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Are these all the steps 
that modern compilers have in their back-ends?
No



Register allocation after instruction selection

v1 *= 4
v2 <- v1
v2 += 5
v3 <- mem v1 0

mem
move

v3
*=

v1 4

move

v2

+=

5

0

lea (5+%v1*4), %v2
subq %v2, %v1
movq 0(%v1), %v3

Total cost: 5

A register allocation
lea (5+%rax*4), %rbx
subq %rbx, %rax
movq 0(%rax), %r8

v1 -> rax
v2 -> rbx
v3 -> r8

Optimum!
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Register allocation after instruction selection

lea (5+%v1*4), %v2
subq %v2, %v1
movq 0(%v1), %v3

lea (5+%rax*4), %rbx
subq %rbx, %rax
movq 0(%rax), %r10
movq %r10, O(%rsp) 

A register allocation
v1 -> rax
v2 -> rbx
v3 -> stack O

v3

Temporary
register
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Register allocation after instruction selection

lea (5+%v1*4), %v2
subq %v2, %v1
movq 0(%v1), %v3
movq %v3, %v4

lea (5+%rax*4), %rbx
subq %rbx, %rax
movq 0(%rax), %r10
movq %r10, O(%rsp)
movq O(%rsp), %r8

A register allocation
v1 -> rax
v2 -> rbx
v3 -> stack O
v4 -> r8

Wait, I thought we found the optimum …
Peephole matching
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Peephole matching

• Basic idea: compiler can discover local improvements locally
• Look at a small set of adjacent operations
• Move a “peephole” over code & search for improvement

• Example: store followed by load

movq %r10, O(%rsp)
movq O(%rsp), %r8

Peephole matching
movq %r10, O(%rsp)
movq %r10, %r8
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Are we happy now
with the generated assembly?

Of course NOT!
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The problem left

lea (5+%rax*4), %rbx
subq %rbx, %rax
movq 0(%rax), %r10
movq %r10, O(%rsp)
movq %r10, %r8
subq %r9, %r10
movq %r10, 0(%r11)

lea (5+%rax*4), %rbx
subq %r9, %r10
subq %rbx, %rax
movq %r10, 0(%r11)
movq 0(%rax), %r10
movq %r10, O(%rsp)
movq %r10, %r8

Instruction 
scheduling

Better schedule of instructions
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Instruction scheduling

Are these all the steps 
that modern compilers have in their back-ends?
Almost



Legalizer

• Some instructions and/or data types 
might not be valid at lower-level representations (e.g., L3)
• E.g., 8-bits variables in IR exist, 

but all variables in lower-level representation are only at 32 bits

• Solution 0: instruction selection
• Advantage: no extra compilation step
• Disadvantage: it makes a complex compilation step even more complex

• Solution 1: legalizer
• Changes the code to replace data types and instructions that are ”illegal” for 

the target architecture with “legal” data types and instructions
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Always have faith in your ability

Success will come your way eventually

Best of luck!
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