[

Simone Campanoni
simonec@eecs.northwestern.edu

Solutions that enable my teaching philosophy

are probably known by experienced teachers

might not be directly transferrable to other classes

work well (for me at least) for classes with 30-50 students

* worked because students are truly impressive

* are a great fit for my personality

But first, a gentle compiler introduction

while (somethingToDo){
if (somethingToCode){
code(myState);
} else {
read(papers);

i
00101010111001010101001010101011010

: ST R=07

The compiler classes at Northwestern

mpiler m

nstruction

transf

de analysis

and /\/

rmation

Advanced
-~

I ©

pics

mpilers

A rough start

* End of my post-doc: July 2015
* Fall 2015: beginning of my first class designed from scratch

C de analysis

and

transf rmation

* Prior experience: ok, but not great

* My goal: show students why compilers are fascinating
* Challenge: compilers isn’t a hot topic like Machine Learning

* Solution: transfer my passion

bla bla bla
bla, and

don’t forget
bla bla

't’s all about passion

* My first passion (before compilers) is about learning

* |tis because of the freedom you gain by the new knowledge »
* If you know more, you can do more X

* My 1stteaching goal:
make students feel this freedom (hopefully) like | do

* Students need
* to learn new concepts [New concept]

* to use new concepts to solve new problems ‘ ‘ ‘

My teaching goals

And now
solve this

* My 1stteaching goal:
make students feel this freedom (hopefully) like | do

e Students need X
[Solution] [New problem]

* to learn new concepts

* to use new concepts to solve new problems |
* My 2" teaching goal: show why compilers are fascinating ‘ ‘ ‘

* Optimization Elegant, low-cost optimizations
* Abstraction

* Scale

My teaching goals

//’
.
il @

L&Y
(S)
\\J,
|
S

My 1stteaching goal:
make students feel this freedom (hopefully) like | do *

* Students need
* to learn new concepts
* to use new concepts to solve new problems

©
>

* My 2" teaching goal: show why compilers are fascinating

* Optimization Elegant, low-cost optimizations
* Abstraction

* Scale

* My 3" teaching goal: a bad software/solution is expensive

Solution HO

Solution H2

Solution H3

souen o
[Solution H1]
(sovren)
souren o

[Solution H9]

Week{

My teaching goals

My 1tteaching goal:
make students feel this freedom (hopefully) like | do

Creating

My
teaching
Analyzing wish list

Ewvaluating

* My 2" teaching goal: show why compilers are fascinating

Elegant, low-cost optimizations Underatanding V]

/) Remembering teaChing g Is

* My 3"9teaching goal: a bad software/solution is expensive

Challenges

* My classes: one topic per week

* Every week, students have to
1. Learn new concepts and related abstractions
2. Understand new problems

3. Decide which existing abstractions to reuse
and whether new ones are needed

4. Create new abstractions or tune existing ones
5. Create a solution that actually works in real systems
6. Learn how to test their solutions

* Very challenging and it requires
a significant commitment of time and mental effort

* Despite my efforts to simplify my classes, they are still challenging
| was scared (and still am) nobody would take my classes

* Challenge 1: knowing how to improve

* Challenge 2: learning new concepts quickly

* Challenge 3: motivating students
to keep pushing theirself

Challenge 1: knowing how to improve

| ask feedbacks/criticisms during the last day of my classes

* Todos.txt keeps growing during that day
* Goal: everything in todos.txt will be done before the subsequent year

Challenge 2: learning new concepts quickly

Typical teaching flow:

1. Description of new concept
2. Description of possible implementations of this new concept

3. Description of how this concept
is implemented in systems used in production

4. Description of when/how this concept implementation is used in practice

The enabling part is at the end
Too late:
* Exciting part is at the end
* Motivation of learning a new concept is at the end
* Students have lost some attention going through the first part

Challenge 2: learning new concepts quickly

My teaching flow

Demo: you want X (e.g., face detection in real time), you don't get it
Dig deep on why we didn't get it

Problem: this is the issue, we need to solve it to get X

Solution: we need information Y and Z to solve the issue
Description of a new concept that captures Y and Z

Use it to solve the original problem

Possible implementations of this new concept

How this concept is actually implemented in systems used in production

O 0 N O Uk W DNRE

Other practical uses of this new concept

Challenge 3: motivate students
to keep pushing theirself

| gamified my classes as much as possible

One assignment per week: range of points available

Extra assignments for more points
* Advance uses of topics learn in class

End goal: competition during the last day of the class
* Live
 Cars/students will compete (ncurses-based framework)
* They will compete against me as well
 Something | didn’t expect: they really want to beat my solution

Hall of fame

Year

2018 - 2019

2017 - 2018

2016 - 2017

Vijay Kandiah and
Chengi Guo

Matt C. Cheung

Zhiping Xiu

Picture

EECS 322: Compiler Construction

Description

The compiler is the programmer’s primary tool. Understanding the compiler is therefore critical for programmers, even if they
never build one. Furthermore, many design techniques that emerged in the context of compilers are useful for a range of other
application areas. This course introduces students to the essential elements of building a compiler: parsing, context-sensitive
property checking, code linearization, register allocation, etc. To take this course, students are expected to already understand
how programming languages behave, to a fairly detailed degree. The material in the course builds on that knowledge via a
series of semantics preserving transformations that start with a fairly high-level programming language and culminate in
machine code.

Syllabus
Department page

Material

This class takes materials from two different books (listed in the syllabus) as well as a few research papers. The result is a set
of slides, notes, and code. Some lectures rely on code and notes (not slides). Soon you will find the slides below; the rest of the
material is available only on Canvas.

Week number First lecture Second lecture
Week 0 Welcome L1, Framework
Week 1 Parsing, From L1 to x86_64 L2, Liveness analysis
Week 2 Interference graph, Graph coloring Panels about Homework #0
Week 3 Panels about Homework #1 Impossible, Advanced graph coloring
Week 4 Panels about Homework #2 L3, Back-end missing pieces
Week 5 Panels about Homework #3 IR
Week 6 Panels about Homework #4 An alternative register allocator: puzzle solving
Week 7 LA Panels about Homework #5
Week 8 LB, LC and LD Panels about Homework #6 and #7
Week 9 Research compiler Competition!
Hall of Fame

Students design and build a complete compiler able to translate an almost-C language to Intel x86-64 machine code. At the
end of the class, the resulting compilers compete and the names of the students that designed and built the best compilers are
reporeted below.

Hall of fame

Picture

Year

2018 - 2019

2017 - 2018

Vijay Kandiah

Angelo Matni

EECS 323: Code Analysis and Transformation

Description

Fast, highly sophisticated code analysis and code transformation tools are essential for modern software development. Before
releasing its mobile apps, Facebook submits them to a tool called Infer that finds bugs by static analysis, i.e., without even
having to run the code, and guides developers in fixing them. Google Chrome and Mozilla Firefox analyze and optimize
JavaScript code to make browsers acceptably responsive. Performance-critical systems and application software would be
impossible to build and evolve without compilers that derive highly optimized machine code from high-level source code that
humans can understand. Understanding what modern code analysis and transformation techniques can and can't do is a
prerequisite for research on both software engineering and computer architecture since hardware relies on software to realize
its potential. In this class, you will learn the fundamentals of code analysis and transformation, and you will apply them by
extending LLVM, a compiler framework now in production use by Apple, Adobe, Intel and other industrial and academic
enterprises.

Syllabus
Department page

Material

This class takes materials from three different books (listed in the syllabus) as well as a few research papers. The result is a set
of slides, notes, and code. Some lectures rely on code and notes (not slides). Next you can find only slides; the rest of the
material is available only on Canvas.

Week number First lecture Second lecture
Week 0 Welcome Introduction to LLVM
Week 1 Control Flow Analysis CFA in LLVM
Week 2 Data Flow Analysis Static Single Assignment form
Week 3 Data Flow Analysis and their uses Foundations of Data Flow Analysis
Week 4 Dependences Dependences
Week 5 Memory alias analysis Introduction to inter-procedural CAT
Week 6 Inter-procedural CAT Inter-procedural analysis example: VLLPA
Week 7 Introduction to loops Loops
Week 8 Introduction to loop transformations Loop transformations
Week 9 State-of-the-art CAT Competition

Hall of Fame

Students extend the industrial-strength compiler clang using their own advanced code analyses and transformations
developed during this class. At the end of the class, the resulting compilers compete and the names of the students that
designed and built the best compilers are reporeted below.

e My 1tteaching goal:
make students feel this freedom (hopefully) like | do

et
Creating

My
teaching
Analyging wish list

Ewvaluating

* My 2" teaching goal: show why compilers are fascinating

Elegant, low-cost optimizations

Understanding |\/|y

/ Remembering teaChing g Cl |S

* My 3" teaching goal: a bad software/solution is expensive

