
L1
Simone Campanoni
simone.campanoni@northwestern.edu

Compilers

• Compilers translate a source language (e.g., C++)
to a destination language (e.g., x86_64)
• We use them every day
• If you understand their internals,

you better understand (and take advantage of)
the tools you rely on
• Are you interested in computer architectures?

their inputs is the outputs of a compiler

Front-end
IR

Character stream
(Source code)

Middle-end

IR

Back-end

0101010101
(Machine code)2

Compilers

Front-end
IR

Character stream
(Source code)

Middle-end

IR

Back-end

0101010101
(Machine code) 3

Compilers

Front-end
IR

Character stream
(Source code)

Middle-end

IR

Back-end

0101010101
(Machine code) 4

Compilers

Front-end
IR

Character stream
(Source code)

Middle-end

IR

Back-end

0101010101
(Machine code) 5

Compilers

Back-end

0101010101
(Machine code)

L1

L2

L3

L1c

L2c

L3c

IRc

IR

Machine code generation,
Assembler, Linker

Register allocation

Instruction selection

Data and control
linearization

6

The L1 source language

• L1 is going to be the input of your first compiler L1c

• The output of L1c is an executable ELF binary
that can run on Linux-based and Intel-based systems

L1 program a.outL1c

7

Outline

• L1 language

• Value encoding

• Calling convention

• Heap

8

From now on, we need to use the mindset of
“we want to become L1 developers”

rather than
“we want to build a compiler for L1” (this will come later)

9

The L1 source language

• Similar to a subset of x86_64, but with some abstractions

• L1 only has integer values and memory addresses
(no floating point values)

• L1 has only
compare, call, arithmetic, branch, and memory instructions

rax <- 1movq $1, %rax

10

Correct programs that can be written using a language
are specified using a grammar
and some formal specification for its semantics

A program is a sequence of characters
A grammar specifies the set of sequences of characters
that are allowed

Let’s have a quick introduction to a trivial grammar
and then we’ll look at the L1 grammar

11

Trivial example of a grammar
Let’s assume we want a grammar that allows only the next sequences
of characters:
• a
• 0
• 10
• 20
• 30

p ::= a | b

This is a rule of the grammar

This is the definition of a program

p is defined as

12

Trivial example of a grammar
Let’s assume we want a grammar that allows only the next sequences
of characters:
• a
• 0
• 10
• 20
• 30

p ::= a | b
b ::= 0 |[1-3]0

The exact character “a”
or another symbol that will require

another rule for its definition

The exact character “0”
or

Any number
from 1 included to 3 included

The exact character “0”

13

p ::= a | b
b ::= 0 |[1-3]0 | +? c

• a
• 0
• 10
• 20
• 30
• c
• +c

14

p ::= a | b
b ::= 0 |[1-3]0 | (+|-)? c

• a
• 0
• 10
• 20
• 30
• c
• +c
• -c

15

p ::= a | b
b ::= 0 |[1-3]0 | (+|-)? c | ([a-z]|[A-Z])

• a
• 0
• 10
• 20
• 30
• c
• +c
• -c
• Z
• …

16

p ::= a | b
b ::= 0 |[1-3]0 | (+|-)? c | [a-zA-Z]

• a
• 0
• 10
• 20
• 30
• c
• +c
• -c
• Z
• …

17

p ::= a | b
b ::= 0 |[1-3]0 | (+|-)? c | :[a-zA-Z]+

• :Aaaaaabbdfsdgfdssdfdsgfs
• :A
• :ZFRDFGDFdfsfdsfsdf

18

p ::= a | b
b ::= 0 |[1-3]0 | (+|-)? c | :[a-zA-Z]*

• :Aaaaaabbdfsdgfdssdfdsgfs
• :A
• :ZFRDFGDFdfsfdsfsdf
• :

19

Now we are ready to look at the L1 grammar

20

L1 name

name ::= sequence of chars matching [a-zA-Z_][a-zA-Z_0-9]*

go

3go

This is a name

This is not a name

21

L1 label

label ::= :name
name ::= sequence of chars matching [a-zA-Z_][a-zA-Z_0-9]*

:go

:3go

This is a label

This is not a label

22

L1 program

p ::= (l f+)
l ::= @name
name ::= sequence of chars matching [a-zA-Z_][a-zA-Z_0-9]*

(@go
 f1
 f2
)

The entry point of this L1 program is the function @go

One of these functions must be @go

23

L1 function

p ::= (l f+)
l ::= @name
name ::= sequence of chars matching [a-zA-Z_][a-zA-Z_0-9]*
f ::= (l N N i+)
N ::= (+|-)? [1-9][0-9]* | 0

(@go
 4 2
 i1
 i2
)

We now need to look at
the possible instructions that we can include
in an L1 function

24

L1 instruction: return

f ::= (l N N i+)
i ::= return

25

L1 example

(@go
 (@go
 0 0
 return
)
)

This is a complete and correct L1 program

26

L1 instruction: assignment

f ::= (l N N i+)
i ::= … | w <- s

w ::= a | rax | rbx | rbp | r10 | r11 | r12 | r13 | r14 | r15
a ::= rdi | rsi | rdx | rcx | r8 | r9
s ::= x | N | label
x ::= w | rsp

27

L1 example

(@go
 (@go
 0 0
 rdi <- 5
 rax <- rdi
 return
)
)

• The execution goes top->down,
instruction after instruction

• Undefined behavior:
if the instruction at the bottom of the function is executed
and the semantics is to execute the next one,
then the behavior is undefined

28

L1 example

(@go
 (@go
 0 0
 rdi <- 5
 rax <- rdi
)
)

• The execution goes top->down,
instruction after instruction

• Undefined behavior:
if the instruction at the bottom of the function is executed
and the semantics is to execute the next one,
then the behavior is undefined

29

L1 instruction: assignment

f ::= (l N N i+)
i ::= … | w <- s

w ::= a | rax | rbx | rbp | r10 | r11 | r12 | r13 | r14 | r15
a ::= rdi | rsi | rdx | rcx | r8 | r9
s ::= x | N | label
x ::= w | rsp

When s is a label, then
it must be an existing function name

30

L1 instruction: load

f ::= (l N N i+)
i ::= … | w <- mem x M

w ::= a | rax | rbx | rbp | r10 | r11 | r12 | r13 | r14 | r15
a ::= rdi | rsi | rdx | rcx | r8 | r9
s ::= x | N | label
x ::= w | rsp
M ::= multiplicative of 8 constant (e.g., 0, 8, 16)

31

L1 example

(@go
 (@go
 0 0
 rdi <- 5
 rbx <- mem rdi 8
 return
)
)

32

L1 instruction: load

f ::= (l N N i+)
i ::= … | w <- mem x M

w ::= a | rax | rbx | rbp | r10 | r11 | r12 | r13 | r14 | r15
a ::= rdi | rsi | rdx | rcx | r8 | r9
s ::= x | N | label
x ::= w | rsp
M ::= multiplicative of 8 constant (e.g., 0, 8, 16)

33

L1 instruction: store

f ::= (l N N i+)
i ::= … | w <- mem x M| mem x M <- s

w ::= a | rax | rbx | rbp | r10 | r11 | r12 | r13 | r14 | r15
a ::= rdi | rsi | rdx | rcx | r8 | r9
s ::= x | N | label
x ::= w | rsp
M ::= multiplicative of 8 constant (e.g., 0, 8, 16)

34

L1 instruction: arithmetic operations

f ::= (l N N i+)
i ::= …| w aop t

aop ::= += | -= | *= | &=
t ::= x | N

35

L1 example

(@go
 (@go
 0 0
 rdi <- 5
 rdi += 2
 return
)
)

36

L1 instruction: arithmetic operations

f ::= (l N N i+)
i ::= … | w aop t

aop ::= += | -= | *= | &=
t ::= x | N

Integer overflow is undefined behavior

37

L1 instruction: shifting

f ::= (l N N i+)
i ::= … | w aop t | w sop rcx

sop ::= <<= | >>=

38

rdi <<= rcx

L1 instruction: shifting

f ::= (l N N i+)
i ::= … | w aop t | w sop rcx | w sop N

sop ::= <<= | >>=

39

rdi <<= rcx
rdi <<= 3

L1 instruction: memory arithmetic operations

f ::= (l N N i+)
i ::= …
 | mem x M += t
 | mem x M -= t
 | w += mem x M
 | w -= mem x M

Notice you cannot have
both operands in memory

40

L1 instruction: comparison

f ::= (l N N i+)
i ::= …
 | w <- t cmp t

cmp ::= < | <= | =
Notice there is neither
>
nor
>=

41

L1 example

(@go
 (@go
 0 0
 rax <- 5
 rdi <- rax <= 3
 return
)
)

42

L1 instruction: comparison

f ::= (l N N i+)
i ::= …
 | w <- t cmp t

cmp ::= < | <= | =

43

L1 instruction: conditional jump

f ::= (l N N i+)
i ::= …
 | w <- t cmp t
 | cjump t cmp t label

cmp ::= < | <= | =

Fall-through semantic

44

L1 example

(@go
 (@go
 0 0
 rax <- 5
 :true
 rdi <- rax <= 3
 cjump rdi = 1 :true
 return
)
)

45

L1 instruction: label and jump

f ::= (l N N i+)
i ::= …
 | w <- t cmp t
 | cjump t cmp t label
 | label
 | goto label

46

L1 example
(@go
 (@go
 0 0
 rax <- 5
 rax += 2
 cjump rax <= 3 :END
 rax += 4
 goto :END
 :END
 return
)) 47

L1 instruction: label and jump

f ::= (l N N i+)
i ::= …
 | w <- t cmp t
 | cjump t cmp t label
 | label
 | goto label

The scope of labels is the program

48

L1 another example
(@F1
 (@F1
 0 0
 :L1
 return
)
 (@F2
 0 0
 :L1
 return
)
) 49

L1 instruction: label and jump

f ::= (l N N i+)
i ::= …
 | w <- t cmp t
 | cjump t cmp t label
 | label
 | goto label

The scope of labels is the program

50

but you cannot jump to another function
using cjump or goto

L1 another example
(@F1
 (@F1
 0 0
 goto :L1
 return
)
 (@F2
 0 0
 :L1
 return
)
) 51

This is an incorrect L1 program

L1 instruction: call

f ::= (l N N i+)
i ::= …
 | call u N

u ::= w | l

Number of arguments of the called function (a.k.a. callee)

Name of a function

Register that holds the reference (name) of the function to call
52

L1 example
(@go
 (@go
 0 0
 call @myF2 0
 return
)
 (@myF2
 0 0
 return
)
)

Number of parameters of the function

They must match

Why do we have redundant information in L1?
To simplify the L1 compiler (your work)

53

L1 instruction: call

f ::= (l N N i+)
i ::= …
 | call u N
 | call print 1

54

L1 example
(@go
 (@go
 0 0
 rdi <- 5
 call print 1
 return
)
)

The calling convention
will be explained soon

55

L1 instruction: call

f ::= (l N N i+)
i ::= …
 | call u N
 | call print 1
 | call input 0
 | call allocate 2
 | call tuple-error 3
 | call tensor-error F
F ::= 1 | 3 | 4

56

L1 instruction: misc

f ::= (l N N i+)
i ::= …
 | w++
 | w--
 | w @ w w E

E ::= 1 | 2 | 4 | 8

rax @ rdi rsi 4
Set rax to rdi + (rsi * 4)

57

p ::= (l f+)
f ::= (l N N i+)
i ::= w <- s | w <- mem x M | mem x M <- s |

w aop t | w sop sx | w sop N | mem x M += t | mem x M -= t | w += mem x M | w -= mem x M |
w <- t cmp t | cjump t cmp t label | label | goto label |
return | call u N | call print 1 | call input 0 | call allocate 2 | call tuple-error 3 | call tensor-error F |
w ++ | w -- | w @ w w E

w ::= a | rax | rbx | rbp | r10 | r11 | r12 | r13 | r14 | r15
a ::= rdi | rsi | rdx | sx | r8 | r9
sx ::= rcx
s ::= t | label | l
t ::= x | N
u ::= w | l
x ::= w | rsp
aop ::= += | -= | *= | &=
sop ::= <<= | >>=
cmp ::= < | <= | =
E ::= 1 | 2 | 4 | 8
F ::= 1 | 3 | 4
M ::= multiplicative of 8 constant (e.g., 0, 8, 16)
N ::= (+|-)? [1-9][0-9]* | 0
l ::= @name
label ::= :name
name ::= sequence of chars matching [a-zA-Z_][a-zA-Z_0-9]*

L1

58

Outline

• L1 language

• Value encoding

• Calling convention

• Heap

59

High level vs. low level languages

C language

printf(“5”);
You expect the output

Back-end languages
rdi <- 5
call print 1

You expect the output

It depends on
the encoding scheme
designed for correctness

5

?

60

Value encoding in L1
• A value is either an 8 byte integer value or a memory address
• We would like to differentiate between the two
• Safer programming environment
• Problem: how to do it?
• For example:

mem rdi 8 <- rax
is the value in rdi a memory address?

• This class solution: using the least significant bit to specify it
 0: it is a memory address
 1: it is an integer value
• Values in L1 are all encoded

00000011

Two’s complement

61

High level vs. low level language L1

C language

printf(“5”);
You expect the output

L1 language
rdi <- 5
call print 1

You expect the output

5

2

00000101 00000010
62

Decoding an encoded value

• x & 1 = 0
x is a memory address

• x & 1 = 1
x >> 1 is a 63 bit two’s complement integer

• Values (integer or addresses) must be encoded for runtime APIs
• print
• input (it returns the encoded value of the one read)
• allocate
• tuple-error and tensor-error

63

L1 example

(@go
 (@go
 0 0
 rdi <- 5
 call print 1
 return
)
)

• print writes to the terminal
the integer value encoded in rdi
if rdi contains a number

• What is going to be the output?
 2

64

Outline

• L1 language

• Value encoding

• Calling convention

• Heap

65

Calling convention

• How many arguments a given function has?
 call @myF 2

• Where are the arguments stored?

• Who (caller vs. callee) is responsible for what?

• Where is the return value stored?
rax

66

The stack in L1
Bottom

Top

Stack grows

High address

Low address

• A call instruction that invokes F allocates new memory on top of the stack needed by F
and to pass its arguments

• A return instruction executed in F frees that space 67

The stack in L1: function frame convention
Bottom

Top

High address

Low address
Ret addr

Function frame

So before calling a function, we need to store the return address on top of the stack
68

Storing the return address

Two type of calls:
• Calls to L1 functions
• L1 code is responsible

to store the return address on top of the stack

• Calls to runtime
• L1 code is not responsible

to store the return address on top of the stack
• The rest of the calling convention is the same with calls to L1 functions

69

Function call example
(@myF
 0 0
 mem rsp -8 <- :myF2_ret
 call @myF2 0
 :myF2_ret
 return
)

(@myF2
 0 0
 return
)

Whoever generates L1 code
(developer, compiler that targets L1)
is responsible
• to define the return label

just after the call
• to store that label on top of the stack

It jumps to the label
read from the stack
(and it frees the stack space
 of :myF2)

70

Function call example (2)
(@myF
 0 0

 call print 1

 return
)

• The call itself writes the return address
on top of the stack

• There is no need to define the label
after the call

71

What about function parameters?

• The convention used in the L1 language is that
the first 6 parameters of the callee are passed using registers

• The other parameters are passed using
the function frame of the callee stored on the stack

72

Registers

Arguments

rdi
rsi
rdx
rcx
r8
r9

Result

rax

First argument

(@go
 0 1
 r10 <- 5
 …
)
• What about the previous value of r10?
• We want to write our function without knowing

the registers used/needed by every possible caller
• Is it possible to know them all?

• Who is responsible to save the previous value?
• Are we (the callee)?
• Are the callers?
• We need to establish a convention 73

Registers

Arguments

rdi
rsi
rdx
rcx
r8
r9

Result

rax

Caller save

r10
r11
r8
r9
rax
rcx
rdi
rdx
rsi

Callee save

r12
r13
r14
r15
rbp
rbx

First argument
74

Caller save registers (e.g., r10)
(@myF
 0 1
 r10 <- 5
 mem rsp 0 <- r10
 mem rsp -8 <- :myF2_ret
 call @myF2 0
 :myF2_ret
 r10 <- mem rsp 0
 rdi <- r10
 call print 1
 return
)

(@myF2
 0 0
 r10 <- 3
 return
)

Whoever generates L1 code
(developer, compiler that targets L1)
is responsible
to properly save caller-save registers

What is the output?

75

Caller save registers (e.g., r10)
(@myF
 0 0
 r10 <- 5

 mem rsp -8 <- :myF2_ret
 call @myF2 0
 :myF2_ret

 rdi <- 5
 call print 1
 return
)

(@myF2
 0 0
 r10 <- 3
 return
)

Whoever generates L1 code
(developer, compiler that targets L1)
is responsible
to properly save caller-save registers

R10 is not used after the call.
Hence, we don’t need to save it 76

Callee save registers (e.g., r12)
(@myF
 0 1
 mem rsp 0 <- r12
 r12 <- 5
 mem rsp -8 <- :myF2_ret
 call @myF2 0
 :myF2_ret
 rdi <- r12
 call print 1
 r12 <- mem rsp 0
 return
)

(@myF2
 0 1
 mem rsp 0 <- r12
 r12 <- 3
 r12 <- mem rsp 0
 return
)

Whoever generates L1 code
(developer, compiler that targets L1)
is responsible
to properly save caller-save registers
as well as callee-save registers

77

Callee save registers (e.g., r12)
(@myF
 0 0

 mem rsp -8 <- :myF2_ret
 call @myF2 0
 :myF2_ret

 rdi <- 5
 call print 1
 return
)

(@myF2
 0 1
 mem rsp 0 <- r12
 r12 <- 3
 r12 <- mem rsp 0
 return
)

Whoever generates L1 code
(developer, compiler that targets L1)
is responsible
to properly save caller-save registers
as well as callee-save registers

And
now?

78

The stack in L1
Bottom

Top

High address

Low address
Ret addr

Locals

Args

• Stack space used to store values
needed by the related function

• Locals are used as function variables 79

The stack in L1
Bottom

Top

High address

Low address
Ret addr

Locals

Arg 7

Arg N

80

Stack frame: <= 6 arguments, no locals

(@go
 …
 rdi <- 5
 mem rsp -8 <- :f_ret
 call @f 1
 :f_ret
 …
)
(@f
 1 0
 return
)

Bottom

rsp

Ret addr

81

Stack frame: > 6 arguments, no locals

(@go
 rdi<-1
 rsi<-3
 rdx<-5
 rcx<-7
 r8<-9
 r9<-11
 …
 call @f 7
 …
)

Bottom

rsp

Arguments

rdi
rsi
rdx
rcx
r8
r9

First argument
82

Stack frame: > 6 arguments, no locals

(@go
 … //passing the first 6 arguments
 mem rsp -8 <- :f_ret
 mem rsp -16 <- 11
 call @f 7
 :f_ret
)
(@f
 7 0
 rdi <- mem rsp 0
 call print 1
 return)

Bottom

rsp

Ret addr

1011

83

Stack frame: <= 6 arguments, 1 local

(@go
 …
 mem rsp -8 <- :f_ret
 call @f 1
 :f_ret
 …
)
(@f
 1 1
 return
)

Bottom

rsp

Ret addr

?????

84

Stack frame: <= 6 arguments, 2 locals

(@go
 …
 mem rsp -8 <- :f_ret
 call @f 1
 :f_ret
 …
)
(@f
 1 2
 return
)

Bottom

rsp

Ret addr

?????

85

?????

L1 program example

(@go
 (@go
 0 0
 rdi <- 5
 rsi <- 3
 call @myF 2
 return
)

 (@myF
 2 0
 call print 1
 rdi <- rsi
 call print 1
 return
)

What is the output?

Is there a bug? Where?

mem rsp -8 <- :f_ret

:f_ret

2
1 86

Stack frame: > 6 arguments, > 0 locals

(@go
 … //passing the first 6 arguments
 mem rsp -8 <- :f_ret
 mem rsp -16 <- 11
 call @f 7
 :f_ret
)
(@f
 7 1
 rdi <- mem rsp 0
 call print 1
 return)

Bottom

rsp

Ret addr

1011

?????

What does it print?
87

Stack pointer

• rsp (the stack pointer) is never modified directly by L1 code

• call and return instructions implicitly modify rsp to do their jobs
 (see the grammar)

88

Outline

• L1 language

• Value encoding

• Calling convention

• Heap

89

Heap memory in L1

• Arrays are allocated in the heap

• No explicit deallocation
• A garbage collector is assumed

• APIs
• allocate:

allocate an array of a given number of 64-bit integer elements
• tensor-error and tuple-error:

write to stdout an error message and abort the execution
90

Heap memory in L1

• allocate
• Argument 1: number of array elements to allocate
• Argument 2: 64-bit integer value used to initialize

 all array elements
• Return: pointer to the array allocated and initialized

NUMBER OF ELEMENTS

INITIAL VALUE

INITIAL VALUE

Not encoded

91

Example of L1 program using heap memory

(@go
 (@go
 0 0
 rdi <- 5
 rsi <- 7
 call allocate 2
 return
)
)

2

7

7

rax

92

Example of L1 program using heap memory

(@go
 0 0
 rdi <- 5
 rsi <- 7
 call allocate 2
 rdi <- mem rax 8
 call print 1
 return
)

What is the output?
3

2

7

7

rax + 8

93

Example of L1 program using heap memory

(@go
 0 0
 rdi <- 5
 rsi <- 7
 call allocate 2
 rdi <- mem rax 16
 call print 1
 return
)

What is the output?
3

2

7

7
rax + 16

94

Example of L1 program using heap memory

(@go
 0 0
 rdi <- 5
 rsi <- 7
 call allocate 2
 rdi <- mem rax 0
 call print 1
 return
)

What is the output?
Segmentation fault

How can we fix this L1 program?

rdi <<= 1
rdi++

95

Printing an array

• The API print writes to stdout
the whole array if its pointer is passed as argument

rdi <- 5
rsi <- 7
call allocate 2
rdi <- rax
call print 1

{s:2, 3, 3}
96

Tensors: array of arrays

(@go 0 0
 rdi <- 5
 rsi <- 7
 call allocate 2
 rdi <- 7
 rsi <- rax
 call allocate 2
 rdi <- rax
 call print 1
 return
)

Allocate an array of 2 integer values

Allocate an array of 3 pointers
and initialize them to point to
the previously allocated array

{s:3, {s:2, 3, 3}, {s:2, 3, 3}, {s:2, 3, 3}}The output: 97

Error messaging in L1

tensor-error 1
• Goal: report to the program’s developer a tensor access error

 and abort the execution
• Type of error: a heap object has been accessed without allocating it first
• Arguments:
• First: line number of the program’s file where the tensor access error

has occurred at run-time

98

Example of L1 code that uses tensor-error

(@myF 1 0
 cjump rdi = 0 :ERROR
 call print 1
 :ERROR
 rdi <- 5
 call tensor-error 1
)

If this instruction executes,
then no other instructions will executeNo need for

a return instruction

99

Error messaging in L1

tensor-error 3
• Goal: report to the program’s developer an array access error

 and abort the execution
• Type of error: out-of-bound array access
• Arguments:
• First: line number of the program’s file where the access error

has occurred at run-time
• Second: length of the array that has been accessed incorrectly
• Third: index of the array used to access the array incorrectly

100

Error messaging in L1

tensor-error 4
• Goal: report to the program’s developer a tensor access error

 and abort the execution
• Type of error: out-of-bound tensor access
• Arguments:
• First: line number of the program’s file where the access error

has occurred at run-time
• Second: dimension of the out-of-bound tensor access
• Third: length of the dimension of the tensor accessed incorrectly
• Forth: index used in the dimension that has generated the run-time error

101

Error messaging in L1

tuple-error 3
• Goal: report to the program’s developer a tuple access error

 and abort the execution
• Type of error: out-of-bound tuple access
• Arguments:
• First: line number of the program’s file where the access error

has occurred at run-time
• Second: length of the tuple that has been accessed incorrectly
• Third: index of the tuple used to access the array incorrectly

102

Final notes
• The calling convention must be ALWAYS preserved
• An L1 program with undefined behavior is an incorrect L1 program
• You can write comments in L1
• A comment starts with “//” and it comments until the end of the line
• Example
// This is a comment
rdi <- 5

// this is another comment
• Every line of an L1 program is

a comment, an instruction, or an empty line
 rdi <- 5 // this is incorrect

103

Tests

• Write an L1 program that takes as input a sequence of numbers and print them in
descending order (an example of an input file is available on canvas)
• Example of input file:

• The name of the L1 program file must end with .L1
• For example: myTest1.L1

• Deadline: 2 days from today (see Canvas for the exact deadline)
• Tests and pairs
• Submit one L1 program per pair

104

3
4
2
2

Number of
elements to sort

Elements
to sort

Your L1
code 4 2 2

Always have faith in your ability

Success will come your way eventually

Best of luck!

105

