mpiler

nstruction

Simone Campanoni
simone.campanoni@northwestern.edu

A compiler

High level (algorithm level)

statements

Source code

\

The language needs to help
humans to write
(efficient and robust) code

Front-end

J

:

'

The language needs to be easy
to be analyzed and transformed

Explicit, simple, and | R
architecture-independent instructions n
4)
Register allocation Back-end
Assembly generation
_
¥ " The language needs to be easy
Only a few registers, explicit instructions with

constraints (e.qg., lea)

Machine code

to execute efficiently

Outline

°L3

* Translating L3 to L2: calling convention and labels

* Translating L3 to L2: instruction selection

’______________

From L2 to IR going through L3

Explicit, \
simple,
and architecture-independent

instructions

designed for code analysis and
transformation /

‘______________

-_“" - - - - S S S S S S S e

Explicit semantic (e.g., add)

no registers, no calling convention

Small piece of computation (no lea)
e.g., add, br, load, store

L2 language L3 language

* Explicit entry point * Pre-defined entry point
* Explicit calling convention * Hidden calling convention
* Complex per-instruction semantic * Simple per-instruction semantic

* Registers and variables Variables only
(@go (@go 0 define @main (){
rdi <-5 %myRes <- call @myF(5)
mem rsp -8 <- :myF_ret %] <- %myRes * 4
call @myF 1 o 0 0
myF_ret pmyRes <- %myRes + %v1
%myRes <- rax return
%myRes @ %myRes %myRes 4 }
return) define @myF (%p1){
(@myF 1 %p2 <- %pl + 1
rax <- rdi

return %p2

return

)) }

P = (1)

= (I N i)

[n=w<-s | w<-memx M | memx M<-s | w<-stack-arg M |
waopt|wsopsx|wsopN | memxM+=t| memxM-=t|w+=memx M | w-=mem x M |
w<-tcmpt | cjumptcmptlabel | label | goto label |
return | call u N | call print 1 | call input O | call allocate 2 | call tuple-error 3 | call tensor-error F |
WH+ | w--|w@wwE

—h

= a | rax
a c=rdi | rsi|rdx | sx|r8]|r9
sx u=rex | var
=t | label | |
t w=x| N
u w=w | |
X c=w | rsp
aop u=+=|-=| *=| &=
sop n=<<= | >>=
cmp n=<|<=|=
E =11214]8
F =134
M ::= multiplicative of 8 constant (e.qg., 0, 8, 16)
N o=(+]-)? [1-9][0-9]* | O
I = @name
label ::= :name

name ::= sequence of chars matching [a-zA-Z_][a-zA-Z_0-9]*
var ::=%hnhame

L2

Explicit signature

o = ft
f :=define | (vars) {i*}

n=var<-s|var<-topt|var<-tcmpt |
var <-load var | store var <-s |

L3

:> No CISC instructions

return | return t| label | br label | brtlabel | _ _
call callee (args) | var <- call callee ((args) @ — N0 calling convention
callee ::=u | print | allocate | input | tuple-error | tensor-error

vars ::=| var | var(, var)*
args u=|t]|t(t)*

S .=t | label | |

t :=var | N

u =var | |

op =+ |- *|&|<<]| >
cmp =< <=| =] >=| > G—
N o= (+]-)? [0-9]*

I = @name

label ::= :name

var ::=%nhame

The scope of labels is the function!

name::= sequence of chars matching [a-zA-Z][a-zA-Z_0-9]*

L3 program examples

define @main (){
%myRes <- call @myF(5)
%v1 <- %myRes * 4
%Vv2 <- %myRes + %vl
return %v?2

}

define @myF (%p1){
%l1 <-%pl+1

return %l1

)

define @main (){
%v1<-1
%Vv2 <- 2
%Vv3 <- %Vl >= %v2
return %v3

define @myEqual (%p1, %p2){
%Vv3 <- %pl = %p2
br %v3 :mylLabelTrue
return O
:myLabelTrue

return 1

}
define @main (){

%ret <- call @myEqual(3,5)
return %ret

)

Final notes on L3

As for L2:

* Values are encoded following the same rules of L1
e Same rules for memory heap allocation

e Same undefined behaviors

Now that you know the L3 language
1. Rewrite your sorting L2 program using L3 and

2. Write a new L3 program to perform matrix multiplication
(Example of input file = MM.L3.in on canvas)

-

2
2

N WU WNERE, O WN

Outline

* Translating L3 to L2: calling convention and labels

* Translating L3 to L2: instruction selection

The L3 compiler (L3c)

L3 program * To build L3c:
‘ translate an L3 program
PR (S to an equivalent L2
L3cy Your 1
I work | * We need to encode the
l prog.L2 | calling convention
| API -> ABI
l
|

V4 We need to select which
L2 instructions to use for the L3 ones
- out Instruction selection

____-

L3 parser

* Significantly simpler than the L2 parser
Pay attention to the L3 grammar

call () | <- call ()
.:=u | print | allocate | tuple-error | tensor-error
= |
=t t(o)*
= |

e Same rule for all call instructions

Parsing an L3 program

define @main (){ define @main (){
%myRes <- call @myF(5) %myA <- call allocate(3, 1)
call @myF(5) call allocate(3, 1)
return return

J)

Entry point

define @main(){

J

Your work >

(@main
(@main

Making the calling convention explicit: caller

(@main

define @main(){ (@main
%v1 <- call @myF(3) 0

mem rsp -8 <- :myF_ret

Your work rdi <- 3
call @myF 1

‘myF_ret

%Vv]1 <- rax

Making the calling convention explicit: callee

define @myF (%p1){ (@myF
return %pl 1
} Your work %pl <- rdi
rax <- %pl

return

)

Stack arguments, registers, and variables

* L3c is responsible to allocate space on the stack for >6 arguments
* L3c can generate L2 code with registers and variables
 L2c already performs a good register allocation

* Good engineering: don’t replicate functionality
* L3c should not perform register allocation

* L3c should use variables always with the only exceptions of
implementing the calling convention

Labels

* The L3 compiler needs to translate
L3 instruction labels to L2 instruction labels

* No need to change function names
* L3 labels: the scope is the function

» 2 labels with the exact name in 2 different function are possible
* L2 labels: the scope is the program

» 2 |labels with the exact name are not possible

* A possible mapping from L3 labels to L2 ones:
1. Find the longest label for the whole L3 program: LL
2. Append “ global " toit: LLG

3. Forevery L3 label :LABELNAME of a function F,
generate an L2 label by increasing a global counter and appending
it to LLG

You can design your own
translation scheme
(it must be correct)

Label example

define @main (){ * LLis “:begin”

begin * LLG is “:begin_global

‘end s :begin_global0

:begin_globall

Outline

* Translating L3 to L2: instruction selection

A compiler

Instruction selection
Back-end
Register allocation

Assembly generation

/

Machine code

Instruction selection
The process of selecting the lower-level instructions
(assembly instructions)

to use to translate a higher-level representation (e.g., L3)

Instruction selection is intra-procedural

Naive instruction selection for L3

define @myF (%p1l, %p2){
> %v1 <- %pl * 4

Translate L3
instructions

one by one and
independently
with the
surrounding ones

(@myF
2
%p1l <- rdi
%p2 <- rsi
%v1 <- %pl
%vl *=4

Naive translation of an L3 function: problem
define @myF (%p1, %p2){ (@myF (@myF
- %v1 <-%pl*4 Translate L3 20 20
%Vv2 <- %v1 + %p?2 instructions %p1l <- rdi %p1 <- rdi

one by one and %p2 <- rsi %P2 <- rsi
Independently %v1 <- %p1l %2 @ %p2 %pl 4

} with the o
surrounding ones vl T=4

%Vv2 <- %v1)

%Vv2 += %p2

Instruction selection depends

on the context!)

Is there a
better translation? -

Instruction selection: it isn't that easy

define @myF (%p1, %p2){ (@myF
%v1 <- %pl * 3 20
%Vv2 <- %v1 + %p?2 %pl <- rdi

) Your work

Instruction selection must
satisfy all constraints
of the target language! 25

nstruction selection: context

* Instruction selection depends on the context

* Context for this class:
sequence of instructions that does not include

e alabel instruction or
e g call instruction

* The sequence must end when a branch or a return is encountered
(the branch or return are part of the context)

GEm IS IS S S S S S S S -

GEm IS IS S S S S S S S -

Instruction selection step 1: identify contexts

Inst = F.entryPoint()
C = new Context() :myLabel

While (Inst != nullptr){ %Vl <-%pl * 4
if (Inst is not Label or a call) C.add(Inst)

if (Inst is Label, Branch, Call, Return) {

: %Vv2 <- %Vl + %p2

C = new Context() I\~b|” :otherlLabel
T et

Inst = F.nextInst(Inst)

)

Delete empty contexts

Instruction selection step 2: tree generation

: (
We nefed to generate the tree representation @ forvl <- %pl * 4

of the instructions of a context, for every context
%v2 <- %vl + %pZ

1
|
|

* Generate a separate tree for every instruction |

* The order of the trees define
the order of translation/code generation
(e.g., the first L2 instructions generated %v1 %V?2
translate the first tree) ‘ |

%pl 4 %vl %p2

Code generation order >

Instruction selection step 3: merging trees

* We perform instruction selection per tree

e Atarget instruction (e.g., @ in L2) I’ _%;12_%1);:4_ B \|
cannot cover nodes that belong to |
different trees \ V2 <-%v1+%p2 1
* The bigger is the tree, the more optimal _Id_ea_l selection: %v2 @ %p2 %pl 4
the instruction selection can be o
* We aim to make trees as big as possible %v1 %oV 2
* We have generated the smallest trees ‘ |
(one per instruction)
K +
* Now we need to merge them
as much as possible / \ 7N\
* Quality — complexity tradeoff: %pl A %Vv1 %pz

this class targets what is reasonable

for one week of work We cannot obtain the ideal selection

because the target instruction (@)
would cover nodes of different trees

Instruction selection step 3: merging trees

1. Cluster trees that belong to the same context, - - = - - - = - - -~
.) _0 |

2. Merge trees (as much as possible) : vl < %pl ™4 |
that belong to the same context \ V2 <-%v1+%p2

When is it safe %V?2

to merge trees? | %Vv1 %V?2

+ | |

VRN * +

%Vl %p2 / N\ 7N
* %p1l 4 %vl %p2
/7 \

%pl 4

Instruction selection step 3: merging trees

1. Cluster trees that belong to the same context - - - - - - - - - -
. 0 _0 |
2. Merge trees (as much as possible) : A’V;\i %opl ™ 4 e
that belong to the same context \ V2 <-%6V1 + %6p2 T1 I
Let T1, T2 be two trees that
belong to the same context %v1 %V2
uses a variable %v defined by T2 ‘ > Should we |
. What else ? \merge?
* \ +

/\\/\

\

%pl 4 %vl %p2
T2

%v1 <- %pl * 4

Instruction selection step 3: merging trees

%Vv2 <- %v1 + %p2
br :MYL

‘MYL

%Vv3 <- %vl +1

%Vl
|

*
/ N\

%p1l

T2

A

%v?2
|
+
Yov2 merge 7N
| %Vl %p2
+ *
/ N\ 7/ N\
%vl %p2 %pl 4

%Vv2 @ %p2 %pl 4

Is it correct?

Instruction selection step 3: merging trees

1. Cluster trees that belong to the same context - - - - - - - - - -
: _ * |
2. Merge trees (as much as possible) : ovi<-Tpl™a 12
that belong to the same context \ V2 <-%6v1 + %6p2 T1
Let T1, T2 be two trees that
belong to the same context %v1 %V2
uses a variable %v defined by T2 > Should we |
Il. Merge T2 into T1 only when it is safe to do so \merge? +
A. %v is dead after the instruction * \\ /N
related to T1 or %v is only used by / N\ \

%pl 4 %vl %p2
T2

Instruction selection step 3: merging trees

%v1 <- %pl * 4
%Vv2 <- %v1 + %p2
br :MYL

"MYL

%Vv3 <- %vl + 1

%v1 %\|/2 merge %‘\/1 %\|/2
|
* + * +
7\ 7N 7\ 7N
%pl 4 %vl %p2 %pl 4 %Vl %p2

T2 T2

Instruction selection step 3: merging trees

1. Cluster trees that belong to the same context - - - - - - - - - -

] 0 _ 9% |

2. Merge trees (as much as possible) : vl <-%pl ™4 =

that belong to the same context \ V2 <-%6v1 + %6p2 T1

Let T1, T2 be two trees that
belong to the same context %v1 %V2
uses a variable %v defined by T2 > Should we |
Il. Merge T2 into T1 only when it is safe to do so \ merge? +
* \

A. %V is dead after the instruction Y, \ \ / N\

attached to T1 or %v is only used by \

B. Whatelse? %pl 4 %vl %p2
T2

Instruction selection step 3: merging trees

%Vl <-%pl * 4
%v3 <-%vl +1

%V2 <- %Vv1 + %p2 %V3 O%5V2
br :MYL | |
+ ¥
%vl %v3 %v2 / \ 7N sov3 < vl
T \merge>1 v syl %p2l) 2 @2
. . . !
/ \ / \ /' \ 7/ \ Is it correct?
%p1 4 %v1 1%v1 %p2 %pl 4

T2

Instruction selection step 3: merging trees

1. Cluster trees that belong to the same context - - - - - - - - - -
. o0 _ oO * |
2. Merge trees (as much as possible) : vl <-%pl ™ 4 2
that belong to the same context \ V2 <%Vl + %p2 111
Let T1, T2 be two trees that
belong to the same context %v1 %V2
uses a variable %v defined by T2 > Should we |
Il. Merge T2 into T1 only when it is safe to do so \ merge? n
A. %v is dead after the instruction * \\ PN
attached to T1 or %v is only used by 7/ N\ \
B. No instruction that depends on T2 %p]_ 4 %v1 %p2
between T2 and T1,
Y T2

Including T2 in this range

* Dependences exist between instructions
when they both access a variable or memory location
and one of them is a write

* For variables the condition B of the previous slide
becomes the following

Instruction selection step 3: merging trees

1. Cluster trees that belong to the same context — - - - - - - - - -~
. o0 _ oO * |
2. Merge trees (as much as possible) : vl <-7%pl ™ 4 e
that belong to the same context \ V2 <%Vl + %p2 111
Let T1, T2 be two trees that
belong to the same context %v1 %V2
uses a variable %v defined by T2 > Should we |
Il. Merge T2 into T1 only when it is safe to do so \ merge? +
A. %v is dead after the instruction * \\ PN
attached to T1 or %v is only used by 7/ N\ \
B. No instruction that depends on T2 %p]_ 4 %Vv1 %p2
between T2 and T1,
Y T2

Including T2 in this range

Instruction selection step 3: merging trees

1. Cluster trees that belong to the same context - - - - - - - — - ~
. % ~ 9% * |
2. Merge trees (as much as possible) : Avl<oepl ™4 T2
that belong to the same context \ V2 <-%6v1 + %6p2 T1
Let T1, T2 be two trees that
belong to the same context %v1 %V2
uses a variable %v defined by T2 > Should we |
Il. Merge T2 into T1 only when it is safe to do so \merge? +
A. %v is dead after the instruction * \\ /N
attached to T1 or %v is only used by / N\ \
B. No other uses of %v %pl 4 vl %pz
between T2 and T1,and
Y T2

Including T2 in this range

Instruction selection step 3: merging trees

1. Cluster trees that belong to the same context - - - - - - - — - -~
. o0 _ oO * |
2. Merge trees (as much as possible) : Avi<-devl™a 12
that belong to the same context \ V2 <%Vl + %Vl 11
Let T1, T2 be two trees that
belong to the same context %v1 rs:e"r;'ed?we %V2
uses a variable %v defined by T2 ‘ ™ |
Il. Merge T2 into T1 only when it is safe to do so \\ AN < +
A. %v is dead after the instruction * \\ \/\ N
attached to T1 or %v is only used by /7 N\ \ RS
B. No other uses of %v o%vl 4 S%vl %v1
between T2 and T1,and
Y T2

Including T2 in this range

Instruction selection step 3: merging trees

1. Cluster trees that belong to the same context — - - - - - - - - -~
. % ~ 9% * |
2. Merge trees (as much as possible) : AVL<-%pl ™4 T2
that belong to the same context \ V2 <%Vl + %p2 111
Let T1, T2 be two trees that
belong to the same context %v1 o%V2
uses a variable %v defined by T2 » Should we |
Il. Merge T2 into T1 only when it is safe to do so \\merge? +
A. %v is dead after the instruction * \\ PR
attached to T1 or %v is only used by / N\ \
B. No other uses of %v %pl 4 %Vv1 %pz

between T2 and T1 and
What else ?

Instruction selection step 3: merging trees

%Vl <-%pl * 4
%pl<-%pl+1

%Vv2 <- %v1 + %p2 %V2
br :MYL |
+
0 0 0
%Vv1 /opl YoV 2 %pl o - 0\ %pl <-%pl+1
‘ ‘ | ‘ merge ‘ A’Yl A)pz %Vv2 @ %p2 %pl4
* + + + * ls it correct?
N /N /N 29N

2pl 4 %pl 1%vl %p2 %pl 1 %pl 4
T2

Instruction selection step 3: merging trees

1. Cluster trees that belong to the same context - - - - - - - — - ~
: - * |
2. Merge trees (as much as possible) : ovi<-Tpl™a 12
that belong to the same context \ V2 <-%6v1 + %6p2 T1
Let T1, T2 be two trees that
belong to the same context %v1 %V2
uses a variable %V defined by T2 > Should we |
Il. Merge T2 into T1 only when it is safe to do so \merge? +
A. %v is dead after the instruction * \\ /N
represented by T1 or %v is only used by 7\ \

B. No other uses of %v between T2 and %p]_ 4 %Vl %p2

and no definitions of variables used by T2 T2
between T2 and

* The previous condition excludes the possibility to have instructions
between T2 and T1 that depends on T2

* Dependence definition:
two generic instructions depend on each other
if they both access a variable or memory location
and one of them is a write

* If T2 accesses a memory location, then condition B
becomes the following

Instruction selection step 3: merging trees

Tz‘
|

-

%z

1. Cluster trees that belong to the same context _________
2. Merge trees (as much as possible) | %p1 <-load %p0
that belong to the same context : store 3, %p2
Let T1, T2 be two trees that | %z <-load %pl
belong to the same context %p1l
uses a variable %V defined by T2 ‘ % i:‘ec’r“f?we
Il. Merge T2 into T1 only when it is safe to do so S o
A. %v is dead after the instruction load "~
attached to T1 or %v is only used by | S
B. No memory instruction %p0
between T2 and T1,
Y T2

Including T2 in this range

Instruction selection step 4: tiling trees

* Tile = instruction of the target language (e.g., L2) = pattern

* Instruction selectors use pattern-matching on trees with tiles
* Use a tree-based code representation

e Each target instruction defines a tile (pattern)
that can be used to cover the tree

e Used tiles (patterns) = selected target instructions to generate

%Vv2
%Vl <- %pl * 4 |
%Vv2 <- %vl + %p2 /+ ~_
var *= N * 7oVl %p2
T~ T

VAR? N? %p1 4

From L3 instructions to L2 Instructions

1. Translate L3 instructions of a context into a list of trees
* Order needs to be preserved

2. Merge as many trees as possible

3. For each tree (in order):
A. Tiling: cover the tree with L2 tiles
B. Code generation: from the bottom to the top of the tree:

I. Getthe nexttile
ii. Append L2 instructions generated by the current tile

Example: tiles and tiling

? *=? ? < ?
VAR3
|

P

VAR1 VAR?2 VAR3 <- VAR1

VAR3 *= VAR2

VAR2 <- VAR1

%v1 <- %p1l — %v3

%Vv3 <- %Vv2 * %vl !k

%V?2

%Vl <- %p1l
%Vv3 <- %v2
%V3 *= %vl

50

Specialized tiles

? *=7
foT VAR3 VA,R1
|

b S k
VAR3 <- VAR1
VAR1 VAR2 VA SVARL\ARY VAR?

%WVl <- %V1*NV2 %V3 vl %v3 <- %v1
%v3 <- %v1] * 5 lk/ ‘* %Vv3 *=5
/ / —~~
5 %v1 %v?2

Large tiles

? *=7
foT VAR3 VA,R1
|
+ +
VAR3 <- VAR1
VAR1 VAR2 .27 " VAR VAR?2
VAR2
+
VAR1 .
/ N
VAR1 TN

VAR1 VAR1

Tiles and tiling

* Tiles capture compiler’s understanding of
the target instruction set

* In general, for any given tree, many tilings are possible
* Each resulting in a different instruction sequence

* We ensure pattern coverage
by covering, at a minimum, all atomic L3 trees

The instruction selection problem

* Many solutions to cover a tree are possible

* How to pick tiles that cover our tree
with minimum execution time?

* Need a good selection of tiles
* Small tiles to make sure we can tile every tree
* Large tiles for efficiency

Quality of a tile in CC

* Instruction selection should prefer high-quality tiles

* The quality of a tile tis related to
the latency of the instructions generated by t

* In this class, we use the number of instructions
as proxy to the latency

* Hence, if two tiles cover the same sub-tree, then
we choose the one that has less instructions

* Each tile reports the number of instructions generated by it

Tiles in CC

* Tiles need to be desighed such that
a large tile t has <= instructions
than a possible set of small tiles that cover the same sub-tree

* Hence, we prefer larger tiles: fewer instructions

VAIRZ
VAR3 n
|
+ N
/ \ VAR1 / + \
VAR1 VAR? VAR3 <- VAR1

_ +
VAR3 += VAR2 VAR1 / \\

VAR1 VAR1

Quality of a solution of the tiling problem

* Tiling problem: choose a set of tiles to cover a tree

* Quality of a tiling solution: the cumulative execution time
of all instructions generated to cover a tree

* |n instruction selection, we estimate the total execution time
as the sum of costs of all tiles

e In this class: the cost of a tile is the number of instructions of it

* Hence, in in this class: the quality of a tiling solution is
the total number of instructions generated

Example of tiling cost for L3

?*=7 ?<-7?
VAR3
X
/ T~—
VAR3 <- VAR1
VAR1 VAR2 | o3 +_varo VAR2 <- VAR1
%Vv1 <- %pl J0v3 %v1 <- %pl

%V3 <- %v2
%V3 *= %vl

Total cost: 3

%Vv3 <- %Vv2 * %vl !k

%V?2

58

Other examples of L2 tiles

Global vs. local optimal solution

* We want the “lowest cost” tiling

 Take into account cost/delay
of each instruction (i.e., timing model)

* Optimum tiling:
lowest-cost tiling

* Locally Optimal tiling:
no two adjacent tiles can be combined
into one tile of lower cost

Locally optimal tilings

* A simple greedy algorithm works extremely well in practice:
Maximal munch

* Choose the largest pattern with lowest cost,
i.e., the “maximal munch”
* Algorithm:
e Start at root
* Use “biggest” match (in # of nodes)
* This is the munch
e Use cost to break ties

* Recursively apply maximal much
at each subtree of this munch

Maximal munch example

—%Vv2 <- %v1 + 8
%Vv3 <- %v3 * 2
%Vv3 <- %Vv3 * 4 V|2
%Vv4 <- load %Vv2 +\
%V5 <- %Vv4 + %v3 vl 8§

Maximal munch example

%Vv2 <- %vl + 8
—%V3 <- %v3 * 2
%Vv3 <- %Vv3 * 4
%Vv4 <- load %v?2
%V5 <- %v4 + %Vv3

Maximal munch example

%Vv2 <- %vl + 8

%Vv3 <- %v3 * 2 /Vf\
—%V3 <- %Vv3 * 4 V|2 V3 4
%v4 <- load %v2 + PN

/7 N\
%V5 <- %v4 + %v3 vl 8 v3 2

Maximal munch example

%Vv2 <- %vl + 8
%Vv3 <- %v3 * 2
%Vv3 <- %Vv3 * 4
—%Vv4 <- load %v2
%V5 <- %v4 + %Vv3

/% N\
vyi 4
PE AN

vy 2

Maximal munch example

v5

+
va \
%v2 <- %v1 + 8 Ioad

%Vv3 <- %v3 * 2

%Vv3 <- %Vv3 * 4 V|2 Vg* \4

%v4 <- load %v2 /+\ EN
—%V5 <- %v4 + %v3 vi 8 v3 2

Maximal munch example

%Vv2 <- %vl + 8
%Vv3 <- %v3 * 2
%Vv3 <- %Vv3 * 4
%Vv4 <- load %v?2
%V5 <- %v4 + %Vv3

VAR

VAI‘R
+

Cost:1

CONST

Maximal munch example

%Vv2 <- %vl + 8
%Vv3 <- %v3 * 2
%Vv3 <- %Vv3 * 4
%Vv4 <- load %v?2
%V5 <- %v4 + %Vv3

|

v5

+
V4 \

Ioad
v|2

7 N\
vl 8

/*\
v3 4
7N

vy 2

VAR3

S

VAR1

VAR2

Maximal munch example

%Vv2 <- %vl + 8
%Vv3 <- %v3 * 2
%Vv3 <- %Vv3 * 4
%Vv4 <- load %v?2
%V5 <- %v4 + %Vv3

|

v5

+
V4 \

Ioad
v|2

7 N\
vl 8

/*\
v3 4
7N

vy 2

Maximal munch example

%Vv2 <- %vl + 8
%Vv3 <- %v3 * 2
%Vv3 <- %Vv3 * 4
%Vv4 <- load %v?2
%V5 <- %v4 + %Vv3

vs
\ +
~
v|4
Io?d v3
V2 7k \

Maximal munch example

%Vv2 <- %vl + 8
%Vv3 <- %v3 * 2
%Vv3 <- %v3 * 4
%v4 <- load %v2
%V5 <- %v4 + %v3

7\
vl 8

VAN

vi 2

VAR2 <- mem VAR1 0

71

Maximal munch example

Cost: 4

Biggest munch!

var3 <- mem varl CONST

%Vv2 <- %vl + 8
%Vv3 <- %v3 * 2
%Vv3 <- %v3 * 4
%v4 <- load %v2
%V5 <- %v4 + %v3

72

Maximal munch example

%Vv2 <- %vl + 8
%Vv3 <- %v3 * 2
%Vv3 <- %v3 * 4
%v4 <- load %v2
%V5 <- %v4 + %v3

var ¥*= CONST

73

Maximal munch example

var ¥*= CONST

%Vv2 <- %vl + 8
%Vv3 <- %v3 * 2
%Vv3 <- %v3 * 4
%v4 <- load %v2
%V5 <- %v4 + %v3

var ¥*= CONST’

Biggest munch!

74

Maximal munch example

var ¥*= CONST’

%Vv2 <- %vl + 8
%Vv3 <- %v3 * 2
%Vv3 <- %v3 * 4
%v4 <- load %v2
%V5 <- %v4 + %v3

var <<= CONST’

75

Maximal munch example

%Vv2 <- %vl + 8
%Vv3 <- %v3 * 2
%Vv3 <- %v3 * 4
%v4 <- load %v2
%V5 <- %v4 + %v3

76

Maximal munch example

%Vv2 <- %vl + 8
%Vv3 <- %v3 * 2
%Vv3 <- %v3 * 4
%v4 <- load %v2
%V5 <- %v4 + %v3

%V3 <<= 8

77

Maximal munch example

%Vv2 <- %vl + 8
%Vv3 <- %v3 * 2
%Vv3 <- %v3 * 4
%v4 <- load %v2
%V5 <- %v4 + %v3

%V3 <<= 8

78

Maximal munch example

%Vv2 <- %vl + 8
%Vv3 <- %v3 * 2
%Vv3 <- %v3 * 4
%v4 <- load %v2
%V5 <- %v4 + %v3

%V3 <<= 8
%Vv4 <- mem %v1 8

79

Maximal munch example

%Vv2 <- %vl + 8
%Vv3 <- %v3 * 2
%Vv3 <- %Vv3 * 4
%Vv4 <- load %v?2
%V5 <- %v4 + %Vv3

v5

H
~
v4 \
‘ v3

Maximal munch example

%Vv2 <- %vl + 8
%Vv3 <- %v3 * 2
%Vv3 <- %Vv3 * 4
%Vv4 <- load %v?2
%V5 <- %v4 + %Vv3

v5

H
~
v4 \
‘ v3

Maximal munch example

L3 code

> L2 code

%Vv2 <- %vl + 8
%Vv3 <- %v3 * 2
%Vv3 <- %Vv3 * 4
%Vv4 <- load %v?2
%V5 <- %v4 + %Vv3

Maximal munch

* Maximal munch does not necessarily produce
the optimum selection of instructions

* But:
*jtis easy to implement

e it tends to work “well”
for current instruction-set architectures

.. but if we want the optimum??

Instruction selection complexity

* Finding the optimum for tree: P

* Finding the optimum for DAG: NP

* Countless number of heuristics proposed
(including the one described in this class)

* Dynamic programming

* Most (all) of programs we run are DAGs

Homework #3: the L3 compiler

For every L3 functionf L3 function f

l

[Label globalization J
!
Instruction selection
Excluding only step 3 (merging trees) of instruction selection

[API > ABI

L2 function

Always have faith in your ability

Success will come your way eventually

Best of luck!

