mpiler

& nstruction

Puzzle solving

Simone Campanoni
simone.campanoni@northwestern.edu

Materials

* Research paper:
e Authors: Fernando Magno Quintao Pereira, Jens Palsberg

 Title: Register Allocation by Puzzle Solving
* Conference: PLDI 2008

 Ph.D. thesis

e Author: Fernando Magno Quintao Pereira
 Title: Register Allocation by Puzzle Solving
 UCLA 2008

Register Allocation

Spill all variables
Puzzle solving
Linear scan

Graph coloring

m o O ® >

Integer linear programming

4 Generated-code run time

|deal

A
C Equivalent quality
. _B - D of graph coloring
*¢-=-====- E
... in significantly
less time!
|

Compilation time

Outline

* Register allocation abstractions
* From a program to a collection of puzzles
* Solve puzzles

* From solved puzzles to assembly code

A graph-coloring register allocator

terference gré Lt
_________ - ~
< — “

&y D oy
[. 1% /".. .
-: Assign colors ', Register allocator ,
" D/ Cod f with
I I oge .
! = 1Y _ var spilled)
" | = analysis | < |
Bl Caf ¥ <
i I.uerferences] L
! 1 | o 4 L .
! A Spill
B I ““““ . .
+ | Code generation | i .- Graph spill(f, var, prefix)
]
‘.‘ . |
’..«:\ coloring > \) /
I NC e
;T

: In this class:

f without variables and |« All variables have the same type
with registers * Aregister can store any variable

Graph coloring abstraction: a problem

(%MyVeryImportantFunction vl v e
MvVarl <- 2 * MyVarl : 64 bits
Myvarz <- 40 MyVar2 : 32 bits
| I\/IzVar3 <-0 * MyVar3 : 32 bits Software
MyVar3 += MyVari o oTTTmEmEmmmEmmmmmmmmmmmmmm o T
| MyVar3 += MyVar?2 o ‘ o7 ‘ Hardware
print MyVar3 . L
return Register allasmg—» r8 can store either one 64-bit valuel or two 32-bit values
) * 19 can store 64 bit values

Can this be obtained
by the graph-coloring algorithm
you learned in this class?

Puzzle Abstraction

* Puzzle = board (1 area = 1 register) + pieces (variables)

X
e e Y

* Pieces cannot overlap

* Some pieces are already placed on the board
* Task: fit the remaining pieces on the board (register allocation)

X X
Y Y
YA Z

From register file to puzzle boards

* Every area of a puzzle is divided in two rows
(soon will be clear why)

* Registers determine the shape of the puzzle board
Register aliasing determines the #columns

PowerPC
ARM integer registers

From register file to puzzle boards

AX BX X7 DX
AHAL| BEHBL| |cHcL| |DHDL BP SI DI SP
° Q()

/—X86 8 111tegel registers, AX=EAX, SI=ESI, etc ——

Q7
14 D15
F29 |F30 F31|

/—SPARC V9, 8 qua,d -precision floating point registers —7
L[]

]

PowerPC

ARM integer registers

SPARC v8
ARM float registers

L]

SPARC v9

Puzzle pieces accepted by boards

Our class ->

Board
K-1

(>

o

2,

~

H T T—

|

o

2,

>

H T T
N

o

8,

H>} e —— e ———

10

Outline

* From a program to a collection of puzzles
* Solve puzzles

* From solved puzzles to assembly code

From a program to puzzle pieces

1. Convert a program into an elementary program
A. Transform code into SSA form

2. Map the elementary program into puzzle pieces

Static Single Assignment (SSA) representation

* A variable is set only by one instruction in the function body

myVarl <- 5
myVar2 <- 7/
myVar3 <- 42

* A static assignment can be executed more than once

SSA and not SSA example

float myF (float parl, float par2, float par3){
return (parl * par2) + par3; }

float myF(float parl, float par2, float par3) {
myVarl = parl * par2 55P~
myVarl = myVar, 3
ret myVarl}

float myF(float parl, float par2, float par3) {
myVarl = parl * par2
myVar2 = myVarl + par3
ret myVar2}

SSA

14

What about joins?

* Add @ functions/nodes to model joins
* One argument for each incoming branch

e Operationally
 selects one of the arguments based on how control flow reach this node

* At code generation time, need to eliminate @ nodes

b3=0(b1, b2)
If (b3 > N)

Not SSA Still not SSA

Eliminating @

* Basic idea: @ represents facts that value of join
may come from different paths

* So just set along each possible path

b3=0(b1, b2)
If (b3 > N)

Not SSA

Eliminating @ in practice

* Copies performed at ® may not be useful

* Joined value may not be used later in the program
(So why leave it in?)

e Use dead code elimination to kill useless @s

* Register allocation maps the variables
to machine registers

From a program to puzzle pieces

1. Convert a program into an elementary program
A. Transform code into SSA form
B. Transform A into SSI form

2. Map the elementary program into puzzle pieces

Static Single Information (SSI) form

In a program in SSI form:

* Every basic block ends with a m-function
that renames the variables that are alive going out of the basic block

If (b>1)
(c1, c2) =nt(c)

Not SSI

SSA and SSI code

b3=0(b1, b2)
If (b3 >1)
(c1, c2) =m(c)

b3=0(b1l, b2)
If (b3 >1)

If (b>1)

Not SSA and not SSI but not SSI

From a program to puzzle pieces

1. Convert a program into an elementary program
A. Transform code into SSA form
B. Transform A into SSI form
C. Insert in B parallel copies between every instruction pair

2. Map the elementary program into puzzle pieces

Parallel copies

* Rename variables in parallel

(V1, X1,Y1,Z1, A1, B1) = (V, X, Y, Z A, B)
V1=X1+Y1

(V2, X2, Y2, 22, A2, B2) = (V1, X1, Y1, Z1, A1, B1)
72 = A2 + B2

From a program to puzzle pieces

1. Convert a program into an elementary program
A. Transform code into SSA form
B. Transform A into SSI form
C. Insert in B parallel copies between every instruction pair

We have obtained an elementary program!

23

Elementary form: an example

Py: (A =(Agy) < Po: [0:L] =70
| Po5: [(Ag):Ly, (Ag):Ls] =7 (A)) —@
€3 = Pe: (Ag ALg) = (As, ALsg)
P3: (A3,c3) = (Ay,Cp3) Cg7 = AL,
P4- [(A4ac4):L4] = 7t(A3,C3) p7: (A7,C7) = (A6’C67)

P Po-
branch L,, L, e
/.
. Ps-
Ps- > X L3
L/ AL =
c= Pe-
p3- c=AL
jump L, p7:
\ jump L,
Py /
4 Pg:
\
Ly join L,, Ly
Po- Piy
o — C, A —
P1o-
jump L4

\

p8: [(A8,C8)L4] = 7[(A7,C7)

pd

La | pg: (Ag, cg) = D[(Ag, ¢4):Lo, (Ag, cg):L5]

¢ = C9, A9
P1o- 0=0
p]l [()Lcnd] = 7t()

24

From a program to puzzle pieces

2. Map the elementary program into puzzle pieces

Add puzzle boards

L, A —. —The board:
01 AX BX
pi: (AD=(Ag)) Do [0L]=70 m 'B'H’?L
| P25 [(Az):LZ_, (Ag): L] =m (Ay) ‘O
\ —— ———
L, Ly| AL, =- 5
€23 = P (A ALg) = (As, Alsg) |) '
P3: (Az,c3) = (Ay,C03) Cq7 = ALg ’
P4t [(Ag.cy):Ly] =n(Az,c3) p7: (A7,07) = (Ag,C7)
\ pg: [(Ag.cg):Ly] =m(Az.c9) | p, \
/ P, ‘

Ly

p9: (Ag, C9) = (I)[(A4, C4):L2, (A8, C8)L3]
¢ —= C9, A9

P10 0=0

p]]: [()Lend] = 71:()

26

Generating puzzle pieces

* For each instruction i
* Create one puzzle piece for each live-in and live-out variable
* If the live range ends at i, then the puzzle piece is X
* If the live range begins at i, then Z-piece
e Otherwise Y-piece

V1 (used later)
rl0O=r10+3

= V2 (last use) + 3

Board

Kinds of Pieces

Type-0

K-1

=]

Ly
7/-‘»

NE

/'/

Type ‘

X
Y
Z

[N

Type-2

E

I 2 U

27

Agp =
p1: (A =(Agy) <« Po: [O:Ly]=70)
| P2 5! [(Az)iLg, (Ag):Lsy]=m(A)) —@
Ly > ALg ="
Cr3 = Pg: (Ag, ALg) = (As, ALsy)
P3: (Az,c3) = (Ay,C03) Cg7 = ALy
P4 [(Ag.cy):Ly] = m(Az,c3) p7: (A7,07) = (Ag,C7)

\

p8: [(AS,CS)L4] = TC(A7,C7)

pd

L4 p9 (A9, C9) = (I)[(A4, C4)L2, (A8, C8)L3]

¢ = 09, A9
P1o- 0=0
P11t [0:Lepgl =70

% p: (C, d, E, f g)=(C,d, E, f)
2 Ab=C,dE

E pX+1: (A”, b777 E”’ f”, g”):(A, b’ E, f)
% A b C d E f
o0

IS A
o, b !

3 xtl X 7 1 LY
0 C d

o S WM
. oy ,

28

Example

p1 (A= (Ag)) Do [0L,]=70 iy) | A
| P25 [(Az):LZ_, (Ag): L] =m (Ay) —@ .
“——
L, / 6 —_
Cr3 = Pg: (Ag, ALg) = (As, ALsy) -
P3: (A3,¢3) = (Ap,c23) Co7 %E
P4t [(Agscq):Ly] = m(Ag,c3) p7: (A7,07) = (Ag,C7)

\ p8 [(AS,CS)L4] = TC(A7,C7)

L4 [pg: (Ag, cg) = D[(A4, cz):Lo, (Ag, cg):Ls]
¢ = C9, A9

P10 0=0

p]]: [()Lend] = 71:()

Outline

* Solve puzzles

* From solved puzzles to assembly code

Solving type 1 puzzles

* Approach proposed: complete one area at a time

 For each area:

* Pad a puzzle with size-1 X- and Z-pieces
until the area of puzzle pieces == board

mm|nnive

/
Board with 1 pre-assigned piece / . /
Padding

* Solve the puzzle

Solving type 1 puzzles: a visual language

Puzzle solver -> Statement+
Statement -> Rule | Condition
Condition -> (Rule : Statement)

Rule ->

X

X

Z

z

X

X
'
X
Y
—
Y
4
——
X
Z\|Z

* Rule = how to complete an area

* Rule composed by
pattern:
what needs to be already filled
(match/not-match an area)

strategy:
what type of pieces to add and where

A rule r succeeds in an area ag iff
Area a

i. rmatches a and
ii. pieces of the strategy of r
are available 3

Solving type 1 puzzles: a visual language

Puzzle solver -> Statement+ Puzzle solver success

Statement -> Rule | Condition * A program succeeds iff
Condition -> (Rule : Statement) all statements succeeds

Rule -> X ballad e A rule r succeeds in an area g iff

i. rmatches a

|z Jlzlz] ii. pieces of the strategy of r are available

X
X
‘Al EE * A condition (r : s) succeeds iff
X
Y
Y
Z
X
Z|Z

x| [* r succeeds or (x B0 x| x)
SERICE)) NN) A e ssucceeds

X : . .
21zl Y] * All rules of a condition
sl % Bl % | must have the same pattern

z Z\|Z 33

X
Z
X
Z
———
X
2| 111z
—
X
Z
R
X

Solving type 1 puzzles: a visual language

Puzzle solver -> Statement+
Statement -> Rule | Condition
Condition -> (Rule : Statement)

Rule ->

X

X

Z

z

X
A
X
'

X
¥
—
Y
VA
——
X
Z\|Z

Puzzle solver execution
o For each statement si, ..., sn

¢ For each area a such that
the pattern of si matches a

J Apply sito a
 If si fails,

terminate
and report failure

34

sl

) [

Program execution:

* A puzzle solver

X

X

Z

X

{

e Puzzle

Z

R8

ro

X

K

Q

Puzzle solved!
Z

an example

1. sl1 matches al only

2. Apply sl to al succeeds
and returns this puzzle

X | K
| a

3. s2 matches a2 only

4. Apply s2to a2

A. Apply first rule of s2: fails
B. Apply second rule of s2: success

35

Program execution: another example

* A puzzle solver

| X | X

'(X
sl

o Puzzle

EIE R

="

)]

Y2

Puzzle solved!

1. sl1 matches al only

2. Applysltoal

A. Apply first rule of s1: success
al

a2 a3
' X3 !’ H \ X1] |X2] Y1] |Y2

3. s2 matches a2 and a3
al a2 a3

4. Applys2toa2 ' Xs |r Vi |

5. Apply s2 to a3 36

B
[N

Program execution: yet another example

* A puzzle solver

N(ESEER R

e Puzzle

al a2 a3
’l H \ X1 [X2 X3 Y1

Y2

Finding the right puzzle solver
is the key!

1. sl1 matches al only

2. Applysltoal
A. Apply first rule of s1: success

al a2 a3
e lm)

3. s2 matches a2 and a3
4. Apply s2 to a2: fail

No 1-size x pieces,
we used them all in sl

37

Solution to solve ty

5

B

6

X

Z
—

ne 1 puzzles

Theorem: a type-1 area is solvable
iff this program succeeds

) Wait, ...
did we just solve an NP problem
in polynomial time?

a)

X
Z
T—
Z | Z
" —
s | X X
Y
"1 Z Z
T Te———
2
X X X | X X |l X | X | X
Y ¥
Z Z Z|" "
T S — B Te———
14
X X X
Y Y
Z Z Z | Z Z ||z Z | Z
T T T —— W—
X X X X | X X | X
Y Y|Y % |
Z Z Z‘Z Z Z | Z
e e — T—

1)

)

Register allocation:
complete all areas

Simplified problem solved:
complete one area
at a time

38

Solution to solve type 1 puzzles: complexity

Corollary 3.
Spill-free register allocation with pre-coloring

for an elementary program P and K registers
is solvable in O(|P| x K) time

For one instruction in P:

* Application of a rule to an area: O(1)

* A puzzle solver O(1) rules on each area of a board

e Execution of a puzzle solver on a board with K areas takes O(K) time

Solving type O puzzles

Board

Kinds of Pieces

Type-0

K-1

. X
Y "
. Z

Type-1

==

T
- L 2]

Type-2

EmEm

40

Solving type O puzzles: algorithm

oPlace all Y-pieces on the board

oPlace all X- and Z-pieces on the board

1>

Spilling

* If the algorithm to solve a puzzles fails
i.e., the need for registers exceeds the number of available registers
=> spill

* Observation: translating a program into its elementary form
creates families of variables, one per original variable
* To spill:
* Choose a variable v to spill from the original program

 Spill all variables in the elementary form
that belong to the same family of v

Outline

* From solved puzzles to assembly code

From solved puzzles to assembly code

L, A=-
Pr Po:
branch L,, L3 \O
7 3.
Py p5-‘ L,
L —)
2 C:J Pe: AL The l)f);lr(]:f p @ Ll
ps3 c=AL AX BX 0
] g ——~ = | pCA Py
\. N L L AH|AL| [BH|BL
p4'¥ p8:
¥
L, jom Ly, L, —————
Po: P11
e=c,A [——>e
P1o:
jump Lend p,)
4 P
Ly Ag ="+ 3
Py (A =(Agp po: [O:L1]==()
prs ALy ALy =nAp [T ————@
L2 L3 AL56 = ‘ p3
Co3 = P’ (Ag: ALg) = (As. ALse) p
p3: (A3,03) = (Ay,cp3) Cq7 = ALg 4
P4 [(Ag.cq):Ly] = m(A3,c3) P7: (A7.¢7) = (Ag.Ce7)
\ Pg: [(Ag.cg):Ly] =m(Az.c7)
L4 [po: = : / : / P11
Po: (Ag, €g) = P[(Ay, c4):Ly, (Ag, cg):L1] :
9 9_9CA 4> C4):Ln, (Ag, Cg)ils = » AL, BX >0
« =CoAg | ,e pO C ML A
P1o: 0=0 [
p11: [0:Lepgl =70 P

44

From solved puzzles to assembly code

L[a=-
P Po:
bra/nch L%, L, e
. ps:
py: 5 1 L,
L/ AL=-
c= Ps:
P3 c=AL
jump Ly P7
\ jump L,
Py /
4 pg:
\
Ly join Ly, Ly
Po: Pi
e=c,A [——>e
P10
jump L4
L _
1 AO] =
pPi: (A1) = (A0|)

Po: [O0:Ly] =70

L,

€3 =
p3: (Az,c3) = (Ap,cy3)
P4 [(Agcq):Ly] = m(A3,05)

Ly

The board:

AX BX
e, =
AH[AL| |BH|BL

Algg ="

Pg: (Ags ALg) = (As, ALgg)
C67 = AL6

P7: (A7.67) = (Ag,Cq7)

pg: [(Ag,cg):Ly] = m(Aq,c7)

L4
* = C9, A9

P1p:0=0

P11: [0:Lgpgl = 70

p9: (Ag, C9) = (I)[(A4, C4):L2, (Ag, CS)L3]

L, AX =
Py Po:
branch L,, L, —@
/ \
Pa- Ps:

L)

|BX = AX|
BL = AL=-
p3: Pe-
lcxhg BX, AX| AL =AL
jump L, py:
\ jump L,
: /
Pa:
1 pg:
Ly join L,, L3
Po- Pir:
AL, BX [——>e
Pio-
Jjump Lend

45

t Generated code run time
A
C Equivalent quality
_________ D of graph coloring
*-=-=-====- E
... in significantly
less time!
|deal m :

Compilation time

Thank you!

Always have faith in your ability

Success will come your way eventually

Best of luck!

