de analysis

and

transf rmation

Welcome!

Simone Campanoni
simone.campanoni@northwestern.edu

Bem VlIldO (elamat [)atang
Namaste, = Shillkomnmeén
Bienvenidos g Dienvenve lenvenUe Wl come Blen venidos Sleas s Dlal
Benvenut]
Welkom @Vm .
Dienvenue ‘w: : elcome
1enven1dos e (Toeso
Selaléat Datang " e 28 s).@_uNamaSte PV ‘
o Welcome %ﬁmn‘lﬁ!mwe Bem Vindo

nobpe gowbh envenUt]Wﬂlkommen

KaAwc nNABaTte Benvenuti

The CAT team

All of us have office hours to answer your questions throughout the quarter

plazza

+ New Post

~ FAVORITES

Riley Sophia Boksenbaum (PM)

Syllabus: CAT syllabus.pdf |

tures and files: Lectures
Tutorials: link C

de analysis

Piazza: signup 5

and

Zoom:

« lect '
i transf rmation

« B>Simone's office hours =

« Atmn's office hours

« Sophia's office hours: MG51

3

What we are going to do

* Teach you code analysis and transformation

de analysis

and

transf rmation

* What they do ‘ B ° Whattheycan’'t do
 What they could do

Who you are

* An engineer

* A C++ developer
(you don’t have to be an incredible coder)

Compiler expert is not mentioned ;)

Software knowledge assumed

* You know how to write C++ code in Linux platforms
(e.g., class, inheritance, method overloading, containers like a set)
C++ tutorial: http://www.cplusplus.com/doc/tutorial/

* You know Makefile
Makefile tutorial: http://www.cs.colby.edu/maxwell/courses/tutorials/maketutor

* You know how to debug C++ code
gdb tutorial: https://www.tutorialspoint.com/gnu_debugger/index.htm

http://www.cplusplus.com/doc/tutorial/
http://www.cs.colby.edu/maxwell/courses/tutorials/maketutor
https://www.tutorialspoint.com/gnu_debugger/index.htm

Machines to use for this class

You have access to the following machines,
which are used to test your homework

 Wilkinson lab

gotham.ece.northwestern.edu, batman.ece.northwestern.edu, robin.ece.northwestern.edu, alfred.ece.northwestern.edu
,gordon.ece.northwestern.edu ,madhatter.ece.northwestern.edu ,joker.ece.northwestern.edu
,cobblepott.ece.northwestern.edu ,bane.ece.northwestern.edu ,nightwing.ece.northwestern.edu
,selina.ece.northwestern.edu ,ras.ece.northwestern.edu ,poisonivy.ece.northwestern.edu ,freeze.ece.northwestern.edu
,scarecrow.ece.northwestern.edu ,clayface.ece.northwestern.edu ,harley.ece.northwestern.edu

,killercroc.ece.northwestern.edu ,huntress.ece.northwestern.edu ,batgirl.ece.northwestern.edu
,riddler.ece.northwestern.edu ,hush.ece.northwestern.edu

* WOT systems

murphy.wot.ece.northwestern.edu, finagle.wot.ece.northwestern.edu,
hanlon.wot.ece.northwestern.edu, moore.wot.ece.northwestern.edu

iz
Outline of today’s CAT &=

G

-
L

 Structure of the course

e CAT andfcompilers

* CAT andjcomputer architecture

* CAT and{programming language

CS 323 CA

in a nutshell

. About:[understanding]and[transformingautomatically]

* Tuesday/Thursday 5pm — 6:20pm

* Atmn’s office hours. : Wednesday 1pm — 3pm via Zoom Starting next week

* Sophia’s office hours: Thursday 2pm —4pm in MG51 Starting this week

* Simone’s office hours: Monday 5pm — 6pm via Zoom Starting next week

 CAT is on Canvas

* Materials/Assignments/Grades on Canvas
* You’ll upload your assignments on Canvas

Syllabus: CAT syllabus.pdf |

Lectures and files: Lectures

de analysis

Tutorials: link

Piazza: signup &

and

Zoom:

« lectures = transf

« >Simone's office hours &

rmation

« Atmn's office hours =
« Sophia's office hours: MG51

CAT materials

* Modern compiler implementation

modern
compiler
implementation

in C

* Slides and assigned papers Gz
LLVM documentation nrievenraios B

http://llvm.org

10

CAT slides

* You can find last year slides from the class website

 We improve slides every year

* based on problems we will observe
during the next 10 weeks

* as well as your feedbacks we will ask you at the end
e Our goal: maximize how much you learn in 10 weeks

* We will upload to Canvas the new version of the slides
just before each class

* Slides support my teaching philosophy

EECS 323: Code Analysis and Transformation

Description

Fast, highly sophisticated code analysis and code transformation tools are essential for modern software development. Before
releasing its mobile apps, Facebook submits them to a tool called Infer that finds bugs by static analysis, i.e., without even
having to run the code, and guides developers in fixing them. Google Chrome and Mozilla Firefox analyze and optimize
JavaScript code to make browsers acceptably responsive. Performance-critical systems and application software would be
impossible to build and evolve without compilers that derive highly optimized machine code from high-level source code that
humans can understand. Understanding what modern code analysis and transformation techniques can and can't do is a
prerequisite for research on both software engineering and computer architecture since hardware relies on software to realize
its potential. In this class, you will learn the fundamentals of code analysis and transformation, and you will apply them by
extending LLVM, a compiler framework now in production use by Apple, Adobe, Intel and other industrial and academic

enterprises.

Syllabus

Department page

Material

‘This class takes materials from three different books (listed in the syllabus) as well as a few research papers. The result is a set
of slides, notes, and code. Some lectures rely on code and notes (not slides). Next you can find only slides; the rest of the
material is available only on Canvas.

Week number
Week 0
Week 1
Week 2
Week 3
Week 4
Week 5
Week 6
Week 7
Week 8
Week 9

First lecture

Welcome

Control Flow Analysis

Data Flow Analysis

Data Flow Analysis and their uses
Dependences

Memory alias analysis
Inter-procedural CAT

Introduction to loops

Introduction to loop transformations

State-of-the-art CAT

Second lecture

Introduction to LLVM

CFAin LLVM

Static Single Assignment form
Foundations of Data Flow Analysis
Dependences

Introduction to inter-procedural CAT
Inter-procedural analysis example: VLLPA
Loops

Loop transformations

Competition

http://users.eecs.northwestern.edu/~simonec/CAT.html

The spirit of my lectures
a.k.a. my teaching philosophy

* |'ll describe problems/opportunities

* I'll describe concepts required to solve these problems
(take advantage of these opportunities)

* I'll describe their solutions that are based on these concepts

Problems/opportunities/concepts are structured in weeks
* |’ll describe new problems/opportunities My output

* You’ll apply concepts/solutions learned during my lectures Your output
to solve the new problems/opportunities

* Required to pass the homework

12

The CAT structure

Topic & homework

--CIIZII:II:II:ICICH:I

~
\ SN
\ \\\
\ ~
\ S~o
~
\ S~
\ S
\ \\\
\ ~
\ S~

Week

1st day 2"d day
\ Homework

The CAT grading

* Homework: 100 points
* 10 points per assignment
* The first assignment is easy

* Extra points
e Extra homework

* Answering (correctly)
special questions
(I will emphasize them)
during lectures

* Best student so far: 114 points!

A 90 - 100+
A- [90-94
B+ | 83 - &9

B 74 - 82
B- | 67-73
C+ | 60 - 66

C 20 - 09
C- | 50 - 54

D 40 - 49

F 0 -39

The CAT competition

* At the end, there will be a competition between your CATs

Hall of Fame

mmmmmmmmmm

* The team that designed the best CATs

* Get an A automatically
(no matter how many points they have)

* Their names go to the “hall of fame” of this class

15

http://users.eecs.northwestern.edu/~simonec/CAT.html

Rules for homework

* You are encouraged (but not required) to work in pairs
* Pair programming is not team programming

* Declare your pair by the next lecture (via email to TA)
After a pair is formed, you can only split
(no new pairs will be allowed; also, pairs cannot merge)

* No copying of code is allowed between pairs

* Tool, infrastructure help is allowed
* First try it on your own
(google and tool documentation are your friends)
* Avoid plagiarism
www.northwestern.edu/provost/policies/academic-integrity/how-to-avoid-plagiarism.html|

* If you don’t know, please ask: simone.campanoni@northwestern.edu

16

http://www.northwestern.edu/provost/policies/academic-integrity/how-to-avoid-plagiarism.html

Summary

* My duties &
* Teach you code analysis and transfo a

* And how to implement thenl\n@ ction compiler (LLVM)

* Your duties
* Learn code analy X t nsformatlon
* Implement af m in LLVM

* Write c é
* Test
* Then, tnk much harder about how to actually test your code

* (Sometimes) Answer my questions about your code

17

Structure & flexibility

* CAT is structured w/ topics
* Best way to learn is to be excited about a topic
* Interested in something?

Speak

I’ll do my best to include your topic on the fly

Topic & homework

S — DDDD:}DD

-~

dedv

-~

\/

Welcome/Structure
Compiler/CAT

\

Next lecture
LLVM

L9

!

Outline of today’s CAT

e CAT and compilers
* CAT and computer architecture

* CAT and programming language

. . . wi LR ' W) f
If there is no coffee, if I still have WERRIR 1l Lafdh |
¢ 9 | (A [
I’ll keep working, I'll go to the coff S IRERIEE .
¢ "l]

Will I go to the coffee shop
when | have coffee?

transformation . - P
0010101011100101010100101010101101¢

- hp poviion

21

Example of CAT

varx =5

What will it print? M

23

Example of CAT

What will it print?

varx =5

print 5

pri

rX

24

Example of CAT

varX=5 varX =5 Code
\

[Analysis]

Properties of the code

|

[Tra nsformation]

!

Transformed code

print 5 print varX

Designing CATs

* Choose a goal

* Performance, energy, identifying bugs,
discovering code properties, ...

* Design automatic code analyses
to obtain the required information

* Occasionally design code transformations

Use of CATs

* Compilers
* Increase performance
* Decrease energy consumption

* Decrease code size
* Drive the code translation

* Developing tools (e.g., VIM, EMACS)
* Understanding code (e.g., scopes, variables)
* Generate suggestions

* Computer architecture

27

Structure of a compiler

Character stream (Source code) i[n|t] |m]a]i|n

'

[Lexical analysis]

INT | SPACE | STRING [SPACE | --

Tokens
4 ‘)
Syntactic & | —

. . iNt mairfungtion signature

ksemantlc analySISJ printf(”tliello Wor dA\n”).
‘ Return type Function name
ftiLUf 'Y,
AST ¢

HOINT STRING

Structure of a compiler

Character stream (Source code)

'

[Lexical analysis]

Tokens
(- *)
Syntactic &
_semantic analysis |
\

AST

INT | SPACE

STRING | SPACE | -

Function signature

Lo
Return type Function name
1 1
INT STRING

Structure of a compiler

Syntactic & A Function signature
ksemantlc analySISJ Return type Function name
i | |
AST INT STRING
¥
(N
IR code generation
- y

: Function Attrs: nounwind uwtable
IR define int @main() {

Structure of a compiler

Character str‘eam (Source code) i|n[t] |mla]i|n
Front-end] CS 322: Compiler Construction
% ; Function Attrs: nounwind uwtable
I define int @main() {
\/
[Middle-end] Code analysis and transformation
* ; Function Attrs: nounwind uwtable
IR define int @main() {
\J
Back-end] CS 322: Compiler Construction

Machine code 010101110101010101

Structure of a compiler

Character stream (Source code) Character stream (Source code)

\ \

_ 4)
Front-end] cront-end

'E Middle-end

| Middle-end | _ Backend

\

IR
v

Back-end]

Machine code Machine code

Structure of a compiler

C Java

\

Front-end]
)
\ 4

[Middle-end]

\

IR
v

Back-end]

Machine code

-

Machine code

Structure of a compiler

C
\

Front-end]
)
\ 4

[Middle-end]

\

IR
v

Back-end]

Machine code

Java
¥
4 N
Front-end
Middle-end
_ Back-end y

Machine code

Structure of a compiler

C Java Java
4 4 {

Front-fnd/]FE_] g Front-en A
'E Middle-ghd

[Middle-end] \ y

¥
IR
\

Back-end]

]
Machine code M2 Machine code

Structure of a compiler

C Java Java
$ $ $
Front-fnd/]FE_] g Front-end A
'E Middle-end
| Middle-end | _ Back-end
§

IR

\/
Back-m
\/ ¥

Machine code M2 M?2

Structure of a compiler

L1 L2
¢ $
Front-end 1] __Front-end 2 |
T~ g
‘
[Middle-end]
4
IR
~
| Back-end A | Back-end B |

M ¥
M A M B

IR needs to be easy

Multiple IRs 1)to produce
2)to translate into machine code
» Abstract Syntax Tree 3)to transform/optimize

RZ/\R3

* Register-based representation (three-address code)
R1 =R2 add R3

* Stack-based representation
push 5; push 3; add; pop ;

38

Example of LLVM IR

define i32 @main(i32 %argc, i8** %argv) {
entry:
%add = add i32 %argc, 1
ret i32 %add
}

39

Multiple IRs used together

L1
\

| Compilation step 1 |

A {
IR1
v

[Compilation step 2

\

IR2
A

| Compilationstep3 |

\
Machine code

Multiple IRs used together

Rust
¥

| Compilation step 1 |

\
MIR
v

[Compilation step 2

N

LLVM IR
A

| Compilationstep3 |

\
Machine code

Multiple IRs used together

L1
\

| Static compiler |

\ 4
IR1
\ 4
[Dynamic compiler FE]

\

IR2
A

| Dynamic compiler BE |

\
Machine code

Multiple IRs used together

Java

\

| Java compiler

\{
Java bytecode

v

[Java VM FE

\

IR2
A

| Java VM BE

\
Machine code

CATs that we’ll focus on

* Semantics-preserving transformations
* Correctness guaranteed

* Goal: performance
* Automatic

e Efficient

Outline of today’s CAT

* CAT and computer architecture

* CAT and programming language

Evolution of CATs (hardware point of view)

e Simple hardware (few resources), simple CATs

Core

Evolution of CATs (hardware point of view)

e Simple hardware (few resources), simple CATs

QOO0 | ~ uProc
" “Moore’s Law” 60%lyr.
o .

S 100
&
o
+ 10
@
o

47

Evolution of CATs (hardware point of view)

e Simple hardware (few resources), simple CATs

Core

Size 1

[Registers]

Evolution of CATs (hardware point of view)

Compilers/CATs
are considered

in the processor-design stage!

Evolution of CATs (hardware point of view) (3)

Superscalar Very long instruction word (VLIW)

[Inst 1] r[Inst 1 I Inst 4 I Inst 7 I Inst 8]‘

Inst 2 > <
Inst 3 CATs> [Inst 2 I Inst 5 I Inst 3 I Inst 6]
Inst 4 L ’
Inst 5
Inst 6
Inst 7

Inst 8

Outline of today’s CAT

* CAT and programming language

Evolution of CATs (PL point of view)

* First electronic computers appeared in the '40s
* They were programmed in machine language

0010101011100101010100101010101101¢

* Low level operations only
* Move data from one location to another BB 72055010, 005 405

* Add the contexts of two registers Zoff;;;f}’lg;{io,m‘f
1 1
* Compare two values ,00;01003;310{3]18
. : Y { 1114,
* Programming: slow, tedious, and error prone B %050, 111

Evolution of CATs (PL point of view)

* Low level programming language, simple CATs
* Not very productive

* More abstraction in programming language,
more work for CATs to reduce their performance overhead

* Macros -> Fortran, Cobol, Lisp -> C, C++, Java, C#, Python,
PHP, SQL, ...

* CATs enable new programming languages

53

Evolution of CATs (PL point of view)

* Abstractions are great for productivity
* CATs remove their overhead

* But abstractions must be carefully evaluated
considering CATs

* A simple abstraction in PL can generate challenges for CATs
* CATs need to be understood y

Evolution of CATs (PL point of view)(2)

PL without procedures

void main (){
Int vl,v2;
vl=1;
V2 =2;

Evolution of CATs (PL point of view)(3)

Let’s add procedures to our PL

void myProc (int *a, int *b){...}
myProc(&myVarl, &myVar2);

Evolution of CATs (PL point of view)(2)

void myProc (int *v1, int *v2){
(*v ,
(*v2) =2,
} What’s the problem for CATs? ...if vl and v2 alias ...

Understanding if pointers alias: pointer alias analysis

This is one of the most challenging problem in CATs

Conclusion

* CATs used for multiple goals

 Enable PLs
e Enable hardware features

* CATs are effected by
* Their input language
* The target hardware

* When you desigh a PL or a new hardware platform,
you need to understand what CATs and can’t do

e Often: a can’t becomes thanks to research on CATs

|deal CATs

* Proved to be correct
* Improve performance of many important programs
* Minor compilation time

* Negligible implementation efforts

Code transformations

e Conventional transformations:
they preserve the original program semantics

* These are the transformations that are included in commodity compilers
(e.g., gcc, clang, icc)

* In this class, we only consider this type of code transformations

Code transformation

Code transformation:

An algorithm that
takes code as input and it generates new code as output

4)
Code Code Code
Lversion A J» transformation »Lversion B J
_ y,

Semantically-preserving code transformation:

A code transformation that always generates code that is guaranteed to
have the same semantics of the code given as input.

What is the program semantics?

Program semantic

Program semantic: Input -> Output

Two programs, pl and p2, are semantically equivalent if
for a given input, p1 and p2 generate the same output
for every possible input

int main (int main (int main (
int argc, char *argv|] int argc, char *argv|] int argc, char *argv(]
it it it
int x = argc; inty =argc + 2; inty =argc + 2;
inty=x+1; ﬂprintf(”%d”, argc +v); #printf(”%d”, 2*argc + 3);
y++, return O; return O;
printf("%d”, x +v); } }
return O;
}

Program semantic

Program semantic: Input -> Output
Two programs, pl and p2, are semantically equivalent if
for a given input, p1 and p2 generate the same output

for every possible input

int main (int main (
int argc, char *argv|] int argc, char *argv(]
N N
inty =argc + 2; $./myprog 2 inty =argc + 2;
printf(”%d”, 2*argc + 2); 6 printf(”"%d”, 2*argc + 2);
return 1; S echo $? return O;

))

Program semantic

Program semantic: Input -> Output
Two programs, pl and p2, are semantically equivalent if
for a given input, p1 and p2 generate the same output

for every possible input

int main (
int argc, char *argv|]
it

inty=42;

returny,

)

=»

4 N
Our new code
transformation

g J

We have preserved
the semantics
of the original code!

int main (
int argc, char *argv|]
it

inty=42;

return 42;

)

Program semantic

Program semantic: Input -> Output
Two programs, pl and p2, are semantically equivalent if
for a given input, p1 and p2 generate the same output

for every possible input
Our transformation needs to understand

int main (
int argc, char *argv|]

it
inty=42;
intx =vy;
if (argc > 20)
y =81,
return X +v;

)

how the execution flows
through the instructions

to preserve the semantics!
4)

» Our new code »
transformation
_ y,

We haven’t preserved
the semantics
of the original code

int main (
int argc, char *argv(]

N
inty=42;
intx=42;«— This js ok!
if (argc > 20)
y =81, «— When this is
return x + 42;

)

executed

65

As Linus Torvalds says ...

heap. Show me the code.

IS C

Talk

V
=
o
-
3
O

Always have faith in your ability

Success will come your way eventually

Best of luck!

