
Time Squeezing
for Tiny Devices

DAC 2018, ISCA 2019
http://users.cs.northwestern.edu/~simonec/Research_by_project.html

http://users.cs.northwestern.edu/~simonec/Research_by_project.html

Difficult to achieve energy wins in tiny devices

• Tiny devices include:
• Energy efficient wearable devices
• Nano drones
• Implantable devices
• Smart city sensors

• Require general purpose CPUs with reasonable
performance

• Difficult to improve efficiency
• These CPUs are lean and well-optimized already
• Circuit-level tricks are mostly exhausted
• End of Moore’s Law and Dennard Scaling

SKeye mini Quad copter

Implantable blood pressure sensor

2

Looking for efficiency

3

Time

Clock period

Data value variation
[DAC 2018, ISCA 2019]

Aging

Temperature

Process

Voltage

Actual circuit delay
Safety
margins

Overhead:
data-dependent dynamic timing slack (DTS)

addq rax rbx

Clock period

10 -1
10 1 4

• The architecture cannot change
the data to compute

• but compilers often can

Example of compiler transformation
that modifies DTS

Dynamic Timing Slack

Dynamic Timing Slack

Additional DTS

5

Outline

• Data dependent DTS

• Idea behind Time Squeezer

• Compiler transformations

• Experimental results

6

Compilers
for Exploiting Data-dependent DTS
Dynamic Timing Slack is a function of code and data
• Introducing Time Squeezer
• First DTS-aware compiler which considers

the impact that data has on timing slack
• Squeezes operations to expose an additional amount of

dynamic timing slack to the hardware

• Placement of data and ways of accessing the data (EA)
impact critical paths
• Coupling DTS-aware compilers and architecture

saves energy in tiny devices

7

Adders are the workhorses

Adders are used for
A. Adding/subtracting program values

B. Computing stack and heap addresses

C. Comparing values

if (x_size <= MAX){
 …
}

…
cmp r1, r2
…

clang

1. Inverting bits of r2
2. Adding 1
3. Adding r1 to the new r2
4. Set the flags

Operand A Operand B

8

Idea behind Time Squeezer:
avoid subtracting low values
• Charry chains in adders lead to long circuit-level latencies

• The idea: a compiler that reduces carry chain lengths and
 an architecture to aggressively shrink clock cycles

Current
compilers

Our
compiler

carry chain 0xBEFFFCB8 –
 32

9

The Time Squeezer Approach

The core uses 40.5% less energy with Time Squeezer!
(on average among 13 workloads) 10

Long circuit-level critical path:
stack address computation

• Optimization 1: access stack locations from the stack pointer (SP)
• Complexity increases when alloca() is invoked

• Optimization 2: align the SP to a power of 2
• Instead of an adder, we use OR gates

x_offset
y_offset

11

Long circuit-level critical path:
heap address computation
… = myObject->field1 …

p = &(myObject->field1)
for (…){
 p--;
}

… = myStruct->field1 …

r1 - 8

• Loop rotation
• Common sub-expression elimination +

code scheduling

1. Forces field address computation
to use object pointer

2. Align object pointer to be a power of 2
for small objects

12

Inverting a small value (e.g., r2)

Inverting a high value (e.g., r1)

Long circuit-level critical path:
values comparison

• We run a profiler to understand the likelihood of each bit to be one
• We run a model to compare the two orders (e.g., cmp r1, r2 vs. cmp r2, r1)
• We modify the subsequent branch accordingly

(like for the translation of “<=“ from L1 to x86_64) 13

TimeSqueezer:
the 1st data-dependent DTS aware compiler

Optimization target:
inversion of small values encoded using the 2-complement representation

The TimeSqueezer compiler
1. Generate comparison instructions

decreasing the likelihood of inverting small values
2. Layout the stack to avoid the need for inverting small values
3. Layout heap objects to avoid the need for inverting small values
4. Generate code to tune the clock cycle period at run-time

Boost
DTS

Squeeze out DTS

14

TimeSqueezer:
the 1st data-dependent DTS aware compiler

Optimization target:
inversion of small values encoded using the 2-complement representation

The TimeSqueezer architecture
1. Tune the clock cycle period at run-time
2. Detect timing speculative errors
3. Guarantee correctness thanks to existing recovering mechanisms

15

TimeSqueezer:
the 1st data-dependent DTS aware compiler

Optimization target:
inversion of small values encoded using the 2-complement representation

Prior work

16

Breaking Down Energy Savings
• All of the proposed DTS optimizations contribute to benefits
• Stack alignment has biggest impact on average

Previous work
Previous work

17

Understanding Overheads

• Memory alignment creates some
overhead
• Leads to slight increase in cache

miss rate
• But there is no tangible

performance impact!

Benchmark Cache Miss
Rate

Memory
Overhead

Binary
Overhead

basicmath 0.25% 7.19% 3.09%
bitcnt 0.16% 5.11% 3.14%
crc 0.45% 3.41% 8.16%
dijkstra 0.30% 4.40% 9.80%
fft 0.41% 11.9% 9.59%
qsort 0.35% 7.16% 11.86%
susan 0.30% 6.85% 11.39%
rijndael 0.59% 10.3% 5.88%
sha 0.41% 12.6% 14.06%
stringsearch 0.24% 4.42% 5.17%
iiof 0.34% 6.10% 11.27%
hsof 0.28% 7.19% 6.02%
lkof 0.37% 11.5% 9.45%
Mean 0.35% 6.14% 8.38%

18

Thank you!

Timing slack depends on data

• Computing stack and heap addresses

• Comparing values

Operand A Operand B

if (x_size <= MAX){
 …
}

…
cmp r1, r2
…

clang

1. Inverting bits of r2
2. Adding 1
3. Adding r1 to the new r2
4. Set the flags

19

Always have faith in your ability

Success will come your way eventually

Best of luck!

20

