
L1 -> x86_64
Simone Campanoni
simone.campanoni@northwestern.edu

Before we start

• We use AT&T assembly syntax
• For compatibility with GNU tools

• rdi += rsi
• AT&T: addq %rsi, %rdi
• Intel: addq %rdi, %rsi

2

Outline

• Assembler, linker

• From L1 to x86_64

• Calling convention

3

Setup

• You have the structure of a compiler to start from
• Write your assignment in C++ and store the files in “src”

• You work: save x86_64 instructions in prog.S

• The script “L1c” invokes the assembler and the linker
to generate an executable binary a.out from prog.S

L1 program prog.SYour work as, ld a.out
runtime.o

• L1 standard library
• L1 loader

4

A simple (incomplete) example

• Write src/compiler.cpp

int main(
 int argc,
 char **argv
){
 std::ofstream outputFile;
 outputFile.open("prog.S");
 outputFile << " .text\n" ;
 outputFile.close();
 return 0;
}

5

prog.S structure

• runtime.c has main
• runtime.c invokes go()
• X86_64 assembly

instructions generated
from L1 functions are
appended here

6

Example of prog.S

(@myGo

(@myGo
0 0
return

)

)

.text
 .globl go

go:
pushq %rbx

 pushq %rbp
 pushq %r12
 pushq %r13
 pushq %r14
 pushq %r15
 call _myGo
 popq %r15
 popq %r14
 popq %r13
 popq %r12
 popq %rbp
 popq %rbx
 retq

_myGo:
 retq

Your work

Substitute @ with _

For this L1 program,
We have generated
the equivalent x86_64
version of the code

7

• Let us assume that all L1 instructions/functions have been translated
correctly to x86_64 assembly instructions

• Now what?
• Assembler
• Linker

8

Assembler
• Translate assembly instructions (e.g., movq $5, %rdi)

to their machine code representation (e.g., 48 c7 c7 05 00 00 00)
• Replace labels (e.g., jmp _cool
 …
 _cool:
 OTHERS
)
 to actual offsets (e.g., jmp 42
 …
 OTHERS
)
• Embed machine code instructions in an object file (e.g., ELF)

$ gcc –c yourfile.c -o yourfile.o
$ file yourfile.o
 yourfile.o: ELF 64-bit LSB relocatable, x86-64 …

E xecutable and
L inkable
F ormat

Linux Standard Base 9

Assembler in action

_go:
 movq $2, %rdi
 inc %rdi
 call print
 ret

...
48 c7 c7 02 00 00 00
48 ff c7
e8 00 00 00 00
c3
...

as

mov $0x2,%rdi

inc %rdi

callq 29 <0xf>

retq

prog.S prog.o

10

Linker

• Link object files together
and link them with existing libraries (e.g., libc)

callq 29 <0xf>

...
48 c7 c7 02 00 00 00
48 ff c7
e8 00 00 00 00
c3
...

ld

... ...
48 c7 c7 02 00 00 00
48 ff c7
e8 47 ff ff ff
f4
...

• Relative offsets can now
become absolute

• Undefined symbols (e.g., print)
are now resolved

hlt

11

Outline

• Assembler, linker

• From L1 to x86_64

• Calling convention

12

p ::= (l f+)
f ::= (l N N i+)
i ::= w <- s | w <- mem x M | mem x M <- s |

w aop t | w sop sx | w sop N | mem x M += t | mem x M -= t | w += mem x M | w -= mem x M |
w <- t cmp t | cjump t cmp t label | label | goto label |
return | call u N | call print 1 | call input 0 | call allocate 2 | call tuple-error 3 | call tensor-error F |
w ++ | w -- | w @ w w E

w ::= a | rax | rbx | rbp | r10 | r11 | r12 | r13 | r14 | r15
a ::= rdi | rsi | rdx | sx | r8 | r9
sx ::= rcx
s ::= t | label | l
t ::= x | N
u ::= w | l
x ::= w | rsp
aop ::= += | -= | *= | &=
sop ::= <<= | >>=
cmp ::= < | <= | =
E ::= 1 | 2 | 4 | 8
F ::= 1 | 3 | 4
M ::= multiplicative of 8 constant (e.g., 0, 8, 16)
N ::= (+|-)? [1-9][0-9]* | 0
l ::= @name
label ::= :name
name ::= sequence of chars matching [a-zA-Z_][a-zA-Z_0-9]*

L1

13

L1 returns

To compile return instructions:
• Add q to specify 8 bytes values are returned

return … # see later
retqYour work

14

Example of prog.S

(@myGo
(@myGo

0 0
return

)
)

.text
 .globl go

go:
pushq %rbx

 pushq %rbp
 pushq %r12
 pushq %r13
 pushq %r14
 pushq %r15
 call _myGo
 popq %r15
 popq %r14
 popq %r13
 popq %r12
 popq %rbp
 popq %rbx
 retq

_myGo:
 retq

Your work

15

L1 assignments

To compile simple assignments:
• prefix registers with % and constants and labels with $
• Substitute @ of function names with _

rax <- 1

rax <- rbx

rax <- @f

movq $1, %rax

movq %rbx, %rax

movq $_f, %rax

Your work

16

L1 assignment example

(@myGo
(@myGo

0 0
rdi <- 5
return

)
)

.text
 .globl go

go:
pushq %rbx

 …
 call _myGo
 popq %r15
 …
 retq

_myGo:
 movq $5, %rdi

 retq

Your work

17

L1 assignments to/from memory

To compile memory references:
• put parents around the register and prefix it with the offset

mem rsp 0 <- rdi

rdi <- mem rsp 8

movq %rdi, 0(%rsp)

movq 8(%rsp), %rdi

Your work

18

L1 arithmetic operations

19

L1 arithmetic operations (2)

• rdi-- => dec %rdi

• rdi++ => inc %rdi

20

L1 arithmetic operations in memory

• rdi -= mem rsp 8 => subq 8(%rsp), %rdi

• rdi += mem rsp 8 => addq 8(%rsp), %rdi

• mem rsp 8 -= rdi => subq %rdi, 8(%rsp)

• mem rsp 8 += rdi => addq %rdi, 8(%rsp)

21

• Saving the result of a comparison requires a few extra instructions

• cmpq updates a condition code in some hidden place (flags register)
• Then, we need to use setle to extract the condition code

from this hidden place
• setle, however, needs an 8 bit register as its destination

L1 comparisons

22

Intel sub-registers

23

• Saving the result of a comparison requires a few extra instructions

• cmpq updates a condition code in some hidden place (flags register)
• Then, we need to use setle to extract the condition code

from this hidden place
• setle, however, needs an 8 bit register as its destination
• So we use %dil here because that’s the name of the

least significant 8 bits of %rdi
• setle updates only those 8 bits; therefore we need

movzbq to zero out the rest

L1 comparisons

24

• Mapping register names to their 8-bit variants

L1 comparisons

25

L1 comparisons
• Saving the result of a comparison requires a few extra instructions

• if we had < we’d need to use
setg or setl (for less than or greater than)

• If we had = then we would use sete

26

L1 comparisons with a constant

rdi <- rax <= 10 cmpq $10, %rax
setle %dil
movzbq %dil, %rdi

27

L1 comparisons with a constant

rdi <- 10 <= rax cmpq %rax, $10
setle %dil
movzbq %dil, %rdi

Must be a register

Your compiler must handle this x86_64-specific constraint

28

L1 comparisons with a constant

rdi <- 10 <= rax cmpq $10, %rax
setge %dil
movzbq %dil, %rdi

29

L1 comparisons

30

L1 shifting operations

31

Labels and direct jumps

32

Labels (2)

• When a label is stored in a memory location,
you need to add “$” before the label

mem rsp -8 <- :myLabel movq $_myLabel, -8(%rsp)

33

Conditional jumps

• We have the three same cases as for comparisons
• Here, however, we use a jump

instead of storing the result in a register

• For <=, use jge (jump greater than or equal) or jle
• For <, use jg (jump greater than) or jl (jump less than)
• For =, use je

cjump rax <= rdi :yes cmpq %rdi, %rax
jle _yes

34

Conditional jumps with constants

cjump 1 <= 3 :true jmp _true

cjump 3 <= 1 :true

35

The missing L1 CISC instruction

• The next instruction computes rdi + rsi*4

rax @ rdi rsi 4 lea (%rdi, %rsi, 4), %rax

36

L1 instructions that modify rsp

• call and return instructions

• Function prologue (entry to a function)

37

_myF:
 …
 …
 …
 …
 retq

prologue

body

epilogue

L1 function prologue

• The function prologue allocates locals
• For each local: move the stack pointer by 8 bytes

(@myF
 0 3
 …
)

_myF:
 subq $24, %rsp #Allocate locals
 …

38

L1 return instructions

The return instruction
• frees locals and … (next slide)
• pops the return address from the stack and jumps to it

(@myF
 0 3
 …
 return
)

…
addq $24, %rsp
retq

rsp

Ret addr

VarA

VarB

VarC 39

L1 return instructions

The return instruction
• frees locals and stack arguments
• pops the return address from the stack and jumps to it

(@myF
 7 3
 …
 return
)

…
addq $32, %rsp
retq

rsp

Ret addr

VarA

VarB

VarC

Arg 7

40

L1 call instructions
Calls are translated differently
depending on whether or not they invoke another L1 function

These calls are already considered differently in L1
• Calls to L1 functions: we have to store the return address
mem rsp -8 <- :f_ret
call @myCallee
:f_ret

• Calls to the L1 runtime: we don’t
call print 1

41

L1 call instructions to L1 functions

The L1 call instructions to L1 functions
1. moves rsp based on the number of arguments

and the return address
2. and then jumps to the callee

call @theCallee 11

call @aCallee 6

subq $48, %rsp
jmp _theCallee

Why?
We need to allocate
space for both
arguments passed via
the stack and
the return address
(11 – 6)*8 + 8

Arguments passed via stack

Return
address

subq $8, %rsp
jmp _aCallee

42

L1 indirect call instructions

• If call gets a register instead of a function name, then
the generated assembly code needs an extra asterisk

call rdi 0 subq $8, %rsp
jmp *%rdi

43

L1 call instructions to runtime.c functions

The translation of these L1 call instructions
1. Does not need to change rsp
2. Relies on the Intel x86_64 call instruction

call print 1

call allocate 2

call input 0

call print

call allocate

call input

It takes care of
1. identifying the

return address
2. storing the

return address
on the stack

3. jumping to the callee

44

Function overloading in L1:
call instructions to tensor-error
Problem:
all functions/symbols in x86_64 must have unique names
Solution: different functions in runtime.c for different #parameters

call tensor-error 1

call tensor-error 3

call tensor-error 4

call array_tensor_error_null

call array_error

call tensor_error
45

Outline

• Assembler, linker

• From L1 to x86_64

• Calling convention

46

x86_64 calling convention

• It is different than L1 calling convention

• Why does it matter for L1 programs?
 call print 1 call allocate 2 call array_error 2
• runtime.c includes the body of these functions
• runtime.c is compiled with gcc,

which follows x86_64 calling convention

Why does it work then?

47

Registers (same for L1)

Arguments

rdi
rsi
rdx
rcx
r8
r9

Result

rax

Caller save

r10
r11
r8
r9
rax
rcx
rdi
rdx
rsi

Callee save

r12
r13
r14
r15
rbp
rbx

First argument
48

The stack (different compared to L1)
Bottom

Top

High address

Low address

Ret addr

Vars

Args

Bottom

Top

High address

Low address
Ret addr

Vars

Args

x86_64 L1 49

The stack for runtime.c
Bottom

Top

High address

Low address
Ret addr

Vars

Bottom

Top

High address

Low address
Ret addr

Vars

x86_64 L1

The callee is responsible for allocating and deallocating Vars

50

More about x86_64 calling convention
Bottom

Top

High address

Low address

Ret addr

Vars

Args

Red zone
(128 bytes) 51

x86_64 vs. x86 calling convention
Bottom

Top

High address

Low address

Ret addr

Vars

Args

Red zone
(128 bytes)

Bottom

Top

High address

Low address

Ret addr

Caller ebp

Args

Vars
52

Homework 0

• Develop the L1 compiler
to translate L1 programs to x86_64 binaries
• You must follow the translation specified by these slides
• You must be able to pass all tests

cd L1 ; make test

• Deadline: see Canvas

53

Always have faith in your ability

Success will come your way eventually

Best of luck!

54

