mpiler

& nstruction

Liveness analysis

Simone Campanoni
simone.campanoni@northwestern.edu




Outline

* Introduction to register allocation

* Liveness analysis

e Calling convention



A register allocator structure

f
/Register allocator \
e N f without varX
Map < ' [ Spill ]
heuristic | >
Current f, varX

k\l/ /

f without variables




A graph-coloring register allocator structure
f

|
/Register allocator \

r f with
[CO © _ J var spilled )
analysis | & |
v Spill
Graph spill(f, var, prefix)|
\ coloring |

>\ / /

|

f without variables



Task: From Variables to Registers

(@MyVerylmportantFunction O MyVar2 MyVar3

% <-2 * Why can we map and MyVar3 to r8?

%MyVar2 <- 40 . , ,
wvivars < sty © WhY can’twe 1map Wy Yart and MyVar2 to 187 efvere

%MyVar3 += %MyVar2

print %MyVar3 8 9 Hardware

/[COdIe. J ¢ - \\
analysis

L Spill
Graph

coloring ] > L

To compute it automatically, [
we need the liveness analysis X

\\




Liveness analysis

Goal:
ldentify the variables whose values might be used in the future

just before and just after a given instruction |,

for every i in a function f IN (just before) and OUT (just after) sets
. l@myFO ___________. — —{} IN[O!
O___1%myVerl<-2 ______. — {myVarl} OUT(O0], IN[1]
1 %myVar2 <- 40 /{myVarl, myVar2} OUT[1], IN[2]
i_ s%omyVar3 <- %my\Varl /{myVar3, myVar2} OUTQZQ, IN 3
3] 1 %myvar3 +=%myvar2 ___—imyvar3} OUTI3I, IN[.
4____raxscxemyvars Interference graph @myF

return —— myVar2 Graph w/o
) / coloring variables

Live ranges myVar3 °



Outline

* Liveness analysis

e Calling convention



Variables in the liveness analysis

* General Purpose (GP) 64-bit registers are seen as variables
for the liveness analysis

* rspis not included

* Every time we say “variable” in the context of liveness analysis,
we mean either L2 variables or GP 64-bit registers

* IN and OUT sets of the liveness analysis includes variables

* Hence, they include L2 variables or GP 64-bit registers
* IN[i] = {r10}



Execution path

(@myF O
rdi <-5
call print 1
| return -
) Itisa
predecessor of

Let i be an instruction,

we need to identify the set of variables
with values that will be used

just before and just after i

along all possible execution paths that

include |

(@myF2 1

cjump rdi <

4 true

:useless_label

---------- prdi<-5 -

»call print 1

-

v return

true
rdi <-7
call print 1

return

)

-
-

successor of



Successors of an instruction

=w<-s | w<-memx M | memx M <-s | w<-stack-arg M |
waopt|wsopsx | wsopN|memxM+=t| memxM-=t|w+=memxM | w-=memx M |
w<-tcmpt | cjump | label | goto |
return | call u N | call print 1 | call input O | call allocate 2 | call tuple-error 3 | call tensor-error

w++ | w-—-|w@wwE

An instruction i that has only one successor s and
s is the instruction stored just after i

rdi <-5
call print 1

riI0<-rax<5

10



Successors of an instruction (2)

= w<-5s | w<-mem | mem <-s | w <- stack-arg M |
| | | mem +=1t | mem =t | w+=mem | w-=mem |
<- | cjump | | goto label |
return | call | call print 1 | call input O | call allocate 2 | call tuple-error 3 | call tensor-error F |

+H | w-[w@
An instruction i that has only one successor s but goto :MY_ LABEL O
s is not necessarily the instruction stored just after i di <- 5

goto :MY_LABEL O _
~ ~ call print 1

‘MY _LABEL 0
- - ‘MY _LABEL 0



Successors of an instruction (3)

= w<-5s | w<-mem | mem <-s | w <- stack-arg M |
| | | mem +=1t | mem =t | w+=mem | w-=mem |
<- | cjump | | goto |
return | call | call print 1 | call input O | call allocate 2 | call tuple-error 3 | call tensor-error F |
4| v | W@

An instruction i that has no successor



Successors of an instruction (4)

= w<-5s | w<-mem | mem <-s | w <- stack-arg M |
| | | mem +=1 | mem =1t | w+=mem | w-=mem |
<- | cjump t cmp t label | | goto |
return | call | call print 1 | call input O | call allocate 2 | call tuple-error 3 | call tensor-error F |
| v | W@

An instruction i that has two successors

cjump rax<5:L1
rdi<-1

rsi<-3

L1



Now with knowledge about paths and successors
we can compute IN and OUT sets
of each instruction of a function

automatically



Liveness analysis

A variable is alive at a particular point in the program
if its value at that point will be used in a path that starts from there

(the future).

A variable is dead if it is not alive.

* To compute liveness at a given point, we need to look into the future

e A variable v is alive at a given point of a program p if
* Exist a directed path from p to an use of v and
* that path does not contain any definition of v

%Vv1 <-5

%V3 <- 3 —_|
WV2 <- %V«

return

%V1 is alive here

- . .
because it is read

here and
it is not written
here

%v1<-5

—

%v1 <- 3
%Vv2 <- %vl1

%Vv1 is not alive
—~  here

return




Liveness analysis algorithm

— 1. Identify which variables are define
and which ones are read (used) by an instruction

 GEN and KILL sets
(local information)

2. Specify how instructions transmit live values around the program

 How to compute IN and OUT sets from GEN and KILL sets
(global information)

3. lterate (2) until nothing (i.e., IN and OUT set) changes
* Notice that (1) is performed only once!
 GEN and KILL sets are constants and, therefore, path independent!



GEN and KILL sets

* GENJi] = {all variables read (used) by instruction i}
%myVar3 <- %myVarl // GENJi] = {%myVarl}

e KILL[i] = {all variables defined by instruction i}
%myVar3 <- %myVarl //KILL[i] = {%myVar3}

%myVar3 += %myVarl
KILL[i] = {%myVar3} GEN|i] = {%myVarl, %myVar3}



GEN and KILL sets: more examples

* GENJi] = {all variables read (used) by instruction i}
e KILL[i] = {all variables defined by instruction i}

rdi++
KILL[i] = {rdi}
GENTi] = {rdi}



GEN and KILL sets: more examples

* GENJi] = {all variables read (used) by instruction i}
e KILL[i] = {all variables defined by instruction i}

cjump rdi <= %v2 :true
KILL[i] ={}
GENTJi] = {rdi, %v2}



Liveness analysis algorithm

1. Define which variables are define
and which ones are read (used) for each instruction

e GEN and KILL sets

— 2. Specify how instructions transmit live values around the program
* How to compute IN and OUT sets from GEN and KILL sets

3. lterate (2) until nothing changes



IN and OUT sets

* IN[i] = {all variables live right before instruction i}

IN[i] = GENJi] U(OUTIi] — KILL[i]) [i: %v2 <- %v1 i1 %Vv2 <- %v1
If OUTIi] ={} then || If OUT[i]={%V2} then
IN[i] = {%V1} IN[i] = {%V1}
e QUTIi] = {all variables live right after instruction i}
OUT[I] = Usa successor of i IN[S I : Cjump %V - 1 :SZ
1+1: :s1
| %V3<-5 4j: 152

1 %v2 < vevl If IN[i+1] = {%v1} and
If IN[i+1] = {%v1}, then | |IN[i+j]={%v2},

OUTIi] = {%v1} Then OUTIi] = {%v1,%v2}




Algorithm

for (each instruction /) {
GENIi] = ...
KILL[i] = ...
}
for (each instruction i) IN[i] = OUTI[i] ={};
dof{

for (each instruction /){
IN[i] = GEN[i] U(OUTTi] = KILL[i])
OUT[/-] = Usa successor of i |N[5]

j

} while (changes to any IN or OUT occur);



Outline

e Calling convention



Calling convention in GEN/KILL

h I reads th It models the callee,
e callreads the arguments which might change all caller save registers

{uy,
args used}

calluN { caller save registers}

call RUNTIME N { args used} { caller save registers}
return { rax, {}
callee save registers}
\ It models the caller,
The next lecture will show how the analysis can go wrong which might read all

if the above special rules are not enforced callee save registers



Let’s run an example to show the computation of the liveness analysis



Code example

(@myF
0
%a<-2 //1
rax <- %a // 2
——return //3

)

GEN

7}
7}
7}

KILL

{7}
{7}
{7}



Calling convention in GEN/KILL

calluN {u, { caller save registers}
args used}
call RUNTIME N { args used} { caller save registers}

return { rax, {}
callee save registers}

27



Registers

Arguments

rdi
rsi
rdx
rcx
r8
ro

Result

rax

Caller save

r10
ril
r8
ro
rax
rcx
rdi
radx
rsi

Callee save

rl2
rl3
rl4d
rl5

rbp
rbx




Registers

Arguments

rdi
rsi
rdx
rcx
r8
ro

Result

rax

Caller save

r10
ril
r8
ro
rax
rcx
rdi
radx
rsi

Callee save

ri2

Let’s assume

we only have 1 callee save register
(for keeping the example

as simple as possible)



Algorithm

' for (each instruction /) {
GENTJi] = ...
KILL[i] = ...

B
for (each instruction i) IN[i] = OUT[i] ={};
dof{
for (each instruction /){
IN[i] = GEN[i] U(OUTIi] = KILL[i])

OUT[/-] = Us a successor of j IN [5]
}

} while (changes to any IN or OUT occur);



Code example

(@myF
0
%a<-2 //1
rax <- %a // 2
——return //3

)

GEN

{}
{%a}
{rax, r12}

KILL IN

{%a}
{rax}

U

GENJi] = {all variables read (used) by instruction i}

KILL[i] = {all variables defined by instruction i}

OouT



Algorithm

for (each instruction /) {

GEN]Ji] = ...
KILL[i] = ...
}
— for (each instruction i) IN[i] = OUT[i] ={};
dof

for (each instruction /){
IN[i] = GEN[i] U(OUTTi] = KILL[i])
OUT[/-] = Usa successor of i |N[5]

j

} while (changes to any IN or OUT occur);



Code example

(@myF
0
%a<-2 /1
rax <- %a // 2
return //3

)

GEN

{}
{%a}
{rax, r12}

KILL IN
{%a} {}
{rax} {}
{} {}

OouT

U
U
U



Algorithm

for (each instruction /) {
GENIi] = ...
KILL[i] = ...
}
for (each instruction i) IN[i] = OUTI[i] ={};
— dof

for (each instruction /){
IN[i] = GEN[i] U(OUTTi] = KILL[i])
OUT[/-] = Usa successor of i |N[5]

j

} while (changes to any IN or OUT occur);



Code example

GEN KILL IN ouT
(@myF
0
%a <- 2 //1 {} {%a} {} {}
rax <-%a  //?2 {%0a} {rax} {} {}
— return // 3 {rax, r12} {} {} {}

)

IN[i] = GEN[i] U(OUTIi] — KILL[i])
OUT[i] = Usa successor of j lN[S]



Code example

(@myF
0
%a <- 2 /] 1
rax <- %a /]2
—— return //3

)

GEN

{}
{%a}
{rax, r12}

KILL IN OouT
[%a} {} {}
{rax} {} {}
{1} {rax, r12} {1}

IN[i] = GEN[i] U(OUTIi] — KILL[i])
OUT[i] = Usa successor of j lN[S]



Code example

(@myF
0
%a <- 2 /] 1
— rax<-%a //?2
return //3

)

GEN

{}
{%a}
{rax, r12}

KILL IN OouT
[%a} {} {}
{rax} {} {}
{1} {rax, r12} {1}

IN[i] = GEN[i] U(OUTIi] — KILL[i])
OUT[i] = Usa successor of j lN[S]



Code example

(@myF
0
%a <- 2 /] 1
— rax<-%a //?2
return //3

)

GEN

{}
{%a}
{rax, r12}

KILL IN OuUT
[%a} {} {}

{rax} {%a, r12} {rax, r12}
{1} {rax, r12} {1}

IN[i] = GEN[i] U(OUTIi] — KILL[i])
OUT[i] = Usa successor of j lN[S]



ﬁ

Code example

(@myF
0
%a <- 2 /] 1
rax <- %a /]2
return //3

)

GEN

{}
{%a}
{rax, r12}

KILL IN OuUT
[%a} {} {}
{rax} {%a, r12} {rax, r12}
{1} {rax, r12} {1}

IN[i] = GENJi] U(OUTIi] — KILL[i])

OUT[i] = Usa successor of i lN[S]



ﬁ

Code example

(@myF
0
%a <- 2 /] 1
rax <- %a /]2
return //3

)

GEN

{}
{%a}
{rax, r12}

KILL IN OuUT
{%a} {r12} {%a, r12}
{rax} {%a, r12} {rax, r12}
{1} {rax, r12} {1}

IN[i] = GENJi] U(OUTIi] — KILL[i])

OUT[i] = Usa successor of i lN[S]



Algorithm

for (each instruction /) {

GEN[i] = ...
KILL[i] = ...
}
for (each instruction i) IN[i] = OUT[i] ={};
dof{
for (each instruction /){
IN[i] = GEN[i] U(OUTIi] = KILL[i])
OUT[/-] = Usa successor of | |N[5]
}

} while (changes to any IN or OUT occur);



Code example

(@myF
0
%a <- 2 /] 1
rax <- %a /]2
— return //3

)

GEN

{}
{%a}
{rax, r12}

KILL IN OuT
{%a} {r12} {%a, r12}
{rax} {%a, r12} {rax, r12}
{1} {rax, r12} {1}

IN[i] = GEN[i] U(OUTIi] — KILL[i])
OUT[i] = Usa successor of j lN[S]



Algorithm

for (each instruction /) {

GENIi] = ...

KILL[i] = ...
}
for (each instruction i) IN[i] = OUTI[i] ={};
do{

for (each instruction /){
IN[i] = GEN[i] U(OUTTi] = KILL[i])
OUT[/-] = Usa successor of i |N[5]

j

— } while (changes to any IN or OUT occur);



Code example

GEN KILL IN OUT
(@myF
0
%a <- 2 //1 {} {%a} {r12} {%a, r12}
rax <- %a /]2 {%a} {rax} {%a, r12} {rax, r12}
return // 3 {rax, r12} {} {rax, r12}  {}

)

* Variables within the same set are alive at the same time
at that point in the code
* Hence, they cannot be placed in the same register



Homework #1

* Compute the IN and OUT sets
of all instructions of an L2 function given as input
( (in
IN[O] ———(r13 r15raxrl4 rbp r12 rbx )

(@myF IN[1] —(r13 r15 rax r14 rbp r12 %myVarl rbx )
0 IN[2] — (r13 r15 rax r14 rbp %myVar2 r12 %myVarl rbx )
IN[3] —(r13 r15rax r14 rbp r12 rbx )

0 _
omyvarl <- 5 Your work ) (out

%myVar2 <-0 OUT[0] — (r13 r15 rax r14 rbp r12 %myVarl rbx )
%myVar2 += %emyVarl ouT[l] ——

return OUT[2]
) OUT[3] —

r13 r15 rax r14 rbp %myVar2 r12 %myVarl rbx )
r13r15raxrld rbp r12 rbx )

)

(
(
— (
—(

))



Testing your homework #1

e Under L2/tests/liveness there are the tests you have to pass

* A new compiler argument: -|
* Check L2compiler.cpp on Canvas

* To test:
* To check all tests: make test_liveness
* To check one test: ./liveness test/liveness/test1.L2f

e Check out each input/output for each test if you have doubts

* For example, the correct output for the test
test/liveness/test1.L2f
IS
test/liveness/test1.L2f.out



Debugging suggestion

* Don’t forget you have our L2 compiler binary

* So, to help you debug your work:
* you can write your own test (a new MyTest.L2f)

* Generate the output of our L2 compiler by invoking
Jliveness MyTest.L2f > MyTest.L2f.out

 Compare our output with the output generated by your L2 compiler



Always have faith in your ability

Success will come your way eventually

Best of luck!



