
Welcome!
Simone Campanoni
simone.campanoni@northwestern.edu

2

Who we are

Simone Campanoni Brian Homerding
BrianHomerding2026@u.northwestern.edu

3

Outline

• Structure of the course

• Compilers

• Compiler IRs

4

CC in a nutshell
• CS 322: main blocks of modern compilers

• Satisfy the system breadth for CS major
• When: Tuesday/Thursday 5pm - 6:20pm
• Where: here J
• Office hours:

• Brian: Friday 4:30pm – 6:30pm via Zoom (link on Canvas)
• Simone: Monday 4:30pm – 5:30pm via Zoom (link on Canvas)

• CC is on Canvas
• Materials/Assignments/Grades on Canvas

5

CC in a nutshell
• CS 322: main blocks of modern compilers

• Satisfy the system breadth for CS major
• When: Tuesday/Thursday 5pm - 6:20pm
• Where: here J
• Office hours:

• Tommy: Friday 12:30pm – 2:30pm via Zoom (link on Canvas)
• Simone: Tuesday Noon – 1:00pm via Zoom (link on Canvas)

• CC is on Canvas
• Materials/Assignments/Grades on Canvas

6

CC in a nutshell
• CS 322: main blocks of modern compilers

• Satisfy the system breadth for CS major
• When: Tuesday/Thursday 5pm - 6:20pm
• Where: here J
• Office hours:

• Tommy: Friday 12:30pm – 2:30pm via Zoom (link on Canvas)
• Simone: Tuesday Noon – 1:00pm via Zoom (link on Canvas)

• CC is on Canvas
• Materials/Assignments/Grades on Canvas

7

CC in a nutshell
• CS 322: main blocks of modern compilers

• Satisfy the system breadth for CS major
• When: Tuesday/Thursday 5pm - 6:20pm
• Where: here J
• Office hours:

• Tommy: Friday 12:30pm – 2:30pm via Zoom (link on Canvas)
• Simone: Tuesday Noon – 1:00pm via Zoom (link on Canvas)

• CC is on Canvas
• Materials/Assignments/Grades on Canvas
• You’ll upload your assignments on Canvas

• CC is part of the sequence of compiler classes at Northwestern University
• Other compiler-heavy classes: CS 323 and CS 397/497
• My teaching philosophy (e.g., learn by building): link

8

https://users.cs.northwestern.edu/~simonec/Teaching.html
https://users.cs.northwestern.edu/~simonec/CAT.html
https://users.cs.northwestern.edu/~simonec/ATC.html
https://users.cs.northwestern.edu/~simonec/files/Teaching/Teaching_philosophy.pdf

CC materials

• Slides

• Books

• Papers and library documentation
for further information

9

CC slides

• You can find last year slides from the class website

• We improve slides every year
• Based on problems we observe

the year before
• So: we will ask your feedbacks at the end
• Our goal: maximize how much you learn in 10 weeks

• We will upload to Canvas the new version of the slides
before each class

10

http://users.eecs.northwestern.edu/~simonec/CC.html

CC slides

• Organized in topics
that follow the compilation steps
of modern compilers

• We will cover one topic per week

11

The CC structure

Topic & homework

Today

Week
Tuesday

Homework
tests

Thursday
Homework

• Needs to be done
within 6 days

• Needs to be done
within 48 hours

12

Output of your work

Homework after homework

you’ll build

your own compiler

from scratch

Homework 1

…

Homework N

Homework 2

Source code (C like)

Target code (x86_64)

13

Homework

Homework 1

…

Homework N

Homework 2

Source code (C like)

Target code (x86_64)

Each assignment is composed by:
1. A set of programs written

in the source programming language (PL)
considered
(program assignment)

2. A compiler that translates
the source PL
to the destination PL
(compiler assignment)

14

Homework
• Program assignment (when I’ll mention in the class)
• You need to write Y programs

in the source language of that assignment
Deadline: 2 days

• Compiler assignment
• Day X: you have the assignment
• Deadline: 6 days after
• Your compiler has to pass all tests included in the framework

• Late submission: you cannot be selected as a panelist (see later)
15

Evaluation of your work

Homework 1

…

Homework N

Homework 2

Source code (C like)

Target code (x86_64)

For each assignment, you get 1 point iff:
1. Your tests are correct
2. You pass all tests using

your current and prior work and
3. I will not find a bug in your implementation
 (I will manually inspect your code)

Some assignments can be passed either:
- Properly: by implementing the algorithm

discussed in class
- Naively: you will not get the point,

but you can access the next assignment
(do not submit naïve solutions)

16

The CC competition

• At the end, there will be a competition between your compilers

• The team that designed the best compiler
• Get an A automatically

(no matter how many points they have)
• Their names go to the “hall of fame” of this class

17

http://users.eecs.northwestern.edu/~simonec/CC.html

The CC grading

• 8 assignments (8 points)
• If not submitted on time,

you cannot be selected for being a panelist

• +1 point if you submit
the last assignment on time
for the final competition
• 3 panelist experiences (3 points)

Grade Passed
A >= 11
A - 10
B + 9
B 8
B- 7
C+ 6
C 5
C- 4
D 3
F 0 – 2

1. Manager
2. Manager supports
3. Secretary

No final exam

18

Rules for homework
• You are encouraged (but not required) to work in pairs
• Pair programming is not team programming
• Declare your pair by the next lecture (send message via email to TA)
• After this deadline, you can only split (no new/merging pairs is allowed)
• If you don’t declare your pair, then you’ll work alone

• No copying of code is allowed between pairs
• Tool, infrastructure help is allowed between pairs
• First try it on your own

(google and tool documentation are your friends)
• Avoid plagiarism

www.northwestern.edu/provost/policies/academic-integrity/how-to-avoid-plagiarism.html

• If you don’t know, please ask
19

http://www.northwestern.edu/provost/policies/academic-integrity/how-to-avoid-plagiarism.html

Summary

•My duties
• Teach you the blocks of a compiler
• And how to implement them

• Your duties
• Learn all compiler blocks presented in class
• Implement some of them (the most important ones)
• Write code in C++
• Test your code
• Then, think much harder about how to actually test your code
• Be ready for being in a panel when asked (the day before)

20

Structure & flexibility

• CC is structured w/ topics

• Best way to learn is to be excited about a topic

• Interested in something?
Speak

I’ll do my best to include your topic on the fly

21

Week 1

Today
• Structure of CS 322
• Intro to compilers
• The CC framework

F.E. B.E.

Thursday

• The L1 language

Topic & homework

Today

M.E.

22

Outline

• Structure of the course

• Compilers

• Compiler IRs

23

Math

Practice

PLCompilers

Arch

24

The role of compilers

00101010111001010101001010101011010

25

The role of compilers

00101010111001010101001010101011010

If there is no coffee, if I still have work to do,
I’ll keep working, I’ll go to the coffee shop

If there is no coffee{
 if I still have work to do{
 I’ll keep working;
 }
 I’ll go to the coffee shop;
}

???

26

If there is no coffee{
 if I still have work to do{
 I’ll keep working;
 }
 I’ll go to the coffee shop;
}

Interpreter

While (s = nextStatement()){
 switch (s.type){
 case IF: …
 case ADDITION: …
 case RETURN: …
 }
}

👍 Relatively simple to build and maintain
👍 Great for prototyping
👎 It quickly becomes too slow
👎 It often consumes a lot of memory

27

The role of compilers

00101010111001010101001010101011010

If there is no coffee{
 if I still have work to do{
 I’ll keep working;
 }
 I’ll go to the coffee shop;
}

Compilers
👍 Great performance of the generated binaries that get optimized
👍 Important energy savings are unlocked for the generated binaries
👎 Compilation/optimization time can increase significantly when large programs are compiled
👎 Compilers are large and complex codebases

28

Compiler goals
• Goal #1: correctness
• Goal #2: maximize performance and/or energy consumptions
• Goal #3: easy to be extended to
• New architecture features (e.g., x86_64, +AVX, +TSX)
• Evolutions of the targeted PL (e.g., C++99, C++11, C++14, C++17)
• New architecture / ISA (e.g., RISC V)
• New PL (e.g., Rust, Swift)

• Goal #4: Minimize maintainability costs
• Write DRY code (Don’t Repeat Yourself)
• Exploit code generation

29

Goals of your compilers in this class
• Goal #1: correctness
• Goal #2: maximize performance and/or energy consumptions
• Goal #3: easy to be extended to
• New architecture features (e.g., x86_64, +AVX, +TSX)
• Evolutions of the targeted PL (e.g., C++99, C++11, C++14, C++17)
• New architecture / ISA (e.g., RISC V)
• New PL (e.g., Rust, Swift)

• Goal #4: Minimize maintainability costs
• Write DRY code (Don’t Repeat Yourself)
• Exploit code generation

30

Structure of a compiler
Character stream (Source code)

Lexical analysis

int main (){
 printf(“Hello World!\n”);
 return 0;
}

Tokens

i n t m a i n …

INT STRINGSPACE SPACE …

Syntactic &
semantic analysis

AST
31

Structure of a compiler
Character stream (Source code)

Lexical analysis

Tokens

i n t m a i n …

INT STRINGSPACE SPACE …

Syntactic &
semantic analysis

AST

Function signature

Return type

INT

Function name

STRING 32

Structure of a compiler

Syntactic &
semantic analysis

AST

Function signature

Return type

INT

Function name

STRING

IR code generation

IR myVarX = 40
myVarY = myVarX + 2

33

Structure of a compiler

Front-end
IR

myVarX = 40
myVarY = myVarX + 2

Character stream (Source code) i n t m a i n …

Middle-end

IR
myVarY = 42

CS 323: Code analysis and transformation

Back-end
Machine code 010101110101010101

CS 322: Compiler Construction

CS 322: Compiler Construction

34

Outline

• Structure of the course

• Compilers

• Compiler IRs

35

Example of IR

define i64 @f (i64 %p0) {
 entry:
 %myVar1 = add i64 %p0, 1
 ret i64 %myVar1
}

LLVM

36

Another example of IR

define int64 @f (int64 %p0) {
:entry

int64 %myVar1
%myVar1 <- %p0 + 1
return %myVar1

}

37

Multiple IRs used together

Translation
IR1

Programming language

Translation

IR2

Translation

Machine code
38

IRs are languages

Translation N

…

Source code

L1

Translation N - 1

Translation 0

• A compiler is a sequence of passes

• Each pass translates
from a source language to a target language

• Source and target languages can be the same
(transformations in the middle end)

• Some languages have the support to be
written/read into/from files

Target code 39

In this class

Homework 0

…

Source code

L1

Homework 2

Homework 8

• The final compiler is built as a sequence of
internal compilers

• Each internal compiler translates
from a source language to a target language

• Source and target languages are always different

• All languages are
written/read into/from files

• Each homework is a standalone compilerTarget code 40

In this class

• All compilers you will build can assume
the program given as input is correct
• No need to check program’s correctness
• Production compilers first check program’s correctness,

then they do the translations/optimizations/code generations

• When you write a program in a given language, it is your job to guarantee
the correctness of the program you have written

• When a compiler generates the code in its target language, it is
the compiler responsibility to generate correct code in the target language
(while assuming the correctness of the code written in the source language
 given as input)

Source language

Target language

One of your compiler

41

Let’s build our first compiler

42

The recipe of a disaster

1. Let’s translate independently
a statement of the source program
to a sequence of IR instructions

2. Let’s translate independently
an IR instruction
to a sequence of machine code instructions

43

The good and the bad compiler
int main (int argc, char *argv[]){
 return argc + 1;}

Naïve compiler

lea 0x1(%rdi), %eax

retq

push %rbp

mov %rsp,%rbp

movl $0x0,-0x4(%rbp)

mov %edi,-0x8(%rbp)

mov %rsi,-0x10(%rbp)

mov -0x8(%rbp),%edi

add $0x1,%edi

mov %edi,%eax

pop %rbp
retq

clang

• Would you use a new PL
if the resulting code is 100x slower
compared to a C++ version?

• Would you use a CPU
if your code is 100x slower
compared to running it on an Intel CPU?

44

Conclusion

• Compilers translate a source language to a destination language
• Front-end -> IR -> Middle-end -> IR -> back-end

• They help developers to be productive
(enabling new PLs and abstractions)
• They help systems to run faster

(enabling new resources of new CPUs)

• Correctness, efficiency (generated code and compiler itself),
maintainability, extensibility
are all aspects to consider when designing a compiler

45

Always have faith in your ability

Success will come your way eventually

Best of luck!

46

