Time Squeezing,
for Tiny Devices\Z

DAC 2018, ISCA 2019

http://users.cs.northwestern.edu/~simonec/Research by project.html

<2 NVIDIA.

http://users.cs.northwestern.edu/~simonec/Research_by_project.html

Difficult to achieve energy wins in tiny devices

* Tiny devices include:
* Energy efficient wearable devices
* Nano drones
* Implantable devices
* Smart city sensors

* Require general purpose CPUs with reasonable
performance

 Difficult to improve efficiency
* These CPUs are lean and well-optimized already
e Circuit-level tricks are mostly exhausted
* End of Moore’s Law and Dennard Scaling

Implantable blood pressure sensor

2

Looking for efficiency

Clock period

Time

Overhead:
data-dependent dynamic timing slack (DTS)

Clock period
Safety
Actual circuit delay margins
<< > > -
Aging
Data value variation
[DAC 2018, ISCA 2019]
addq rax rox * The architecture cannot change
the data to compute
10 -1 - > * but compilers often can

10 1 .

Example of compiler transformation
that modifies DTS

Clock Cycle
(a) < Y >

cmp rl, r2 iq—p

Dynamic Circuit-Level Critical Path

Outline

* Data dependent DTS

* |dea behind Time Squeezer),

* Compiler transformations

* Experimental results

Compilers
for Exploiting Data-dependent DTS

* Introducing Time Squeezer

* First DTS-aware compiler which considers
the impact that data has on timing slack

* Squeezes operations to expose an additional amount of
dynamic timing slack to the hardware

* Placement of data and ways of accessing the data (EA)
impact critical paths

* Coupling DTS-aware compilers and architecture
saves energy in tiny devices

Adders are the workhorses

Adders are used for

A. Adding/subtracting program values

Operand A

\C. Comparing values

(B. Computing stack and heap addresses

~\

Operand B

J

if (x_size <= MAX){

,2 1. Inverting bits of r2

" 2. Adding 1
cmp rl, r2 Adding -
> clang P v 3. Addingrl to the new r2

\

000094e0 <susan_principle>:
94e0: e92d4ff0 push {r4,r5,r6,r7,r8, r9, sl, fp, Ir}

str r0, [fp, #-32] ; OxffffffeO

9504: e50b0020

str r2, [fp, #-36] ; Oxffffffdc

9510: e50b2024

susan_principle(...) {
int x_size, y_size,;

.4, Set the flags

l[dea behind Time Squeezer:
avoid subtracting low values

* Charry chains in adders lead to long circuit-level latencies

1011 1110 1111 1111 1111 1100 1011 1000 carry chain OXBEFFFCBS —
32
Clock Cycl
Current < — -
compilers “ors”

!

Dynamic Circuit-Level Critical Path |

-l

* The ‘b idea: a compiler that reduces carry chain lengths and
an architecture to aggressively shrink clock cycles

The Time Squeezer Approach

——

Time Squeezer { |,

—— i — — — — —— — — — — — e ————————

__

The core uses 40.5% less energy with Time Squeezer!
(on average among 13 workloads)

10

Long circuit-level critical path:
stack address computation

High susan_principle: - offset1 000094e0 <susan_principle>:
(Oxff...ff) Stack | 94e0: €92d4ff0 push {r4,r5, 6,17, 18,19, sl, fp, Ir}
(managed by compiler) | .-~ Ioffsetl
] X_size 9504: e50b0020 str rO, [fp, #-32] ; OxffffffeO
_____________________________ y_size
9510: e50b2024 str r2, [fp, #-36] ; Oxffffffdc
_____________________________ x_offset ‘DD
y_offset o
Heap susan_principle(...) {
------ "int X_size, y_size;
Others
Low (static, literals, instructions...) }
(0x0..00)
.. . . . B..A B, A{BLA
* Optimization 1: access stack locations from the stack pointer (SP) n,n 171700
* Complexity increases when alloca() is invoked W v
* Optimization 2: align the SP to a power of 2 S S; g
n

* |nstead of an adder, we use OR gates

.ong circuit-level critical path:
neap address computation

... = myObject->fieldl ...

C de analysis

and

P= &(myObjeCt_>ﬂe|d1) transf rmation
for (...){ * Loop rotation
. e Common sub-expression elimination +
p--, 2 rl-8 @ <:Z
| > ‘ code scheduling

1. Forces field address computation \
e = myStruct—>fie|d1 to use Object pointer :
2. Align object pointer to be a power of 2 |

|

for small objects

Long circuit-level critical path:
values comparison

Inverting a small value (e.q., r2)

(111111111111 11111111 1111 1101 : 1111“\1
1 1011 1110 1111 1111 1111 1100 1001 1000 (@) - Clock Cycle .
cmp rl, r2 >
i DTS
Inverting a high Value (e'g.l rl) h Dvnamic Circuit-Level Critical Path o

0000 0000 0000 0000 0000 0000 0101 0000
AN N N N Y 3 ‘ 2 \Y
1011 1110 1111 1111 1111 1100 1001 1000

 We run a profiler to understand the likelihood of each bit to be one
 We run a model to compare the two orders (e.g., cmprl, r2 vs.cmp r2, rl)
 We modify the subsequent branch accordingly

(like for the translation of “<=" from L1 to x86_64)

<>y TimesSqueezer:
PP the 15t data-dependent DTS aware compiler

Optimization target:
inversion of small values encoded using the 2-complement representation

The TimeSqueezer compiler

1. Generate comparison instructions]
decreasing the likelihood of inverting small values Boost

Layout the stack to avoid the need for inverting small values T DTS
Layout heap objects to avoid the need for inverting small values

4. Generate code to tune the clock cycle period at run-time « Squeeze out DTS

<>y TimesSqueezer:
> the 15t data-dependent DTS aware compiler

Optimization target:
inversion of small values encoded using the 2-complement representation

The TimeSqueezer architecture

1. Tune the clock cycle period at run-time

2. Detect timing speculative errors

3. Guarantee correctness thanks to existing recovering mechanisms

<>y TimesSqueezer:
PP the 15t data-dependent DTS aware compiler

Optimization target:
inversion of small values encoded using the 2-complement representation

| Razor m CLK-sched Time Squeezer Baseline

Normalized Energy
Consumption

X S < > & X > X X N .
& & < & N & & qu’e & éz;\é\ ® & N W
NG o D . ° D) S .
@ MiBench ¢ % Optical Flow

Breaking Down Energy Savings

* All of the proposed DTS optimizations contribute to benefits
 Stack alignment has biggest impact on average

Previous work
—p @ CLK-sched m SP Transf. u SPAlignment Previous work

Heap Alignment m CMP Swapping m Branch Pre-comp. /

c

§50%

2 []

g 4o By S B

% 30%

&

2 20%

&

o 10%

S o
X = G G & N o & AN AN .
& & & T c,o"#.&"’z F L F @O W

17

Understanding Overheads

Benchmark § Cache Miss Memory Binary
Rate Overhead Overhead

basicmath 0.25% 7.19% 3.09%
* Memory alignment creates some bitcnt 0.16% 5.11% 3.14%
overhead cre 0.45% 3.41% 8.16%
dijkstra 0.30% 4.40% 9.80%
* Leads to slight increase in cache = 0.41% 11.9% 9 599
miss rate gsort 0.35% 7.16% 11.86%
° BUt there iS no tangible susan 0.30% 6.85% 11.39%
performance |mpact' rijndael 0.59% 10.3% 5.88%
sha 0.41% 12.6% 14.06%
stringsearch =~ 0.24% 4.42% 5.17%
iiof 0.34% 6.10% 11.27%
hsof 0.28% 7.19% 6.02%
|kof 0.37% 11.5% 9.45%

Mean 0.35% 6.14% 8.38%

18

Timing slack depends on data

Operand A

* Comparing values

‘- Computing stack and heap addresses

\

Operand B

J

,2 1. Inverting bits of r2

7 2. Adding 1

\

>4, Set the flags

000094e0 <susan_principle>:
94e0: e92d4ff0 push {r4,r5,r6,r7,r8, r9, sl, fp, Ir}

9504: e50b0020 str r0, [fp, #-32] ; OxffffffeO

9510: e50b2024 str r2, [fp, #-36] ; Oxffffffdc

if (x_size <= MAX){\ -
cmprl, r2
> c|ang> P v 3. Adding rl to the new r2

19

Always have faith in your ability

Success will come your way eventually

Best of luck!

