
Welcome!
Simone Campanoni
simone.campanoni@northwestern.edu

2

The CAT team

Simone Campanoni Atmn Patel (TA) Riley Sophia Boksenbaum (PM)

3

All of us have office hours to answer your questions throughout the quarter

• Teach you code analysis and transformation

CAT

What we are going to do

• What they do
• What they could do

• What they can’t do

4

Who you are

• An engineer

• A C++ developer
(you don’t have to be an incredible coder)

• An enthusiastic learner Compiler expert is not mentioned ;)

5

Software knowledge assumed

• You know how to write C++ code in Linux platforms
(e.g., class, inheritance, method overloading, containers like a set)
C++ tutorial: http://www.cplusplus.com/doc/tutorial/

• You know Makefile
Makefile tutorial: http://www.cs.colby.edu/maxwell/courses/tutorials/maketutor

• You know how to debug C++ code
gdb tutorial: https://www.tutorialspoint.com/gnu_debugger/index.htm

6

http://www.cplusplus.com/doc/tutorial/
http://www.cs.colby.edu/maxwell/courses/tutorials/maketutor
https://www.tutorialspoint.com/gnu_debugger/index.htm

Machines to use for this class

You have access to the following machines,
which are used to test your homework

• Wilkinson lab
gotham.ece.northwestern.edu, batman.ece.northwestern.edu, robin.ece.northwestern.edu, alfred.ece.northwestern.edu
,gordon.ece.northwestern.edu ,madhatter.ece.northwestern.edu ,joker.ece.northwestern.edu
,cobblepott.ece.northwestern.edu ,bane.ece.northwestern.edu ,nightwing.ece.northwestern.edu
,selina.ece.northwestern.edu ,ras.ece.northwestern.edu ,poisonivy.ece.northwestern.edu ,freeze.ece.northwestern.edu
,scarecrow.ece.northwestern.edu ,clayface.ece.northwestern.edu ,harley.ece.northwestern.edu
,killercroc.ece.northwestern.edu ,huntress.ece.northwestern.edu ,batgirl.ece.northwestern.edu
,riddler.ece.northwestern.edu ,hush.ece.northwestern.edu

• WOT systems
murphy.wot.ece.northwestern.edu, finagle.wot.ece.northwestern.edu,
hanlon.wot.ece.northwestern.edu, moore.wot.ece.northwestern.edu

7

Outline of today’s CAT

• Structure of the course

• CAT and compilers

• CAT and computer architecture

• CAT and programming language

8

CS 323 CAT in a nutshell
• About: understanding and transforming code automatically
• Tuesday/Thursday 5pm – 6:20pm

• Atmn’s office hours. : Wednesday 1pm – 3pm via Zoom
• Sophia’s office hours: Thursday 2pm – 4pm in MG51
• Simone’s office hours: Monday 5pm – 6pm via Zoom

• CAT is on Canvas
• Materials/Assignments/Grades on Canvas
• You’ll upload your assignments on Canvas

9

Starting this week

Starting next week

Starting next week

CAT materials

• Modern compiler implementation

• Slides and assigned papers
• LLVM documentation

 http://llvm.org
10

CAT slides

• You can find last year slides from the class website

• We improve slides every year
• based on problems we will observe

during the next 10 weeks
• as well as your feedbacks we will ask you at the end
• Our goal: maximize how much you learn in 10 weeks

• We will upload to Canvas the new version of the slides
just before each class

• Slides support my teaching philosophy
11

http://users.eecs.northwestern.edu/~simonec/CAT.html

The spirit of my lectures
a.k.a. my teaching philosophy
• I’ll describe problems/opportunities
• I’ll describe concepts required to solve these problems

(take advantage of these opportunities)
• I’ll describe their solutions that are based on these concepts

Problems/opportunities/concepts are structured in weeks
• I’ll describe new problems/opportunities
• You’ll apply concepts/solutions learned during my lectures

to solve the new problems/opportunities
• Required to pass the homework

My output

Your output

12

The CAT structure

Topic & homework

Today 12/8

Week
1st day 2nd day

Homework

13

The CAT grading

• Homework: 100 points
• 10 points per assignment
• The first assignment is easy

• Extra points
• Extra homework
• Answering (correctly)

special questions
(I will emphasize them)
during lectures
• Best student so far: 114 points!

14

The CAT competition

• At the end, there will be a competition between your CATs

• The team that designed the best CATs
• Get an A automatically

(no matter how many points they have)
• Their names go to the “hall of fame” of this class

15

http://users.eecs.northwestern.edu/~simonec/CAT.html

Rules for homework

• You are encouraged (but not required) to work in pairs
• Pair programming is not team programming
• Declare your pair by the next lecture (via email to TA)

After a pair is formed, you can only split
(no new pairs will be allowed; also, pairs cannot merge)

• No copying of code is allowed between pairs
• Tool, infrastructure help is allowed
• First try it on your own

(google and tool documentation are your friends)
• Avoid plagiarism

www.northwestern.edu/provost/policies/academic-integrity/how-to-avoid-plagiarism.html

• If you don’t know, please ask: simone.campanoni@northwestern.edu
16

http://www.northwestern.edu/provost/policies/academic-integrity/how-to-avoid-plagiarism.html

Summary

•My duties
• Teach you code analysis and transformation
• And how to implement them in a production compiler (LLVM)

• Your duties
• Learn code analysis and transformation
• Implement a few of them in LLVM
• Write code
• Test your code
• Then, think much harder about how to actually test your code
• (Sometimes) Answer my questions about your code

No fin
al exam

17

Structure & flexibility

• CAT is structured w/ topics

• Best way to learn is to be excited about a topic

• Interested in something?
Speak

I’ll do my best to include your topic on the fly

18

Week 1

Today
• Welcome/Structure
• Compiler/CAT

F.E. M.E. B.E.

Next lecture
 LLVM

Topic & homework

Today 12/8

19

Outline of today’s CAT

• Structure of the course

• CAT and compilers

• CAT and computer architecture

• CAT and programming language

20

The role of compilers

00101010111001010101001010101011010

If there is no coffee, if I still have work to do,
I’ll keep working, I’ll go to the coffee shop

If there is no coffee{
 if I still have work to do{
 I’ll keep working;
 }
 I’ll go to the coffee shop;
}

???CompilersCode analysis and
transformation

Will I go to the coffee shop
when I have coffee?

21

Math

Practice

PL

Compilers
&

CATs

Arch

22

Example of CAT

varX = 5
…
…
…
…

print varX
…

What will it print?

23

Example of CAT

varX = 5
…
…
…
…

print 5
…

What will it print? print varX

24

Example of CAT

varX = 5
…
…
…
…

print varX
…

Analysis

Code

Properties of the code

Transformation

Transformed code

varX = 5
…
…
…
…

print 5
…

25

Designing CATs

• Choose a goal
• Performance, energy, identifying bugs,

discovering code properties, …

• Design automatic code analyses
to obtain the required information

• Occasionally design code transformations

26

Use of CATs
• Compilers
• Increase performance
• Decrease energy consumption
• Decrease code size
• Drive the code translation

• Developing tools (e.g., VIM, EMACS)
• Understanding code (e.g., scopes, variables)
• Generate suggestions

• Computer architecture 27

Structure of a compiler
Character stream (Source code)

Lexical analysis

int main (){
 printf(“Hello World!\n”);
 return 0;
}

Tokens

i n t m a i n …

INT STRINGSPACE SPACE …

Syntactic &
semantic analysis

AST

Function signature

Return type

INT

Function name

STRING
28

Structure of a compiler
Character stream (Source code)

Lexical analysis

Tokens

i n t m a i n …

INT STRINGSPACE SPACE …

Syntactic &
semantic analysis

AST

Function signature

Return type

INT

Function name

STRING

29

Structure of a compiler

Syntactic &
semantic analysis

AST

Function signature

Return type

INT

Function name

STRING

IR code generation

IR ; Function Attrs: nounwind uwtable
define int @main() {

30

Structure of a compiler

Front-end
IR

; Function Attrs: nounwind uwtable
define int @main() {

Character stream (Source code) i n t m a i n …

Middle-end

IR
; Function Attrs: nounwind uwtable
define int @main() {

Code analysis and transformation

Back-end
Machine code 010101110101010101

CS 322: Compiler Construction

CS 322: Compiler Construction

31

Structure of a compiler

Front-end
IR

Character stream (Source code)

Middle-end

IR

Back-end
Machine code

Front-end
Middle-end

Back-end

Character stream (Source code)

Machine code 32

Structure of a compiler

Front-end
IR

C

Middle-end

IR

Back-end
Machine code

Front-end
Middle-end

Back-end

Machine code

CJava

33

Structure of a compiler

Front-end
IR

C

Middle-end

IR

Back-end
Machine code

Front-end
Middle-end

Back-end

Machine code

Java

34

Structure of a compiler

Front-end
IR

C

Middle-end

IR

Back-end
Machine code

Front-end
Middle-end

Back-end

Machine code

JavaJava

FE

M2 35

Structure of a compiler

Front-end
IR

C

Middle-end

IR

Back-end
Machine code

Front-end
Middle-end

Back-end

JavaJava

FE

M2M2

BE
36

Structure of a compiler

Front-end 1
IR

L 1

Middle-end

IR

Back-end A

M A

L 2

Front-end 2

M B

Back-end B
37

Multiple IRs

• Abstract Syntax Tree

• Register-based representation (three-address code)
R1 = R2 add R3

• Stack-based representation
push 5; push 3; add; pop ;

R1

R2 R3

+

IR needs to be easy
1)to produce
2)to translate into machine code
3)to transform/optimize

38

Example of IR

define i32 @main(i32 %argc, i8** %argv) {
entry:

%add = add i32 %argc, 1
ret i32 %add

}

LLVM

39

Multiple IRs used together

Compilation step 1
IR1

L1

Compilation step 2

IR2

Compilation step 3

Machine code
40

Multiple IRs used together

Compilation step 1
MIR

Rust

Compilation step 2

LLVM IR

Compilation step 3

Machine code
41

Multiple IRs used together

Static compiler
IR1

L1

Dynamic compiler FE

IR2

Dynamic compiler BE

Machine code
42

Multiple IRs used together

Java compiler
Java bytecode

Java

Java VM FE

IR2

Java VM BE

Machine code
43

CATs that we’ll focus on

• Semantics-preserving transformations
• Correctness guaranteed

• Goal: performance

• Automatic

• Efficient
44

Outline of today’s CAT

• Structure of the course

• CAT and compilers

• CAT and computer architecture

• CAT and programming language

45

Evolution of CATs (hardware point of view)

• Simple hardware (few resources), simple CATs

Core

Memory
46

Evolution of CATs (hardware point of view)

• Simple hardware (few resources), simple CATs

47

Evolution of CATs (hardware point of view)

• Simple hardware (few resources), simple CATs

Core

Cache L1

Registers

Memory

Cache L2

Size

Latency

48

Evolution of CATs (hardware point of view)

• Simple hardware (few resources), simple CATs

•More hardware resources available to compilers
• Opportunities to improve programs
• Challenging CATs

• Execution model mismatch between
source code and hardware
• Challenging CATs

Compilers/CATs
are considered

in the processor-design stage!

49

Evolution of CATs (hardware point of view) (3)

Superscalar
Inst 1
Inst 2
Inst 3
Inst 4
Inst 5
Inst 6
Inst 7
Inst 8

Inst 1

Inst 2 Inst 3

Inst 4

Inst 5 Inst 6

Inst 7 Inst 8

Very long instruction word (VLIW)

CATs

50

Outline of today’s CAT

• Structure of the course

• CAT and compilers

• CAT and computer architecture

• CAT and programming language

51

Evolution of CATs (PL point of view)

• First electronic computers appeared in the ’40s
• They were programmed in machine language

• Low level operations only
•Move data from one location to another
• Add the contexts of two registers
• Compare two values

•Programming: slow, tedious, and error prone

00101010111001010101001010101011010

52

Evolution of CATs (PL point of view)

• Low level programming language, simple CATs
• Not very productive

•More abstraction in programming language,
more work for CATs to reduce their performance overhead
•Macros -> Fortran, Cobol, Lisp -> C, C++, Java, C#, Python,

PHP, SQL, …

• CATs enable new programming languages
53

Evolution of CATs (PL point of view)

• Abstractions are great for productivity

• CATs remove their overhead

• But abstractions must be carefully evaluated
considering CATs

• A simple abstraction in PL can generate challenges for CATs
• CATs need to be understood 54

Evolution of CATs (PL point of view)(2)

PL without procedures

void main (){
Int v1,v2;
v1 = 1;
v2 = 2;
…

}

55

Evolution of CATs (PL point of view)(3)

Let’s add procedures to our PL

void myProc (int *a, int *b){…}
myProc(&myVar1, &myVar2);

56

Evolution of CATs (PL point of view)(2)

void myProc (int *v1, int *v2){
(*v1) = 1;
(*v2) = 2;

} What’s the problem for CATs? … if v1 and v2 alias …

Understanding if pointers alias: pointer alias analysis

This is one of the most challenging problem in CATs
57

Conclusion
• CATs used for multiple goals
• Enable PLs
• Enable hardware features

• CATs are effected by
• Their input language
• The target hardware

•When you design a PL or a new hardware platform,
you need to understand what CATs can and can’t do
• Often: a can’t becomes can thanks to research on CATs 58

Ideal CATs

• Proved to be correct

• Improve performance of many important programs

•Minor compilation time

• Negligible implementation efforts

59

Code transformations

• Conventional transformations:
they preserve the original program semantics
• These are the transformations that are included in commodity compilers

(e.g., gcc, clang, icc)

• In this class, we only consider this type of code transformations

60

Code transformation

Code transformation:
An algorithm that
takes code as input and it generates new code as output

Semantically-preserving code transformation:
A code transformation that always generates code that is guaranteed to
have the same semantics of the code given as input.

What is the program semantics?

Code
transformation

Code
version A

Code
version B

61

Program semantic
Program semantic: Input -> Output
Two programs, p1 and p2, are semantically equivalent if
for a given input, p1 and p2 generate the same output
for every possible input

int main (
 int argc, char *argv[]
){
int x = argc;
int y = x + 1;
y++;
printf(”%d”, x + y);
return 0;
}

int main (
 int argc, char *argv[]
){
int y = argc + 2;
printf(”%d”, argc + y);
return 0;
}

int main (
 int argc, char *argv[]
){
int y = argc + 2;
printf(”%d”, 2*argc + 3);
return 0;
}

62

Program semantic
Program semantic: Input -> Output
Two programs, p1 and p2, are semantically equivalent if
for a given input, p1 and p2 generate the same output
for every possible input

int main (
 int argc, char *argv[]
){
int y = argc + 2;
printf(”%d”, 2*argc + 2);
return 0;
}

int main (
 int argc, char *argv[]
){
int y = argc + 2;
printf(”%d”, 2*argc + 2);
return 1;
}

$./myprog 2
6
$ echo $?

63

Program semantic
Program semantic: Input -> Output
Two programs, p1 and p2, are semantically equivalent if
for a given input, p1 and p2 generate the same output
for every possible input

int main (
 int argc, char *argv[]
){
int y = 42;
return 42;
}

int main (
 int argc, char *argv[]
){
int y = 42;
return y;
}

Our new code
transformation

We have preserved
the semantics
of the original code! 64

Program semantic
Program semantic: Input -> Output
Two programs, p1 and p2, are semantically equivalent if
for a given input, p1 and p2 generate the same output
for every possible input

int main (
 int argc, char *argv[]
){
int y = 42;
int x = 42;
if (argc > 20)
 y = 81;
return x + 42;
}

int main (
 int argc, char *argv[]
){
int y = 42;
int x = y;
if (argc > 20)
 y = 81;
return x + y;
}

Our new code
transformation

We haven’t preserved
the semantics
of the original code

When this is executed

This is ok!

Our transformation needs to understand
how the execution flows
through the instructions
to preserve the semantics!

65

Demo time

As Linus Torvalds says …

Talk is cheap. Show me the code.

66

Always have faith in your ability

Success will come your way eventually

Best of luck!

67

