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Instruction selection is part of the backend
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Register allocation after instruction selection

Total cost: 5| Optimum!

A register allocation

vl *=4
v2 <-vl lea (5+%v1*4), %v2
v2 +=5 subq %v2, %v1

v3 <- mem v1 0 movq 0(%v1), %v3



Register allocation after instruction selection

A register allocation
vl -> rax

v2 -> rbx
v3 ->stack O

Temporary
register



Register allocation after instruction selection

vl -> rax

— v2 -> rbx
v3 ->stack O [ — I
v4 ->r8

Peephole matching

Wait, | thought we found the optimum ...



Instruction selection is part of the backend
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Peephole matching

* Basic idea: compiler can discover local improvements locally
* Look at a small set of adjacent operations
* Move a “peephole” over code & search for improvement

* Example: store followed by load

movq %r10, O(%rsp) : movq %r10, O(%rsp)
Peephole matching
movq O(%rsp), %r8 movq %r10, %r8



Are we happy now
with the generated assembly?

Of course NOT!



The problem left

lea (5+%rax*4), %rbx lea (5+%rax*4), %rbx
subq %rbx, %rax subq %r9, %rl10
movq 0(%rax), %rl0 subq %rbx, %rax
movq %rl10, O(%rsp) movq %r10, 0(%rll)
movq %rl10, %r8 movq 0(%rax), %rl10
subq %r9, %rl10 movq %r10, O(%rsp)
[movq %r10, 0(%r11) movq %r10, %r8

Instructiecr
scheduling

Better schedule of instructions
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that modern compilers have in their back-ends?

Almost

Assembly



Legalizer

e Some instructions and/or data types
might not be valid at lower-level representations (e.g., L3)

* E.g., 8-bits variables in IR exist,
but all variables in lower-level representation are only at 32 bits

 Solution O: instruction selection
* Advantage: no extra compilation step
* Disadvantage: it makes a complex compilation step even more complex

* Solution 1: legalizer

* Changes the code to replace data types and instructions that are “illegal” for
the target architecture with “legal” data types and instructions
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Always have faith in your ability

Success will come your way eventually

Best of luck!



