mpiler

& nstruction

Graph coloring

Simone Campanoni
simone.campanoni@northwestern.edu

Outline

* Graph coloring

e Heuristics

e |2C

Graph coloring task

* Input :theinterference graph
e Qutput: the interference graph where each node has a color (or fail)

* Task: Color the nodes in the graph
such that connected nodes have different colors

e Abstraction: colors are registers

» After performing the graph coloring task:
Replace L2 variables with the registers specified by the colors

~

- EEE EEE EE E— EE B S S S B B B B B e —

/

A graph-coloring register allocator structure

f
------------ 8. |

\‘
[Assign colors]

3

"'Gegister allocator

.
.
LS
LS

f with
var spilled

Code
= | analysis | <

[Code generation

<

.
.

o o o o o o o o e e e e e e o S8

\ {coloring

Graph J spill(f, var, prefix)

Spill

~

Ly 1

f without variables and
with registers

Colors

* At design time of the register allocator:
Map general purpose (GP) registers to colors

* The L1 (15) GP registers:
rdi, rsi, rdx, rcx, r8, r9, rax, r10, r11, r12, r13, r14, r15, rbp, rbx

* Each register has one node in the interference graph
* Pre-colored nodes

* Before starting coloring the nodes related to variables:
Color register nodes with their own colors

A coloring algorithm HEURISTICS

Algorithm: vl

1. Repeatedly[select a node]and remove it from the graph, v2
puttingitontopofastack ~ ememeo .

2. When the graph is empty, rebuild it

°[Select a color]on each node as it comes back into the graph,
making sure no adjacent nodes have the same color

* If there are not enough colors, the algorithm fails
* Spilling happens in this case
. [Select the nodes] you want to spill

(@myF 3 @myf(%p0, %p1, %p2){

%0 <- rdi return (%p0 *2 + %pl + %p2) * 3
%V0 += rdi }

%V0 += rsi We just need 1 register
%VvO0 +=r10

%v1 <- %v0
%Vv2 <- %VQ_
rax <- %v0

rax += %v1l

rax += %v?2

return

(@myF 3 @myf(%p0, %pl, %p2){
%v0 <- rdi return (%p0 *2 + %pl + %p2) * 3

%V0 += rdi }
%V0 +=rsi /
%v0 +=r10

%Vv1 <- %Vv0 \
%v2 <- %v0

rax <- %v0

rax += %v1l

rax += %v?2

return

We just need 1 register

(@myF 3 @myf(%p0, %pl, %p2){
%v0 <- rdi return (%p0 *2 + %pl + %p2) * 3

%V0 += rdi }
%V0 +=rsi /
%v0 +=r10

%Vv1 <- %Vv0 \
%v2 <- %v0

rax <- %v0

rax += %v1l

rax += %v?2

return

We just need 1 register

(@myF 3 @myf(%p0, %p1, %p2){

%0 <- rdi return (%p0 *2 + %pl + %p2) * 3
%Vv0 += rdi }

%V0 += rsi We just need 1 register
%Vv0 +=r10

%v1 <- %VvO0
%Vv2 <- %Vv0

rax <- %v0

rax += %vl

rax += %v?2

return v0
vl

V2 10

(@myF 3 @myf(%p0, %p1, %p2){

%0 <- rdi return (%p0 *2 + %pl + %p2) * 3
%Vv0 += rdi }

%V0 += rsi We just need 1 register
%Vv0 +=r10

%v1 <- %v0
%v2 <- %v0
rax <- %v0
rax += %v1l
rax += %v?2
return

11

(@myF 3 @myf(%p0, %p1, %p2){

%0 <- rdi return (%p0 *2 + %pl + %p2) * 3
%Vv0 += rdi }

%V0 += rsi We just need 1 register
%Vv0 +=r10

%v1 <- %v0
%v2 <- %v0
rax <- %v0
rax += %v1l
rax += %v?2
return

12

(@myF 3 @myf(%p0, %p1, %p2){

%0 <- rdi return (%p0 *2 + %pl + %p2) * 3
%Vv0 += rdi }

%V0 += rsi We just need 1 register
%Vv0 +=r10

%v1 <- %v0
%v2 <- %v0
rax <- %v0
rax += %v1
rax += %v?2
return

No spilling necessary ©
We need 3 registers ®

Outline

e Heuristics

e |2C

Heuristics

* You need to decide the heuristics to use

* Next slides describe simple heuristics you can implement

(but you don’t have to. You can implement your own heuristics
as long as you implement the coloring algorithm)

* We will see more advanced heuristics later
* You don’t have to implement them to complete your homework

e But if you do:
your L2 compiler will generate more performant code

* At the end of this class: all final compilers will compete

A coloring algorithm

Algorithm:

1. Repeatedly[select a node]and remove it from the graph,
putting it on top of a stack

2. When the graph is empty, rebuild it

* Select a color on each node as it comes back into the graph,
making sure no adjacent nodes have the same color

* If there are not enough colors, the algorithm fails
* Spilling comes in here
* Select the nodes you want to spill

Heuristic: select the nodes to remove

Observation:

e Suppose G contains a node m with < K adjacent nodes
* Let G’ be the graph G without m

e If G’ can be colored with K colors, then so can G

Heuristic: You can create your own heuristic

 Remove all nodes with #edges < #colors (15 in L1),
starting with the one with most edges and
recalculating #edges after each removal

e After all nodes with < 15 edges are removed,
remove the remaining ones starting from the one
with the highest number of edges

Let us assume we have only 4 registers. Hence, the heuristics is

=P « Remove all nodes with #edges < 4,
starting with the one with most edges and
recalculating #edges after each removal
* After all nodes with < 4 edges are removed,
remove the remaining ones starting from the one

with the highest number of edges
/ v \

vl
2

vO 6
vl 3

B vl
v2 3

— V2

18

Let us assume we have only 4 registers. Hence, the heuristics is
=P « Remove all nodes with #edges < 4,
starting with the one with most edges and
recalculating #edges after each removal
* After all nodes with < 4 edges are removed,
remove the remaining ones starting from the one

with the highest number of edges
/- vO

vO
vl

V2

19

A coloring algorithm

Algorithm:

1. Repeatedly select a node and remove it from the graph,
putting it on top of a stack

2. When the graph is empty, rebuild it

°[Select a color]on each node as it comes back into the graph,
making sure no adjacent nodes have the same color

* If there are not enough colors, the algorithm fails
* Spilling comes in here
* Select the nodes you want to spill

Heuristic: select the color to use

Heuristic:
* Sort the colors at design time starting from caller save registers

e Use the lowest free color

Order: \- - -

)\
!

Caller save

Caller save Callee save

rdi r12
rsi

rax

f

Callee save

No color is available!

22

A coloring algorithm

Algorithm:

1. Repeatedly select a node and remove it from the graph,
putting it on top of a stack

2. When the graph is empty, rebuild it

* Select a color on each node as it comes back into the graph,
making sure no adjacent nodes have the same color

* If there are not enough colors, the algorithm fails
* Spilling comes in here
. [Select the nodes} you want to spill

Heuristic: select the variables to spill

Constraint:
Never spill a variable created by a previous spill (to avoid infinite spilling)

Observation:
Every time you spill:

* Liveness analysis
* Interference graph
* Graph coloring

Heuristic: You can create your own heuristic (e.qg., spill only one variable at a time)
* Add all nodes to the graph at step 2 of the algorithm
 Mark all nodes that represent variables that have no color

 Spill all variables represented by these marked nodes

Order: \- - -}\

| |

Caller save Callee save

Caller save Callee save

rdi r12

rsi

rax

v2 25

.I:

l

/Register allocator

p
Code
_analysis

<

]

Graph
\ coloring

f with
J < var spilled

spill(f, var, prefix)

l

f without variables and

with registers

It can happen (it’s rare)
that the graph coloring:

e Cannot color all variables
* Cannot spill any variable

"

/Reglster aIIocatIo

Cod -
analy5|s

spillAllVars(f_orig, Spill

Graph preflx)
colorlng | D \

=

f without variables and
with registers

Outline

e |2C

L2 program

.I:

l

/Register allocator

l
f without variables and
with registers

L2C

e Generating assembly from an L2 program
cd L2 ;./L2c tests/test25.12

e L2c steps (this is useful to know to debug your work):
1) Generate an L1 program from an L2 one

L2/bin/L2 is invoked to generate L2/prog.L1
(the name of the output file of your L2 compiler has to always be prog.L1)

2) Generate assembly code from the generated L1 program
L1/bin/L1 compiler is invoked to translate L2/prog.L1

The output is L1/prog.S
3) The GNU assembler and linker are invoked to generate the binary

The standalone binary generated is L2/a.out

Homework #2: the L2 compiler

For every L2 functionf L2 function f

l

[Register allocator J

!

L2 function f with registers only

!
[(stack-arg) translator J

|

L2 function f with registers only and
without (stack-arg)

L1 function

The new L2 instruction

* It accesses stack-based arguments
w <- stack-arg M

° |tis

W <-

equivalent to
mem rsp ?

where ? is M plus the number of
bytes of the stack space used for

loca

* stac
the

e stac

variables

k-arg O is always
ast stack argument

k-arg 8 is always

the second to last argument

(@myF
81
r10 <- stack-arg O
rl0+=2
rdi <- r10
call print 1

return

Ret addr
Arg 7
Arg 8

r'sp

Local

Compiling your L2 compiler pin

C

IR
* Build your L1 compiler: t;
* Keep your L1 compiler sources in L1/src ti
* Compile your L1 compiler: LB
cd L1 ; make - L
LD
1ib
Makefile
* Build your L2 compiler: scripts

 Build your homework #2 under L2/src
* Write new code to complete the translation from L2 to L1 in L2/src

* Compile your L2 compiler:
cd L2 ; make -j

Testing your full L2 compiler for homework

e Under L2/tests there are the L2 programs to translate

* To test:
* To check all tests: cd L2; make test
* To check one test: ./L2c tests/test25.L2

* The output of a binary your compiler generates are in L2/tests

* For example,
the output of L2/tests/test25.L2f
is L2/tests/test25.L2.out

Tips about debugging your L2 compiler

» Keep two frameworks (downloaded from Canvas) around at all time
* Framework 1: this is where you keep your source code and your compilers
* Framework 2: this is the framework left completely untouched.
* Hence, our compilers are here

* Debugging your work
* First check if the problem is your L2 compiler

e Manually inspect L2/prog.L1
to check if the semantics of the translated L2 program matches L2/prog.L1

* If the problem is your L2 compiler (the semantics don’t match),
then debug just your L2 source code (L2/src/*)

* |f you think your L2 compiler is correct, then
debug your L1 compiler (next slide)

Tips about debugging your L1 compiler

* Double check whether the problem is actually your L1 compiler:
e Go to Framework2 where L1/bin/L1 is our L1 compiler

* Invoke our L1 compiler (disabling our optimizations)
to translate the L1 program generated by your L2 compiler
cd L1;./L1c —O0 PATH Frameworkl1/L2/prog.L1

(where PATH_ Frameworkl is where you have Framework1)
* Run the binary generated by our L1 compiler and check its output
e ./a.out &> tempOutput.txt ; vimdiff tempOutput.txt ../L2/tests/test25.L2.out ;
* Notice that you are still inside Framework?2

* If the output matches the oracle one, then you know the problem is your L1 compiler

* Check the output of your L1 compiler (PATH_Framework1/L1/prog.S) and
compare it with the output of our L1 compiler

e vimdiff PATH_Framework1/L1/prog.S PATH Framework2/L1/prog.S

Final notes about debugging your L2 compiler

 Comparing the output of our L2 compiler with yours
could be misleading

* Our L2 compiler implements slightly more advanced heuristics
(see Advanced graph coloring.pdf)
than the ones described in these slides

e But if you are curious, run our compiler with -v option
JL2¢c —V tests/test0.L2

Always have faith in your ability

Success will come your way eventually

Best of luck!

