) + par3; }

define float @myF(float %par1, float %par2, float %par3) {
 %1 = fmul float %par1, %par2
 %2 = fadd float %1, %par3
 ret float %2 }

define float @myF(float %par1, float %par2, float %par3) {
 %1 = fmul float %par1, %par2
 %1 = fadd float %1, %par3
 ret float %1 } NOT SSA

SSA 4

A direct consequence of using a SSA form

• Unrelated uses of the same variable in source code
become different variables in the SSA form

v = 5;
print(v);
v = 42;
print(v);

To SSA IR
v1 = 5
call print(v1)
v2 = 42
call print(v2)

No WAW, WAR
data dependencies
between variables!

5

Static Single Assignment (SSA) Form

• A variable is set only by one instruction in the function body
%myVar = …
A static assignment can be executed more than once

While (…){
%myVar = ...

}
• The definition must be guaranteed to always execute before

all of its uses
• Code analyses and transformations that assume SSA

are (typically)
faster, they use less memory, and they include less code
(compared to their non-SSA versions)

def

use

start

6

dominates

Compilers using SSA

• LLVM (IR)
• Swift (SIL)
• Recent GCC (GIMPLE IR)
• Mono
• Portable.NET
• Mozilla Firefox SpiderMonkey JavaScript engine (IR)
• Chromium V8 JavaScript engine (IR)
• PyPy
• Android’s new optimizing compiler
• PhP

• Go
• WebKit
• Erlang
• LuaJit
• IBM open source JVM
• …

7

Consequences of SSA

• Unrelated uses of the same variable in source code
become different variables in the SSA form

• Def—use chains are greatly simplified
• We are going to see def-use chains for a non-SSA IR
• Then we see how def-use chains look like for an SSA IR

v = 5;
print(v);
v = 42;
print(v);

To SSA IR
v1 = 5
call print(v1)
v2 = 42
call print(v2)

No WAW, WAR
data dependencies
between variables!

8

Def-use chains in a non-SSA IR

v = 3
…

… = v + 1
…

…

… = v * 2
…

CFG

Within your CAT: you can follow def-use chains
e.g., i->getUses()

in both directions
e.g., i->getDefinitions()

9

Def-use chains in a non-SSA IR

v = 3
…

… = v + 1
…

v = 5

… = v * 2
…

CFG

Within your CAT: you can follow def-use chains
e.g., i->getUses()

in both directions
e.g., i->getDefinitions()

• An use can get data from multiple definitions
depending on the control flow executed

• This is why we need to propagate
data-flow values
through all possible control flows

10

Def-use chain and DFA

OUT[ENTRY] = { };
for (each instruction i other than ENTRY) OUT[i] = { };
while (changes to any OUT occur)

for (each instruction i other than ENTRY) {
IN[i] = ∪p a predecessor of i OUT[p];
OUT[i] = GEN[i] ∪ (IN[i] ─ KILL[i]);

}
}
i: t <- …
GEN[i] = {i}
KILL[i] = defs(t) – {i}

i: …
GEN[i] = {}
KILL[i] = {}

Given a variable t,
we need to find all definitions of t in the CFG

11

Def-use chains in a non-SSA IR

Within your CAT: you can follow def-use chains
e.g., i->getUses()

in both directions
e.g., i->getDefinitions()

Def of v

Use of v
Def of v

Use of v

Graph

Which definition was executed for a given use?
We need to run a data-flow analysis to answer it

12

Def-use chains in an SSA IR

Within your CAT: you can follow def-use chains
e.g., i->getUses()

in both directions
e.g., i->getDefinitions()

Def of v0

Use of v0
Def of v1

Use of v0 Use of v1

Tree

Tree

Which definition was executed for a given use?
There is only one definition for a given use

13

Def-use chains in an SSA IR

Within your CAT: you can follow def-use chains
e.g., i->getUses()

in both directions
e.g., i->getDefinition()

Def of v0

Use of v0
Def of v1

Use of v0 Use of v1

Tree

Tree

Which definition was executed for a given use?
There is only one definition for a given use
and it is guaranteed to be executed before all of its uses

14

Consequences of SSA

• Unrelated uses of the same variable in source code
become different variables in the SSA form

• Use—def chain are greatly simplified
• Data-flow analysis are simplified (… in a few slides)
• Code analysis (e.g., data flow analysis) can be designed to run faster

v = 5;
print(v);
v = 42;
print(v);

To SSA IR
v1 = 5
call print(v1)
v2 = 42
call print(v2)

No WAW, WAR
data dependencies
between variables!

15

• Code analysis needs to represent facts at every program point

• What if
• There are a lot of facts and

there are a lot of program points?
• Potentially takes a lot of space/time
• Code analyses run slow
• Compilers run slow

Motivation for SSA

define float @myF(float %par1, float %par2, float %par3) {
 %1 = fmul float %par1, %par2
 %2 = fadd float %1, %par3
 ret float %2 }

Definition of %1 reaches here

Definition of %1 reaches here

16

Example: reaching definition
We iterate over instructions and
if a new instruction doesn’t redefine x,
then, we keep propagating “x=3”

This is needed to know whether this x can/must/cannot be equal to 3

This is a dense representation
of data-flow values

17

x = 3
k = cmp y, z
br k

…
…

…
…

… = x + 1

{x = 3}
{x = 3}

{x = 3}
{x = 3}
{x = 3}

{x = 3}
{x = 3}
{x = 3}

{x = 3}

{x = 3}
Is it constant?

Sparse representation

• Instead, we’d like to use a sparse representation
• Only propagate facts about x where they’re needed

• Exploit static single assignment form
• Each variable is defined (assigned to) exactly once
• Definitions dominate their uses

18

Static Single Assignment (SSA)
Add SSA edges from definitions to uses
• No intervening statements define variable
• Safe to propagate facts about x only along SSA edges

Why can’t we do in
non-SSA IRs?
• No guarantee that

def dominates use
• No guarantee

about which def
will be the last def
before an use 19

x = 3
k = cmp y, z
br k

…
…

… = x + 1

…
…

{x = 3}

What about join nodes in the CFG?

• Add Φ functions to model joins
• One argument for each incoming branch

• Operationally
• selects one of the arguments based on how control flow reach this node

• The backend needs to eliminate Φ nodes

If (b > N)

b = c + 1 b = d + 1

Not SSA

b3=Φ(b1, b2)
If (b3 > N)

b1 = c + 1 b2 = d + 1

SSA

If (? > N)

b1 = c + 1 b2 = d + 1

Still not SSA 20

Eliminating Φ in the back-end

• Basic idea: Φ represents facts that value of join
may come from different paths
• So just set along each possible path

b3=Φ(b1, b2)
If (b3 > N)

b1 = c + 1 b2 = d + 1

If (b3 > N)

b1 = c + 1
b3 = b1

b2 = d + 1
b3 = b2

Not SSA
21

Eliminating Φ in practice

• Copies performed at Φ may not be useful
• Joined value may not be used later in the program

(So why leave it in?)

• Eliminate Φs that have no uses
• Subsequent register allocation will map the variables

onto the actual set of machine register

22

Consequences of SSA

• Unrelated uses of the same variable in source code
become different variables in the SSA form

• Use—def chain are greatly simplified
• Data-flow analysis are simplified
• Code analysis (e.g., data flow analysis) can be designed to run faster

v = 5;
print(v);
v = 42;
print(v);

To SSA IR
v1 = 5
call print(v1)
v2 = 42
call print(v2)

23

Def-use chain

OUT[ENTRY] = { };
for (each instruction i other than ENTRY) OUT[i] = { };
while (changes to any OUT occur)

for (each instruction i other than ENTRY) {
IN[i] = ∪p a predecessor of i OUT[p];
OUT[i] = GEN[i] ∪ (IN[i] ─ KILL[i]);

}
}
i: t <- …
GEN[i] = {i}
KILL[i] = defs(t) – {i}

i: …
GEN[i] = {}
KILL[i] = {}

24

Def-use chain with SSA

OUT[ENTRY] = { };
for (each instruction i other than ENTRY) OUT[i] = { };
while (changes to any OUT occur)

for (each instruction i other than ENTRY) {
IN[i] = ∪p a predecessor of i OUT[p];
OUT[i] = GEN[i] ∪ (IN[i] ─ KILL[i]);

}
}
i: t <- …
GEN[i] = {i}
KILL[i] = {}

i: …
GEN[i] = {}
KILL[i] = {}

25

Code example

j:b1 = b0 + 1

i: b0 = 1

Question answered by reaching definition analysis:
does the definition “i” reach “j”?

?: b0 = b0 + 2

26

Code example

p:b3=Φ(b1, b2)
z:return b3

j:b1 = 1 + 1 k:b2 = 2

i: b0 = 1

Does it mean we can always propagate constants to variable uses?
What are the definitions of b3 that reach “z”?

How should we design
constant propagation for SSA IRs?

27

Outline

• SSA and why?

• SSA in LLVM

• Generate SSA code

28

SSA in LLVM

• The IR is assumed to be always in SSA
• Checked at boundaries of passes
• No time wasted converting automatically IR to its SSA form
• CAT designed with this constraint in mind

•Φ instructions only at the top of a basic block

29

SSA in LLVM: Φ instructions

When the predecessor
just executed is %4
 store the constant 1 to %.0

30

SSA in LLVM: Φ instructions

When the predecessor
just executed is %5
 store %6 to %.0

31

SSA in LLVM: Φ (PHI) instructions

• A PHI instruction can have many [predecessor, value] pairs
as inputs

• A PHI instruction must have one pair per predecessor

• A PHI instruction must have at least one pair

• A PHI instruction is a definition
• Hence, it must dominate all of its uses
• PHI uses are defined to happen on the incoming edge,

not at the instruction.
32

%v2 = phi [%L0, %v0], [%L1, %v1]
…
%v3 = add %v2, 1

L0:
 %v0 = ...

L1:
 %v1 = ...

This use must be
dominated by

SSA in LLVM: Φ (PHI) instructions

• PHI must dominate all of its uses
• PHI uses are defined to happen on the incoming edge, not at the instruction

33

L0:
 %v2 = phi […], [%L1, %v1]
 …

%v1 = phi [%L1, %v3], [%L0, %v2]
…

L1:
 %v3 = ...

Definition

Use

SSA in LLVM: Φ (PHI) instructions

34

L0:
 %v2 = phi […], [%L1, %v1]
 …

%v1 = phi [%L1, %v3], [%L0, %v2]
…

L1:
 %v3 = ...

SSA in LLVM: Variable def-use chains

i: %v = …

j: … = %v

i is the definition of %v
j is a user of i
This fact is called “use”

• Iterate over users of a definition:
for (auto &user : i.users()){
 if (auto j = dyn_cast<Instruction>(&user)){
 …
 }
}

• Iterate over uses
for (auto &use : i.uses()){
 User *user = use.getUser();
 if (auto j = dyn_cast<Instruction>(user)){
 …
 }
}

Instruction

User

Constant…

Use

Why do we need Use ?
35

SSA in LLVM: Variable def-use chains

i: %v = …

j: … = %v

i is the definition of %v
j is a user of i
This fact is called “use”

• Replace only a specific operand:
 From: call @myF (%v0, %v1, %v0)
 To: call @myF (%w0, %v1, %v0)
• If i is the instruction that defines %v0

• i has different uses in the call above
• An Use holds information about it
 use.getOperandNo()

• Iterate over uses
for (auto &use : i.uses()){
 User *user = use.getUser();
 if (auto j = dyn_cast<Instruction>(user)){
 …
 }
}

Instruction

User

Constant…

Use

Use differentiates between and , User does not

36

Def-use chains

• So far we saw def-use chains for variables

• But LLVM has def-use chains for other compiler concepts

37

SSA in LLVM: Basic block def-use chains

• Def = definition of a basic block
• User = ?

bool runOnFunction (Function &F){
 for (auto &BB : F){
 for (auto &user : BB.users()){
 …
 }
 }
}

38

SSA in LLVM: Function def-use chains

• Def = definition of a function
• User = ?

bool runOnFunction (Function &F){
 for (auto &user : F.users()){
 …
 }
}

39

SSA in LLVM: variables

• Let’s say we have the following C code:
• The equivalent bitcode is the following:

• %3, %5, and %.0 are variables. How can we access them?
E.g., Function::getVariable(%3)
E.g., Instruction::getVariableDefined()

• It seems variables do not exist from the LLVM API!
40

Variables
do not exist

41

SSA in LLVM: variables (2)

Value * Instruction::getOperand(unsigned i)
Value * CallInst::getArgOperand(unsigned i)

I.getOperand(0)
returns an instruction pointer
(llvm::Instruction *)

I.getOperand(0)
returns an argument pointer (llvm::Argument *)

The variable defined by an instruction is represented by the instruction itself!
This is thanks to the SSA representation

Instruction

Value

Argument

42

SSA in LLVM: variables (3)

• The variable defined by an instruction is represented
by the instruction itself
• How can we find out the type of the variable defined?

Type *varType = inst->getType()
if (varType->isIntegerTy()) …
if (varType->isIntegerTy(32)) …
if (varType->isFloatingPointTy()) …

PointerType

Type

IntegerType …
43

LLVM class hierarchies we saw so far

PointerType

Type

IntegerType …Instruction

Value

Argument

User

Constant …

BinaryOperator ReturnInst …

Use

44

LLVM class hierarchies we saw so far

PointerType

Type

IntegerType …

Instruction

Value

Argument User

Constant …

BinaryOperator ReturnInst …

Use

45

Outline

• SSA and why?

• SSA in LLVM

• Generate SSA code

46

Modify SSA code
while preserving its SSA property
• Let’s say we have an IR variable and

we want to add code to change its value

• How should we do it?
• 2 solutions: variable renaming and variable spilling

%v = …

%y = %v
%z = %v

%v = …
%v = %v + 1

%y = %v
%z = %v

%v = …
%v1 = %v + 1

%y = %v1
%z = %v1

Step 1: rename the new definition (%v -> %v1)
Step 2: rename all uses

47

• Let’s say we have an IR variable and
we want to add code to change its value

• How should we do it?
• 2 solutions: variable renaming and variable spilling

%v = …

%y = %v
%z = %v

%v = …
%v = %v + 1

%y = %v
%z = %v

%v = …
%v1 = %v + 1

%y = %v1
%z = %v1

Step 0: create a builder
IRBuilder<> b(I)
Step 1: create a new definition
auto newI=cast<Instruction>(b.CreateAdd(I, const1))
Step 2: rename all uses
I->replaceAllUsesWith(newI)

Modify SSA code
while preserving its SSA property

…
 + 1

 48

Modify SSA code
while preserving its SSA property
• Let’s say we have an IR variable and

we want to add code to change its value

• How should we do it?
• 2 solutions: variable renaming and variable spilling

%v = …

%y = %v
%z = %v

%v = …
%v = %v + 1

%y = %v
%z = %v

%pv = alloca(…)
%v0 = load %pv
%v1 = %v0 + 1
store %v1, %pv
%y = load %pv

Step 1: allocate a new variable on the stack
Step 2: use loads/stores to access it
Step 3: convert stack accesses to SSA variable accesses

Memory isn’t in SSA, just variables
(e.g., stack locations---alloca)

49

Modify SSA code
while preserving its SSA property
• Step 0: create a builder
auto I=f->begin()->getFirstNonPHI()
IRBuilder<> b(I)
• Step 1: allocate a new variable on the stack
auto newV = cast<Instruction>(b.createAlloca(…))
• Step 2: use loads/stores to access it
…
• Step 3: convert stack accesses to SSA variable accesses
• Exploit already existing passes to reduce inefficiencies (mem2reg)
• mem2reg maps memory locations to variables when possible

opt –mem2reg mybitcode.bc –o mybitcode.bc

Why?

50

The mem2reg LLVM pass

int ssa1() {
 int z = f() + 1;
 return z;
}

Front-
End

define i32 @ssa1() {
 entry:
 %z = alloca i32
 %call = call i32 @f()
 %add = add i32 %call, 1
 store i32 %add, i32* %z
 %0 = load i32* %z
 ret i32 %0
}

define i32 @ssa1() {
 entry:
 %call = call i32 @f()
 %add = add i32 %call, 1
 ret i32 %add
}

mem2reg

Stack allocation
in the entry block

Only used by loads
and stores

51

mem2reg might add new instructions

52

mem2reg get confused easily

53

Be careful at generating accesses to alloca objects
if you want mem2reg to automatically map them to SSA variables

Always have faith in your ability

Success will come your way eventually

Best of luck!

54

