
Spilling
Simone Campanoni
simone.campanoni@northwestern.edu

Register allocator

A graph-coloring register allocator structure

Graph
coloring

f

Spill

f without variables and
with registers

spill(f, var, prefix)

f with
var spilledCode

analysis

Liveness
analysis

IN, OUT

Interferences
analysis

Interference
graph

f

2

Spilling
• Procedure used by a register allocator with the following inputs
• A function f
• A variable v that needs to be allocated to the stack

(as local in L1)
• A string (see later)

• This procedure modifies f to allocate v on the stack
• Make a new location on the stack
• Replace all writes to v

with stores to the new stack location
• Replace all reads from v

with reads from the new stack location
3

Spilling example

(@myF
 0
 %a <- 1
 %x <- %a
 return
)

(@myF
 0 1
 mem rsp 0 <- 1
 %x <- mem rsp 0
 return
)

idealSpiller(@myF, a)

2 registers are needed Only 1 register is now needed!
All L2 instructions can use variables,
but only some L1 instructions can access a memory location!

Not possible for L2

4

Spilling example (2)

(@myF
 0
 %a <- 42
 %a += %a
 return
)

(@myF
 0 1
 %S0 <- 42
 mem rsp 0 <- %S0
 %S1 <- mem rsp 0
 %S1 += %S1
 mem rsp 0 <- %S1
 return
)

spillForL1(@myF, %a, %S)

For every instruction that uses
the spilled variable:
• Create a new variable that

starts with %S and ends with
a new number

• Replace the original instruction
using the new variable

• Add loads/stores around
the new instruction

5

L2

In between L2 and L1

Spilling example (2)

(@myF
 0
 %a <- 42
 %b <- 40
 %b += 2
 %a *= %a
 return
)

(@myF
 0 1
 %S0 <- 42
 mem rsp 0 <- %S0
 %b <- 40
 %b += 2
 %S1 <- mem rsp 0
 %S1 *= %S1
 mem rsp 0 <- %S1
 return
)

spillForL1(@myF, %a, %S)

What if we have only 1 register?

6

%a

Register allocator

Graph
coloring

f

Spill

f without variables and
with registers

spill(f, var, prefix)

f (in between L2 and L1) with
var spilledCode

analysis

7

Liveness needs to handle it

• L2 does not have
callee-save registers

• Spiller cannot generate
callee-save registers

• So the language
in between L2 and L1
is just L2 plus
stack locals of L1

Testing your spiller for homework #2

• Under L2/tests/spill there are the tests you have to pass

• To test:
• To check all tests: make test_spill
• To check one test: ./spill tests/spill/test1.L2f

• Check out each input/output for each test if you have doubts
• tests/spill/test1.L2f
• tests/spill/test1.L2f.out

8

Always have faith in your ability

Success will come your way eventually

Best of luck!

9

