mpiler

& nstruction

Back-end
MISSINg pleces
Simone Campanoni

simone.campanoni@northwestern.edu

Instruction selection is part of the backend

IR
(1 Back—end\
4) 4 L; 4) 4)
Trac;:mg IR Instruction Register L2 Assembly L1
an selection allocation generation
data layout
& J \ y, \ y, \ y, 1}
Are these all the steps Assembly

that modern compilers have in their back-ends?

No

Register allocation after instruction selection

Total cost: 5| Optimum!

A register allocation

vl *=4
v2 <-vl lea (5+%v1*4), %v2
v2 +=5 subq %v2, %v1

v3 <- mem v1 0 movq 0(%v1), %v3

Register allocation after instruction selection

A register allocation
vl -> rax

v2 -> rbx
v3 ->stack O

Temporary
register

Register allocation after instruction selection

vl -> rax

— v2 -> rbx
v3 ->stack O [— I
v4 ->r8

Peephole matching

Wait, | thought we found the optimum ...

Instruction selection is part of the backend

IR
Back-end
(Tracing 4 ™ 4 N 4 ™
nd Instruction Register = Peephole
data | selection allocation matching
\(Jdata layout J y - y - y 11

_

[

Assembly generation]

v

Assembly

Peephole matching

* Basic idea: compiler can discover local improvements locally
* Look at a small set of adjacent operations
* Move a “peephole” over code & search for improvement

* Example: store followed by load

movq %r10, O(%rsp) : movq %r10, O(%rsp)
Peephole matching
movq O(%rsp), %r8 movq %r10, %r8

Are we happy now
with the generated assembly?

Of course NOT!

The problem left

lea (5+%rax*4), %rbx lea (5+%rax*4), %rbx
subq %rbx, %rax subq %r9, %rl10
movq 0(%rax), %rl0 subq %rbx, %rax
movq %rl10, O(%rsp) movq %r10, 0(%rll)
movq %rl10, %r8 movq 0(%rax), %rl10
subq %r9, %rl10 movq %r10, O(%rsp)
[movq %r10, 0(%r11) movq %r10, %r8

Instructiecr
scheduling

Better schedule of instructions

>0

fTracing A
and
_data layout |

\ Back-end

~ N
Instruction

selection

. J

-
Register

allocation
_

~

J

=

-
Peephole

matching
.

~

J

~
!

[Instruction scheduling]

U

[Assembly generatlo /

Assembly

>0

fTracing A
and
_data layout |

\ Back-end

~ N
Instruction

selection

. J

a4

-
Register
allocation

~\

J

-
als

[Instruction scheduling l

=

-
Peephole

matching
.

~

J

!

~

[Instruction scheduling]

U

[Assembly generatlo /

Are these all the steps

that modern compilers have in their back-ends?

Almost

Assembly

Legalizer

e Some instructions and/or data types
might not be valid at lower-level representations (e.g., L3)

* E.g., 8-bits variables in IR exist,
but all variables in lower-level representation are only at 32 bits

 Solution O: instruction selection
* Advantage: no extra compilation step
* Disadvantage: it makes a complex compilation step even more complex

* Solution 1: legalizer

* Changes the code to replace data types and instructions that are “illegal” for
the target architecture with “legal” data types and instructions

IR

&

nstruction and type legalizers]

<
(Tracing

and =

_data layout |

\Back—end

-

G

~N

Instruction |::>
selection

J

-

~N

Instruction

.

scheduling

J

=

-
Register

allocation
_

~N

J

~
1

[Instruction scheduling]@ [Peephole matching]

O

[Assembly generation]

/

¥

Assembly

IR

&

nstruction and type legalizers]

Y

. ™
Tracing

and =
_data layout |

\Back—end

r

~N

Instruction |::>

.

selection

J

-

.

~N

Instruction

scheduling

J

=

-
Register

allocation
_

~N

J

~
1

[Instruction scheduling]@ [Peephole matching]

O

[Assembly generation]

/

¥

Assembly

Always have faith in your ability

Success will come your way eventually

Best of luck!

