mpiler

nstruction

Welcome!

Simone Campanoni
simone.campanoni@northwestern.edu

Bem VlIldO (elamat [)atang
Namaste, = Shillkomnmeén
Bienvenidos g Dienvenve lenvenUe Wl come Blen venidos Sleas s Dlal
Benvenut]
Welkom @Vm .
Dienvenue ‘w: : elcome
1enven1dos e (Toeso
Selaléat Datang " e 28 s).@_uNamaSte PV ‘
o Welcome %ﬁmn‘lﬁ!mwe Bem Vindo

nobpe gowbh envenUt]Wﬂlkommen

KaAwc nNABaTte Benvenuti

Who we are

Simone Campanoni Brian Homerding

BrianHomerding2026@u.northwestern.edu

Outline

e Structure of the course

* Compilers

* Compiler IRs

CC in a nutshell

CS 322: main blocks of modern compilers
 Satisfy the system breadth for CS major

When: Tuesday/Thursday 5pm - 6:20pm
Where: here ©

Office hours:
* Brian: Friday 4:30pm —6:30pm via Zoom (link on Canvas)
 Simone: Monday 4:30pm —5:30pm via Zoom (link on Canvas)

CCis on Canvas
* Materials/Assignments/Grades on Canvas

CCin a nutshell

CC 2024 % Edit

Syllabus

Lectures and files C mp||er

Tutorials
Piazza: signup 5, login &

Zoom:

C nstruction

 Lectures &=
» Simone's office hours =
« Brian's office hours =

The compiler is the programmer's primary tool. Understanding the compiler is therefore critical for programmers,

even if they never build one. Furthermore, many design techniques that emerged in the context of compilers are
useful for a range of other application areas. This course introduces students to the essential elements of
building a compiler: parsing, context-sensitive property checking, code linearization, register allocation, etc. To
take this course, students are expected to already understand how programming languages behave, to a fairly
detailed degree. The material in the course builds on that knowledge via a series of semantics preserving
transformations that start with a fairly high-level programming language and culminate in machine code.

* CCison Canvas

* Materials/Assignments/Grades on Canvas

Tutorials

Next are the tutorials offered during Brian's office hours.
Week O:

e C++ OOP Inheritance and Globals (slides \) (video)

Week 1:

e GDB (slides) (video)

Week 2:

e Visitor Pattern (slides) (video)

Week 3:

¢ Valgrind (slides) (video)

CCin a nutshell

CC 2024 % Edit

Syllabus

Lectures and files C mp||er

Tutorials
Piazza: signup 5, login &

Zoom:

C nstruction

 Lectures &=
» Simone's office hours =
« Brian's office hours =

The compiler is the programmer's primary tool. Understanding the compiler is therefore critical for programmers,
even if they never build one. Furthermore, many design techniques that emerged in the context of compilers are
useful for a range of other application areas. This course introduces students to the essential elements of
building a compiler: parsing, context-sensitive property checking, code linearization, register allocation, etc. To
take this course, students are expected to already understand how programming languages behave, to a fairly
detailed degree. The material in the course builds on that knowledge via a series of semantics preserving
transformations that start with a fairly high-level programming language and culminate in machine code.

* CCison Canvas
* Materials/Assignments/Grades on Canvas

Lectures

Next are the lectures of this class with the link to the related videos.

Week 0:

e Welcome (slides, video)
e The CC framework (slides, code, video)
e The L1 language part 1 (slides, video)

Week 1:

e The L1 language part 2 (same slides of part 1) (video)
e From L1 code to assembly (slides, video)
¢ Parsing (slides, code, video)

Week 2:

e The L2 language (slides, video), liveness analysis (slides, video)
e Panels about HO (the L1 compiler)

CC in a nutshell

CS 322: main blocks of modern compilers
 Satisfy the system breadth for CS major

When: Tuesday/Thursday 5pm - 6:20pm
Where: here ©

Office hours:
e Tommy: Friday 12:30pm —2:30pm via Zoom (link on Canvas)
 Simone: Tuesday Noon-—1:00pm via Zoom (link on Canvas)

CCis on Canvas
* Materials/Assignments/Grades on Canvas
e You’ll upload your assignments on Canvas

CC is part of the sequence of compiler classes at Northwestern University
e Other compiler-heavy classes: CS 323 and CS 397/497
* My teaching philosophy (e.g., learn by building): link

https://users.cs.northwestern.edu/~simonec/Teaching.html
https://users.cs.northwestern.edu/~simonec/CAT.html
https://users.cs.northwestern.edu/~simonec/ATC.html
https://users.cs.northwestern.edu/~simonec/files/Teaching/Teaching_philosophy.pdf

CC materials

Slides

Books

modern
compiler
implementation
in C

modern
compiler

implementation

[(F
=1 .le...i(P'

Bo nanu ni :

Compilers

Principles, Techniques, & Too

Papers and library documentation
for further information

o 8
\t?a
P "‘r

s

CCslides

* You can find last year slides from the class website

* We improve slides every year

* Based on problems we observe
the year before

e So: we will ask your feedbacks at the end
* Our goal: maximize how much you learn in 10 weeks

CS 322: Compiler Construction

Description

The compiler is the

s primary tool. U the compiler is therefore critical for programmers, even if they never build one.

Furthermore, many design techniques that emerged in the context of compilers are useful for a range of other application areas. This course

introduces students to the essential elements of building a compiler: parsing, context-sensitive property checking, code linearization, register

allocation, etc. To take this course, students are expected to already how i behave, to a fairly detailed degree.

The material in the course builds on that knowledge via a series of semantics preserving transformations that start with a fairly high-level
language and in machine code.

Syllabus
Department page

Material

This class takes materials from two different books (listed in the syllabus) as well as a few research papers. The result is a set of slides, notes, and

code. Some lectures rely on code and notes (not slides).
All the slides used in the 2022-2023 class are below. The rest of the material is available only on Canvas.
Materials are improved every year. They are updated on this website (atomically) only at the end of the class.

Week number First lecture Second lecture
Welcome,

RYeeE0 Framework o
From L1 to x86_64, L2,

e Parsing Liveness analysis

Week 2 Panels about Homework #0 Interference graph, Spilling,
(L1 compiler) Graph coloring

Week 3 Pl e Lt s B e An alternative register allocator: puzzle solving
Advanced graph coloring
Panels about Homework #2

Week 4 (Interference graph and spiller) L3 and instruction selection

Week 5 Panels about Homework #3 IR,

e (L2 compiler) Back-end missing pieces

Panels about Homework #4

Ued® (L3 compiler) [

Week 7 Panels about Homework #5 (IR compiler), LB,

ee: The Time-Squeezer research compiler Competition rules

Panels about Homework #6 LC,

e (LA compiler) LD

Week 9 Panels about Homework #7 Competition!

* We will upload to Canvas the new version of the slides

before each class

(LB compiler)

http://users.eecs.northwestern.edu/~simonec/CC.html

CCslides

CS 322: Compiler Construction

* Organized in topics

The compiler is the ‘s primary tool. (ing the compiler is therefore critical for programmers, even if they never build one.
Furthermore, many design techniques that emerged in the context of compilers are useful for a range of other application areas. This course
introduces students to the essential elements of building a compiler: parsing, context-sensitive property checking, code linearization, register

(] [
allocation, etc. To take this course, students are expected to already how behave, to a fairly detailed degree.
a O O W e ‘ O I I l p I a I O I | S e p S The material in the course builds on that knowledge via a series of semantics preserving transformations that start with a fairly high-level

language and i in machine code.

Syllabus

of modern compilers

Material

This class takes materials from two different books (listed in the syllabus) as well as a few research papers. The result is a set of slides, notes, and
code. Some lectures rely on code and notes (not slides).

All the slides used in the 2022-2023 class are below. The rest of the material is available only on Canvas.

Materials are improved every year. They are updated on this website (atomically) only at the end of the class.

Week number First lecture Second lecture

Welcome,

RYeeE0 Framework o

° ° . From L1 to x86_64, L2,
* We will cover one topic per wee

Week 2 Panels about Homework #0 Interference graph, Spilling,
(L1 compiler) Graph coloring

Week 3 Panels about Homework #1 (Liveness),

e T An alternative register allocator: puzzle solving

Panels about Homework #2

Week 4 (Interference graph and spiller) L3 and instruction selection

Week 5 Panels about Homework #3 IR,
(L2 compiler) Back-end missing pieces
Panels about Homework #4

Ued® (L3 compiler) [

Week 7 Panels about Homework #5 (IR compiler), LB,

ge The Time-Squeezer research compiler Competition rules

Panels about Homework #6 LC,

e (LA compiler) LD

Week 9 Panels about Homework #7 Competition!

(LB compiler)

11

The CC structure

Topic & homework
I:l:l:l:l:ll:ll:l:ll:ll:l

~
1 ~
~
1 ~
~
1 ~
~
1 ~
~
1 ~
~
1 ~
1
I

Today

Needs to be done
within 6 days

* Needs to be done

within 48 hours
Tuesday Thursday

Homework Homework
tests

Source code (C like)

Output of your work 3
|Homework N |

Homework after homework l

vou'll build 3

|Homework 2 |

your own compiler ‘
|Homework 1 |

from scratch l
Target code (x86_64)

Source code (C like)

Homework 3
|Homework N |
Each assignment is composed by:
1. A set of programs written l
in the source programming language (PL)
considered ‘
(program assignment) | Homework 2 |

2. A compiler that translates ‘
the source PL | Homework 1 |

to the destination PL ‘

(compiler assignment)
Target code (x86_64)

Homework

* Program assignment (when I'll mention in the class)

* You need to write Y programs
in the source language of that assignment
Deadline: 2 days

* Compiler assignment
* Day X: you have the assignment
* Deadline: 6 days after
* Your compiler has to pass all tests included in the framework

 Late submission: you cannot be selected as a panelist (see later)

Evaluation of your work

For each assignment, you get 1 point iff:

1. Your tests are correct

2. You pass all tests using
your current and prior work and

3. I will not find a bug in your implementation
(I will manually inspect your code)

Some assignments can be passed either:

- Properly: by implementing the algorithm
discussed in class

- Naively: you will not get the point,
but you can access the next assignment
(do not submit naive solutions)

Source code (C like)

4

|Homework N |

y
'

|Homework 2 |

4

|Homework 1 |

2

Target code (x86_64)

The CC competition

* At the end, there will be a competition between your compilers

* The team that desighed the best compiler

* Get an A automatically
(no matter how many points they have)

* Their names go to the “hall of fame” of this class

Hall of Fame

2017 Zhiping Xiu

17

lents design and build a complete compiler able to translate an almost-C language to Intel x86-64 machine code. At the
S5, i i th

http://users.eecs.northwestern.edu/~simonec/CC.html

The CC grading NO final exam

Grade | Passed

e 8 assignments (8 points)

A >=11
* If not submitted on time, A 10
you cannot be selected for being a panelist i
C . . B+ 9
* +1 point if you submit . .
the last assignment on time
for the final competition 5 /
_ . _ C+ 6
* 3 panelist experiences (3 points) c :
@@ 1. Manager C- 4
S dd 2. Manager supports 3 3
3. Secretary
F 0-2

18

Rules for homework

* You are encouraged (but not required) to work in pairs
* Pair programming is not team programming
* Declare your pair by the next lecture (send message via email to TA)
 After this deadline, you can only split (no new/merging pairs is allowed)
* |f you don’t declare your pair, then you’ll work alone

* No copying of code is allowed between pairs

* Tool, infrastructure help is allowed between pairs
* First try it on your own
(google and tool documentation are your friends)
* Avoid plagiarism
www.northwestern.edu/provost/policies/academic-integrity/how-to-avoid-plagiarism.html|

* |f you don’t know, please ask

19

http://www.northwestern.edu/provost/policies/academic-integrity/how-to-avoid-plagiarism.html

Summary

* My duties
* Teach you the blocks of a compiler
* And how to implement them

* Your duties
* Learn all compiler blocks presented in class

* Implement some of them (the most important ones)
* Write code in C++
e Test your code
* Then, think much harder about how to actually test your code
* Be ready for being in a panel when asked (the day before)

Structure & flexibility

* CCis structured w/ topics
* Best way to learn is to be excited about a topic
* Interested in something?

Speak

I’ll do my best to include your topic on the fly

Topic & homework

:l-:l :l:l:l:l:l:l:l

-~

-~
-~
-~
-
-~
-~
I -~
-~
-~
-~
I -~
-
T -
-~
y
a -~
-~
-~
-
-~
-
-~
-~
-~
~
-~
-
1
-~
-~
-~
~
I -
~
-~
~
I
-
-~
-~
-~
-~
~
-
~
-~
~ <
-

4 Today Thursday A

e Structure of CS 322
* |ntro to compilers The L1 language
e The CC framework

(L) [me) - (ee

Outline

* Compilers

* Compiler IRs

- hp poviion

0010101011100101010100101010101101¢

25

The role of compilers

If there is no coffee, if | still have work to do,
I’ll keep working, I'll go to the coffee shop

If there is no coffee{
if | still have work to do{
I’ll keep working;

}
I"ll go to the coffee shop;

}

277

-
01110010101010010101010

L]
0. 0@
o

0010101

1101(¢

=

26

While (s = nextStatement()){

switch (s.type){ ' —> |f there is no coffee{
case IF I |f I Stl” have Work to dO{
case ADDITION: N "Il keep working;
s \
case RETURN: ... / 'll go to the coffee shop;

} N)

& Relatively simple to build and maintain
~& Great for prototyping

InterprEter 7 It quickly becomes too slow

" It often consumes a lot of memory

27

The role of compilers 15t have work to dof
I’ll keep working;

}
I"ll go to the coffee shop;

}

4

& Great performance of the generated binaries that get optimized

C m -I r & Important energy savings are unlocked for the generated binaries
o pl ers “V Compilation/optimization time can increase significantly when large programs are compiled
""" Compilers are large and complex codebases

0010101011100101010100101010101101¢

e

e 73/ > 1
o pdion ' , —— = ‘ %)
s "N < 3

Compiler goals

e Goal #1: correctness
» Goal #2: maximize performance and/or energy consumptions

* Goal #3: easy to be extended to
* New architecture features (e.g., x86_64, +AVX, +TSX)
 Evolutions of the targeted PL (e.g., C++99, C++11, C++14, C++17)
* New architecture / ISA (e.g., RISC V)
* New PL (e.g., Rust, Swift)

* Goal #4: Minimize maintainability costs
* Write DRY code (Don’t Repeat Yourself)
* Exploit code generation

Goals of your compilers in this class

* Goal #1: correctness
* Goal #2: maximize performance and/or energy consumptions

* Goal #3: easy to be extended to
* New architecture features (e.g., x86_64, +AVX, +TSX)
 Evolutions of the targeted PL (e.g., C++99, C++11, C++14, C++17)
* New architecture / ISA (e.g., RISC V)
 New PL (e.g., Rust, Swift)

* Goal #4: Minimize maintainability costs
* Write DRY code (Don’t Repeat Yourself)
* Exploit code generation

30

Structure of a compiler

Character stream (Source code) i[n|t] |m]a]i]n

'

[Lexical analysis]

INT | SPACE [STRING [SPACE | --

Tokens
- ¢)
Syntactic & . -
. Ve int main (){
ksemantlc dina y5|s) orintf(“Hello World!\n”):
‘ return O;

AST
)

Structure of a compiler

Character stream (Source code)

'

[Lexical analysis]

Tokens

Y

()

Syntactic &
_semantic analysis |

\
AST

INT | SPACE

STRING

SPACE | -

Function signature

1

1

Return type

Function name

l

INT

v

STRING

Structure of a compiler

Syntactic & A Function signature
ksemantlc analySISJ Return type Function name
i | |
AST INT STRING
¥
(N
IR code generation
- y

myVarX = 40
IR myVarY = myVarX + 2

Structure of a compiler

Characteritream (Source code) i|n|t]| |mla]i|n
Front-end] CS 322: Compiler Construction
% myVarX =40
|* myVarY = myVarX + 2
[Middle-end] CS 323: Code analysis and transformation
f:{ myVarY =42
\d
Back-end] CS 322: Compiler Construction
\}

MaChine COde 010101110101010101

Outline

* Compiler IRs

Example of LLVM IR

define i64 @f (i64 %p0) {
entry:
%myVarl = add i64 %p0, 1
ret i64 %omyVarl

36

Another example of IR

define int64 @f (int64 %p0) {
entry
int64 %myVarl
%myVarl <- %p0 + 1
return %smyVarl

mpiler

nstruction

Multiple IRs used together

Programming language

| Translation]

A {
IR1
v

[Translation

\

IR2
A

| Translation

\
Machine code

IRs are languages

Source code .
$

| Translation0 | .
$
$

| Translation N-1 |

- .

|Trans|ation N |

\ 4
Target code

A compiler is a sequence of passes

Each pass translates
from a source language to a target language

Source and target languages can be the same
(transformations in the middle end)

Some languages have the support to be
written/read into/from files

In this class

Source code
4

|Homework 8

¥
)

|Homework 2

\ 4
L1

¥

|Homework 0

\ 4
Target code

The final compiler is built as a sequence of
internal compilers

Each internal compiler translates
from a source language to a target language

Source and target languages are always different

All languages are
written/read into/from files

Each homework is a standalone compiler

- Source language
In this class ‘g ;
‘One of your compiler
* All compilers you will build can assume ¥

the program given as input is correct
* No need to check program’s correctness

* Production compilers first check program’s correctness,
then they do the translations/optimizations/code generations

Target language

* When you write a program in a given language, it is your job to guarantee
the correctness of the program you have written

* When a compiler generates the code in its target language, it is
the compiler responsibility to generate correct code in the target language
(while assuming the correctness of the code written in the source language
given as input)

Let’s build our first compiler

The recipe of a disaster

1. Let’s translate independently
a statement of the source program
to a sequence of IR instructions

2. Let’s translate independently
an IR instruction
to a sequence of machine code instructions

The and the bad compiler

int main (int argc, char *argv[]){
return argc + 1;}

[]
|Na1-ve compiler | m}
o2

push %rbp l

mov %rsp,%rbp T * Would you use a new PL
movl 50x0,-0x4(%rbp) ‘ ‘ if the resulting code is 100x slower

mov %edi,-0x8(%rbp) .
?
mov %rsi,-0x10(%rbp) compared to a C++ version:

mov -0x8(%rbp),%ed Would you use a CPU
add ~ 50x1,%edi if your code is 100x slower

mov %edi,%eax

pop %rbp compared to running it on an Intel CPU?

retq

retq

Conclusion

* Compilers translate a source language to a destination language
* Front-end -> IR -> Middle-end -> IR -> back-end

* They help developers to be productive
(enabling new PLs and abstractions)

* They help systems to run faster
(enabling new resources of new CPUs)

* Correctness, efficiency (generated code and compiler itself),
maintainability, extensibility
are all aspects to consider when designhing a compiler

Always have faith in your ability

Success will come your way eventually

Best of luck!

