
Back-end 
missing pieces

Simone Campanoni
simone.campanoni@northwestern.edu



Tracing 
and
data layout

Instruction selection is part of the backend

Instruction 
selection

Register 
allocation

IR

Assembly

Back-end

Assembly
generation

IR L3 L2 L1

2

Are these all the steps 
that modern compilers have in their back-ends?
No



Register allocation after instruction selection

v1 *= 4
v2 <- v1
v2 += 5
v3 <- mem v1 0

mem
move

v3
*=

v1 4

move

v2

+=

5

0

lea (5+%v1*4), %v2
subq %v2, %v1
movq 0(%v1), %v3

Total cost: 5

A register allocation
lea (5+%rax*4), %rbx
subq %rbx, %rax
movq 0(%rax), %r8

v1 -> rax
v2 -> rbx
v3 -> r8

Optimum!

3



Register allocation after instruction selection

lea (5+%v1*4), %v2
subq %v2, %v1
movq 0(%v1), %v3

lea (5+%rax*4), %rbx
subq %rbx, %rax
movq 0(%rax), %r10
movq %r10, O(%rsp) 

A register allocation
v1 -> rax
v2 -> rbx
v3 -> stack O

v3

Temporary
register

4



Register allocation after instruction selection

lea (5+%v1*4), %v2
subq %v2, %v1
movq 0(%v1), %v3
movq %v3, %v4

lea (5+%rax*4), %rbx
subq %rbx, %rax
movq 0(%rax), %r10
movq %r10, O(%rsp)
movq O(%rsp), %r8

A register allocation
v1 -> rax
v2 -> rbx
v3 -> stack O
v4 -> r8

Wait, I thought we found the optimum …
Peephole matching

5



Tracing 
and
data layout

Instruction selection is part of the backend

Instruction 
selection

Register 
allocation

IR

Assembly

Back-end

Peephole
matching

Assembly generation

6



Peephole matching

• Basic idea: compiler can discover local improvements locally
• Look at a small set of adjacent operations
• Move a “peephole” over code & search for improvement

• Example: store followed by load

movq %r10, O(%rsp)
movq O(%rsp), %r8

Peephole matching
movq %r10, O(%rsp)
movq %r10, %r8

7



Are we happy now
with the generated assembly?

Of course NOT!

8



The problem left

lea (5+%rax*4), %rbx
subq %rbx, %rax
movq 0(%rax), %r10
movq %r10, O(%rsp)
movq %r10, %r8
subq %r9, %r10
movq %r10, 0(%r11)

lea (5+%rax*4), %rbx
subq %r9, %r10
subq %rbx, %rax
movq %r10, 0(%r11)
movq 0(%rax), %r10
movq %r10, O(%rsp)
movq %r10, %r8

Instruction 
scheduling

Better schedule of instructions

9



Tracing 
and
data layout

Instruction 
selection

Register 
allocation

IR

Assembly

Back-end

Peephole
matching

Instruction scheduling

Assembly generation

10



Tracing 
and
data layout

Instruction 
selection

Register 
allocation

IR

Assembly

Back-end

Peephole 
matching

Instruction scheduling

Assembly generation

11

Instruction scheduling

Are these all the steps 
that modern compilers have in their back-ends?
Almost



Legalizer

• Some instructions and/or data types 
might not be valid at lower-level representations (e.g., L3)
• E.g., 8-bits variables in IR exist, 

but all variables in lower-level representation are only at 32 bits

• Solution 0: instruction selection
• Advantage: no extra compilation step
• Disadvantage: it makes a complex compilation step even more complex

• Solution 1: legalizer
• Changes the code to replace data types and instructions that are ”illegal” for 

the target architecture with “legal” data types and instructions

12



Tracing 
and
data layout

Instruction 
selection

Register 
allocation

IR

Assembly

Back-end

Peephole matchingInstruction scheduling

Assembly generation

Instruction and type legalizers

13

Instruction 
scheduling



Tracing 
and
data layout

Instruction 
selection

Register 
allocation

IR

Assembly

Back-end

Peephole matchingInstruction scheduling

Assembly generation

Instruction and type legalizers

14

Instruction 
scheduling



Always have faith in your ability

Success will come your way eventually

Best of luck!

15


