mpiler

& nstruction

Interference graph

Simone Campanoni
simone.campanoni@northwestern.edu

S EEE EEE B EE B B B S S B EEE B B B S S Sy

A graph-coloring register allocator structure

Liveness
analysis

Interferences
analysis

“
.
.
.
~
.
.
.
“
‘e
.

f

l

o
0..
.

o

<

*
*
i
*
*
*
*
*
‘0
*

..... : Graph
\ coloring

(Code
analysis | <

spill(f, var, prefix)

f with
var spilled

Spill

~

|

f without variables and

with registers

Outline

 What is the interference graph

* Algorithm to build the interference graph

 Calling convention

The interference graph

* The Graph coloring algorithm assigns variables to registers
%myVarl<-5 | > r10<-5

* This transformation must preserve:
P> o The original code semantics
* The constraints of the target architecture (eg. the second operand of the shift operation

must be a constant or rcx)

* These constraints are encoded in the interference graph

* Nodes: variables
* Edges: interferences
* Meaning of an edge: 2 connected nodes must use different registers

* Next we are going to learn the algorithm that
automatically compute the interference graph

* The algorithm adds edges for different categories of constraints,
one category at a time

* We will motivate each category of constraints by showing
when the algorithm is incorrect if such category is not considered

Generating the interference graph

* 1 node per variable

* GP registers are considered variables

* Connect each pair of variables that belong to the same IN or OUT set
* Connect a GP register to all other registers (even those not used by f)

* And ... \

. %myVar2 r10
Graph coloring ShryVara” ril

Is this correct?

(@myF O (@myF 00
""" 5_'2""""'%} } ril ——%myVar2 15«9
3A>-r-r1§/\7a_r2_<_— 40 : : . . r11 <- 40
YomyVar3 <- { ’ OAmyVarZ} r10 r10 <- r10
______ ca3 T , HornyVar2) r11 < 42
_________________ 0 () o
Zmyvar3 += smyvarZ___ E; 2%22} omyverz) omyVard r104=r11
print %omyVar3 °omy print r10

))

Generating the interference graph (2)

* 1 node per variable

* GP registers are considered variables

* Connect each pair of variables that belong to the same IN or OUT set
* Connect a GP register to all other registers (even those not used by f)

e Connect variables in KILL[i] with those in OUT]i] %myVarz\,rm

 Necessary for dead code that defines a variable %myVar3” *ril
y
spill
(@myF O (@myF 01
""" 2 I e i —%myVar2 o<
%Fn§/\7a-r2_<_- fI-Q ________ o I r11 <- 40
Zomyvar3 < emyvarl | __. E ’ ; m;[i r1o ‘ r10 <-r10
------ <-_-Z@—--————-{(Vm Var3, ‘VomyVarZ} 0 mem rsp 0 <- 42
%myVar3 += %myVar2 omy 7omYy — %myVar3 rl0 +=r11
----------------- {%myVar3}
print %omyVar3 print r10

))

Generating the interference graph (3)

* 1 node per variable

* GP registers are considered variables

* Connect each pair of varia
* Connect a GP register to a

e Connect variables in KILL[i]

oles that belong to the same IN or OUT set
| other registers (even those not used by f)

with those in OUT](i]

* Necessary for dead code that defines a variable

Is this correct?

(@myF O
----------------- {}
______ <y \ rex —rll (@lg‘VF(l)O
9 - r10 <-
? DY % --------- { , omyVar2} \ | Rt
ZmyVar2 <<=%myvarl _ _ 0 r10 %myVar2—rl1l 11 e 110
rll<<=r

%myVar2)

Constrains in the target language L1

* The L1 instruction x sop sx is limited to only shifting
by the value of rcx (or by a constant)

* This must be encoded in the interference graph

* Add interference edges to disallow the illegal registers
when building the interference graph

* For example, consider the following example:

a<<=b
we need to add edges between b and every register except rcx
This ensures b will end up in rcx (or spilled)

Generating the interference graph (3)

* 1 node per variable

* GP registers are considered variables

* Connect each pair of variables that belong to the same IN or OUT set
* Connect a GP register to all other registers (even those not used by f)

e Connect variables in KILL[i] with those in OUT]i]
* Necessary for dead code that defines a variable

* Handle constrained arithmetic via extra edges

""" b rcx_r11 (@myF O

————————————————— { } _
%_r_nl/\ia _r2_<_— _2 _________ { o%rmyVar2] / . rex rcex <-1
%omyVar2 <<= r10 %myVar2 — r11 rﬁ <-<2

r1l1 <<= rcx

%myVar2)

Outline

 Calling convention

The relation between Interference graph,
calling convention, and liveness analysis

* Finally, we can understand why we had the following rules
baked within the Liveness analysis

calluN {u, { caller save registers}
args used}

call RUNTIME N { args used} { caller save registers}

return {rax, {}

callee save registers}

Let’s assume we don’t treat call and return instructions with
special rules.

In other words, let’s assume we don’t embed the calling convention
within the Liveness analysis

Code example

GEN
(@myF
0
%a<-2 //1 {}
rax <- %a // 2 {%0a}
return // 3 {rax}

)

e Are GEN and KILL sets correct?

KILL

{%a}
{rax}

U

OouT

Algorithm

for (each instruction i) {

GENIi] = ...
KILL[i] = ...
}
— for (each instruction i) IN[i] = OUT[i] ={ };
dof

for (each instruction i){
IN[i] = GEN[i] U(OUTI[i] = KILL[i])
OUT[i] = Usasuccessor ofiIN[S]

}

} while (changes to any IN or OUT occur);

Code example

GEN
(@myF
0
%a<-2 //1 {}
rax <- %a // 2 {%0a}
return // 3 {rax}

)

e Are GEN and KILL sets correct?

KILL

{%a}
{rax}

U

U
U
U

OouT

U
U
U

Algorithm

for (each instruction i) {
GEN]i] = ...
KILL[i] = ...
}
for (each instruction i) IN[i] = OUTI[i] ={ };
— dof

for (each instruction i){
IN[i] = GEN[i] U(OUTI[i] = KILL[i])
OUT[i] = Usasuccessor ofiIN[S]

}

} while (changes to any IN or OUT occur);

Code example

GEN KILL IN OouT
(@myF
0
%a <- 2 // 1 {} {%a} {1 i)
rax <-%a //?2 {%a} {rax} {} {}
— return // 3 {rax} {} {} {}
)
 Are GEN and KILL sets correct? IN[i] = GENJi] U(OUTIi] — KILL[i])

OUT[i] = Usa successor of i lN[S]

Code example

(@myF
0
%a <- 2 /] 1
rax <- %a /]2
—— return //3

)

GEN

{}
{%a}
{rax}

e Are GEN and KILL sets correct?

KILL IN OuT
[%a} {} {}
{rax} {} {}
{} {rax} {}

IN[i] = GEN[i] U(OUTIi] — KILL[i])
OUT[i] = Usa successor of j lN[S]

Code example

(@myF
0
%a <- 2 /] 1
— rax<-%a //?2
return //3

)

GEN

{}
{%a}
{rax}

e Are GEN and KILL sets correct?

KILL IN OuT
[%a} {} {}
{rax} {} {}
{} {rax} {}

IN[i] = GEN[i] U(OUTIi] — KILL[i])
OUT[i] = Usa successor of j lN[S]

Code example

(@myF
0
%a <- 2 /] 1
— rax<-%a //?2
return //3

)

GEN

{}
{%a}
{rax}

e Are GEN and KILL sets correct?

KILL IN OuT
[%a} {} {}
{rax} {%a} {rax}
{} {rax} {}

IN[i] = GEN[i] U(OUTIi] — KILL[i])
OUT[i] = Usa successor of j lN[S]

Code example

GEN KILL IN OouT
(@myF
0
— %a<-2 // 1 {} {%a} {1 i)
rax <-%a //?2 {%0a} {rax} {%a} {rax}
return // 3 {rax} {} {rax} {}
)
 Are GEN and KILL sets correct? IN[i] = GENJi] U(OUTIi] — KILL[i])

OUT[i] = Usa successor of i lN[S]

Code example

GEN KILL IN OouT
(@myF
0
— %a<-2 // 1 {} {%a} {1 {%a}
rax <-%a //?2 {%0a} {rax} {%a} {rax}
return // 3 {rax} {} {rax} {}
)
 Are GEN and KILL sets correct? IN[i] = GENJi] U(OUTIi] — KILL[i])

OUT[i] = Usa successor of i lN[S]

Algorithm

for (each instruction i) {

GENIi] = ...
KILL[i] = ...
}
for (each instruction i) IN[i] = OUTIi] ={ };
do{
for (each instruction i){
IN[i] = GEN[i] U(OUTIi] = KILL[i])
OUT[i] = Usasuccessor ofiIN[S]
}

} while (changes to any IN or OUT occur);

Code example

(@myF
0
%a <- 2 /] 1
rax <- %a /]2
— return //3

)

GEN

{}
{%a}
{rax}

e Are GEN and KILL sets correct?

KILL IN OuT
{%a} {} {%a}
{rax} {%a} {rax}
{} {rax} {}

IN[i] = GEN[i] U(OUTIi] — KILL[i])
OUT[i] = Usa successor of j lN[S]

Algorithm

for (each instruction i) {

GEN]i] = ...

KILL[i] = ...
}
for (each instruction i) IN[i] = OUTI[i] ={ };
do{

for (each instruction i){
IN[i] = GEN[i] U(OUTI[i] = KILL[i])
OUT[i] = Usasuccessor ofiIN[S]

}

— } while (changes to any IN or OUT occur);

Code example

(@myF
0
%a <- 2 /] 1
rax <- %a /]2
return //3

)

GEN

{}
{%a}
{rax}

KILL

{%a}
{rax}

U

IN

{}
{%a}
{rax}

OouT

{%a}
{rax}

U

Steps

— 1. Compute IN and OUT sets

2. Compute interference graph from IN and OUT sets

Code example

GEN
(@myF
0
%a <- 2 /] 1 {}
rax <-%a //?2 {%0a}
return // 3 {rax}
r10
) 7\
rax —rl2

* Graph coloring can assign r12 to %a

KILL IN

{%a} {}

{rax} {%a}

{} {rax}
%a

OouT

{%a}
{rax}

U

Code example

(@myF
0
r12<-2 //1
rax<-rl12 //?2
return //3
r10
) 7\ %a
rax —rl2

* Are GEN and KILL sets correct?
* Graph coloring can assign r12 to %a
* |sthere any problem?

Registers

Arguments

rdi
rsi
rdx
rcx
r8
ro

Result

rax

Caller save

r10
ril
r8
ro
rax
rcx
rdi
radx
rsi

Callee save

rl2
rl3
rl4d
rl5

rbp
rbx

Code example

* The calling convention counts
as definitions and uses

* When adding them as such,
we automatically enforce
the calling convention

r10
7~ \ %a
rax —rl2

e Are GEN and KILL sets correct?

* Graph coloring can assign r12 to %a
* |sthere any problem?

Calling convention in GEN/KILL

callu N

call RUNTIME N

— return { rax, {}
callee save registers}

Return instruction in a 2 registers CPU

(@myF O
%a <. 9 w/o calll.ng
convention
return
)
Callee-save:
rl2
w/ calling
Caller-save: convention
r10

%a ri2

r10 /

%a —rl2

r10 /

Graph
coloring

(@myFO 1o
Graph 10 <- 2 \\:%)@f
coloring aturn

)

Calling convention in GEN/KILL

—— calluN

call RUNTIME N

return { rax, {}
callee save registers}

Call instructions

* Which register should we use for %a?
rl0

* s it correct? (r10 is a caller save register)

(@myF 0 (@myF 0
%a <- 2 r10<-2
call @f O call @f O
%a *= %a rl0 *=r10
rax <- %a rax <- r10

return return

Calling convention in GEN/KILL

calluN {u, { caller save registers}
args used}

call RUNTIME N

return { rax, {}

callee save registers}

Homework #2

 Compute the interference graph of an L2 function given as input

* Implement the spiller (see Spilling.pdf)
for an L2 function given as input

* Implement the full L2 compiler
(including the graph coloring algorithm, see Graph_coloring.pdf)

Homework #2

 Compute the interference graph of an L2 function given as input

(@myF The order between
0 rows doesn’t matter

%myVarl <-5

%myVarl %myVar2 r12 r13 r14 r15 rax rbp rbx

Nodes connected with the first one
%myVar2 <- 0 Your work (the order between them doesn’t matter)
%myVar2 += %myVarl needs to A node in the interference graph
return print to rsirl0r11 r12 ... rbp rbx rcx rdi rdx
) std::cout

test/interference/test1.L2f test/interference/testl.L2f.out

Testing the interference graph
of your homework #2

* Under L2/tests/interference there are the tests you have to pass

* To test:
e To check all tests: make test_interference
* To check one test: ./interference test/interference/test1.L2f

* Check out each input/output for each test if you have doubts
e test/interference/test1.L2f
* test/interference/test1.L2f.out

S EEE EEE B EE B B B S S B EEE B B B S S Sy

A graph-coloring register allocator structure

Liveness
analysis

Interferences
analysis

“
.
.
.
~
.
.
.
“
‘e
.

f

l

o
0..
.

o

<

*
*
i
*
*
*
*
*
‘0
*

..... : Graph
\ coloring

(Code
analysis | <

spill(f, var, prefix)

f with
var spilled

Spill

~

|

f without variables and

with registers

Always have faith in your ability

Success will come your way eventually

Best of luck!

