
Virtualized Audio: A Highly Adaptive
Interactive High Performance Computing Application

Dong Lu Peter A. Dinda
�donglu,pdinda�@cs.northwestern.edu

Department of Computer Science, Northwestern University

March 8, 2002

Abstract

The idea behind virtualized audio is to extract sound sources
(performers) from their native acoustic spaces and insert them
into a virtual space, in which there are one or more listeners.
This paper focuses on the insertion step, which is an interactive
application that exhibits high computational demands from both
aperiodic and periodic real-time tasks, has minimal communi-
cation demands, and exposes a significant number of adaptation
mechanisms. These properties make it well suited as a driver ap-
plication for research in interactive high performance computing
on shared distributed environments such as clusters and grids.
We describe the application, our implementation, and the adap-
tation mechanisms in detail, and then present an initial perfor-
mance evaluation of one of its components, and study different
server selection strategies for it.

1 Introduction

In traditional audio, the majority of the signal chain from
the performers to the listener is executed well before the
listener plays a recording. Furthermore, the chain, both
before and after the recording is static. Embedded in the
recording are the characteristics of the recording venues,
the decisions of the mixing engineers, and the engineers’
model of how the recording will be used. Similarly, the
reproduction system, which executes the part of the chain
extending from the recording to the listener, embodies a
static model of the room in which it will be used, the posi-
tion and orientation of the listener. These assumptions and
their static nature explain why traditional audio is rarely
confused with reality.

It does not have to be this way. The goal of virtual-
ized audio is to permit listeners and performers to inject
themselves into a shared virtual acoustic space—to let a
listener hear what a performer would sound like in his
room or in a virtual performance space of his choosing.

Effort sponsored by the National Science Foundation under Grants ANI-
0093221, ACI-0112891, and EIA-0130869.

The listener(s) and performers, recorded or live, are able
to move about the shared space at will, the system main-
taining the illusion that the performers are in shared per-
formance venue—a guitarist appears to be sitting at your
conference table strumming softly.

Achieving this illusion requires solving two problems:
interactive source separation, which extracts performers
from their performance venue, and interactive auraliza-
tion, which inserts performers into the listener’s virtual
performance venue. Final output is to headphones.

While neither source separation nor auralization is a
new problem [2, 9, 3, 1], they are new to high performance
computing and HPC has much to offer. First, using com-
putational resources beyond that of a single machine, we
can compute highly accurate acoustical models based di-
rectly on the physics of sound. Second, it is clear that HPC
is essential to scaling to arbitrary numbers of performers
and listeners. Finally, HPC could make these services “in
the network”, thus extending virtualized audio down even
to wireless handheld devices.

Interactive applications like virtualized audio also of-
fer a challenge to the HPC community in that they re-
quire soft real-time service for periodic and aperiodic
tasks, which is quite different from the service that tra-
ditional scientific applications require. However, virtu-
alized audio also exposes a number of adaptation mech-
anisms in mapping to underlying resources, as well as
the opportunity to trade off between quality and compu-
tation/communication across a huge range. This makes
answering the challenge possible.

We are currently in the later stages of building a sys-
tem that implements the forward problem, interactive au-
ralization. In the following, we describe the structure of
this system, its implementation, and the adaptation mech-
anisms built into its design. Then we present preliminary
results for scaling and predictive adaptation of the aperi-
odic component of the system.

1



Client

Scalable Real-time Simulation Server

Master
filtering server

Mixing
server

Mixing
server

Filtering
server

Filtering
server

Filtering
server

Filtering
server

Streaming Audio
Service

Source 1

Source 2

Source 3

Source 4

Filtering
server

Filtering
server

Source n

Filter configuration

Left Channel

Right Channel

Scalable Audio Filtering Service

Parallel FD
Simulation

Parallel FD
Simulation

Parallel FD
Simulation

Parallel FD
Simulation

Parallel FD
Simulation

Parallel FD
Simulation

Filter generation

Binaural Audio
Output

Current Spatial Model
and source/sink positions

User-driven Immersive Audio Client

Figure 1: Structure of interactive auralization

2 Application structure

Figure 1 illustrates the structure of our interactive aural-
ization application. There are four components with well
defined interfaces between them. The interfaces are de-
signed to maximize the computation to communication
ratio for the application.

The user-driven immersive audio client is responsible
for initiating computation in the other components. This
currently implemented as a Windows MFC application.
We are planning to develop a wireless PocketPC version
as well. The client maintains a 3D model of the physi-
cal or virtual space being simulated. The model includes
the size of the space (“room”), the temperature, and the
“walls” in the space. A wall is a triangle with a thick-
ness and material properties. More complex objects can
be constructed out of these walls.

The client also maintains a list of sound sources and
sinks within the room. Each source is represented by
its position in the room and the audio stream associated
with it, while each sink is represented by its position.
The audio stream is the output of the source separation
part of virtualized audio—it is the sound of the performer
extracted from the original performance venue. At this
point, we simply assume that this can be done, and cur-
rently use an ordinary digital audio stream from a compact
disc. This substitution does not change the auralization
process.

There is at least one source (a performer) and there are
always two sinks (the user’s ears). Each source/sink pair
represents a computational path for the system. The client
displays the space and the source/sink pairs to the user
via an OpenGL display. The user can change the room’s
walls or the positions of sources and sinks at any time. At

all times, the client continuously receives and plays, via
headphones, two channels of audio from the scalable fil-
tering service, perhaps using a local HRTF filter to model
the user’s head.

For each source/sink pair, the filtering service filters
the audio source stream so as to create a new stream
that sounds like what the source, when dropped into the
room at its designated position, would sound like from the
sink’s position. For a single source, we would run two fil-
tering servers, one computing a stream for the left ear, and
one for the right ear. For each new source, we introduce
an additional pair of filters. For a 96 person orchestra,
we would run 192 filters simultaneously. A mixing server
combines all the filtered streams for a single ear into a sin-
gle stream for the client. The filtering process runs con-
tinuously. It is important to note that a large amount of
buffering is not acceptable as the effect of a filter change
should be almost immediately apparent.

The filters capture the response of the room from the
source to the listener’s ears. We assume, reasonably, that
this response is due to a linear and time-invariant process.
Given this assumption, a filter is the impulse response [11]
of the room from the source position to the sink position.
Conceptually, if we were to snap our fingers at the source
position and record what a microphone heard at the sink
position, we would have the impulse response. An im-
pulse response is theoretically of infinite duration, but we
limit it in our system. A one second impulse response
recorded at the audio CD sampling rate would comprise a
vector of 44,100 values. We can use such a Finite Impulse
Response (FIR) filter directly, or approximate it using a
smaller Infinite Impulse Response (IIR) filter [10].

The simulation service is responsible for computing
these impulse responses. It does so via a finite differ-

2



ence simulation of the wave equation within the room.
The walls are the boundary conditions for the simula-
tion. In effect, the simulation service simulates the finger-
snap and microphone scheme described above. The ser-
vice, which is parallel program written in C++ and PVM,
works on a regular 3D grid that has its z-dimension block-
distributed across the processors. Each simulation run
computes all the filters from a given source simultane-
ously. The server is stateless: each run is independent.

In steady state, the client simply displays the space and
plays the left and right channel streams into the user’s
headphones. The filtering service applies its filters to the
source streams and mixes the results for the client. From
the HPC perspective, the challenge is to schedule this col-
lection of periodic soft real-time tasks.

When the room changes, a source or sink position
changes, or a new source is introduced, the simulation
server is invoked to recompute the effected filters. The
common situation is when the user changes his position
or orientation, in which case all the filters must be recom-
puted by the simulation service, and updated in the filter-
ing service. From the HPC perspective, the challenge is
to schedule this aperiodic soft real-time task.

There are two parts to the computational complexity of
the system. First, computing the impulse responses from
a single source to each sink requires ������������	��
stencil operations (about 30 floating point operations
each), where ��� is the volume of the room, � is the num-
ber of grid points per wavelength, � is the maximum fre-
quency to resolve, 	 is the speed of sound in the medium,
and � is the length of the impulse response. Each com-
puted impulse response is of size ������. For air, � � �,
� � �� KHz, and � � �, � � �, and � � 	 m, this
amounts to about 

	�� 
��� stencil operations for a one
second response of size � � 
��. Each filtering server,
assuming a simple FIR model, does ��������� multiply-
adds per second. This assumes convolution. A filtering
server based on frequency domain filtering would trim this
to �������
������.

In designing the interfaces between the different com-
ponent, we have tried to minimize the communication in
which the client must participate while maintaining the
client’s centricity. The size of a filtering request is dom-
inated by the filter, ������. The size of a simulation
request is ��� � ���, where � is the number of walls
and � is the number of sources, while the response size
is ��������. The client receives ������ audio samples
per second from the mixing servers. Clearly, the com-
pute/communicate ratio, from the perspective of the client
is very high. We expect that this make it possible for the
client to be behind a low-speed network connection, or for
components to run remotely on a computational grid.

Figure 2: GFLOPs required to compute a 2 second im-
pulse response on a 8x6x3 space as a function of maxi-
mum resolved frequency.

3 Adaptation mechanisms

While the CPU demands of interactive auralization can
be daunting, it is important to realize that the application
can adapt to available computational and communications
resources. The application exposes numerous adaptation
mechanisms, and the range over which resource demands
can be made to vary is very large. This, combined with the
naturally distributed nature of the application and the high
compute/communicate ratio makes the application partic-
ularly interesting as a distributed adaptive application.

The most important adaptation mechanism that interac-
tive auralization presents is the maximum frequency that
will be resolved, � . As we noted earlier, the amount of
computation the simulation service performs to compute
a filter depends on � �. By reducing � slightly, we re-
duce computation by a large amount. Figure 2 shows the
GFLOPs required to compute a single filter as a function
of frequency. The memory demands of the simulation ser-
vice grow as � �. For the filtering service, the dependence
is less dramatic, only � �. The amount of communication
in both services is generally linear in � .

What does this do to quality? Ideally, we would want
� � �����, as this is considered the upper range of hu-
man hearing by most sources. Most individuals’ hearing
is considerably more restricted than this, however. FM
radio is limited to about 15 KHz, while phones and AM
radio are limited to about 3 KHz. Significantly, human
perception of pitch is logarithmic in frequency—reducing
� by half eliminates one octave, not half of the octaves.
Most instruments don’t emit a single frequency, however,
but rather a set of harmonics that defines their timbre.

Adjusting � by large amounts allows us to map the
application to environments with dramatically different
computing capabilities. Small adjustments allow us to
dynamically adapt to changing resource supply within a
particular computing environment. In effect, we trade off

3



computation and accurate reproduction of the pitch and
timbre of musical instruments.

The computation and communication demands of the
simulation and filtering services are linear in the impulse
response length, �. In principle, the impulse response is
of infinite duration. In practice, the length that we choose
will be determined by the size and composition of the sim-
ulated room. We are trying to capture the first several ar-
rivals of the wave at the sink location. The significance of
each subsequent arrival declines quickly. By changing �,
we can trade off between computation and capturing the
effect that the room has on the sound of an instrument.

Our simulation server is based on the underlying
physics of sound, but other algorithms are possible, and
could be plugged into our system. For example, ray-
casting approaches [3] or geometry-based approaches [1]
could be deployed in environments and under resource-
constrained situations where they make sense. For exam-
ple, they could be used to determine the long-term echoes
of very large rooms with less computation than our ap-
proach. Another possible approach is precomputation and
caching of filters.

We can reduce the amount of computation that the fil-
tering service performs, as well as the amount of commu-
nication overall by using IIR approximations to the im-
pulse responses that we compute. A linear increase in the
number of poles and zeros in the IIR filter makes a more
accurate filter at the cost of a linear increase in the amount
of communication and computation.

Server or site selection is an important adaptation
mechanism. Each time that we invoke the simulation
server or add a new filter, we have a choice as to where
to run the computation. If the simulation server is asked
to compute a very large problem, it can run in parallel,
exposing the choice of how many and which machines to
use, and raising the possibility of dynamic load balancing
of its parallel loop.

4 Experimental results

Whenever the user changes the configuration, such as the
number or position of sound sources/sinks or the walls
of the space, the simulation service is invoked and a new
simulation is carried out. As we saw earlier, the simula-
tion is extremely compute computationally intensive, but
also high adaptive. Therefore, using parallel or distributed
computational resources makes sense. In the following,
we evaluate the scalability of the service on a small clus-
ter, and then show interesting initial results for predictive
server selection.

Our private testbed consists of eight dual processor 866
MHz Pentium III machines running Red Hat Linux 7.1.
Each node has one gigabyte of main memory and a gigabit

Ethernet adapter in a 64 bit PCI bus slot. All the nodes are
connected to a gigabit Ethernet switch with a 9.6 Gbps
backplane. Our evaluation employs a problem where � �
�, � � �, � � �, � � 	, � � �. For our scaling study, we
fix � at 4 KHz. For the server selection experiment, we
set � at 500 Hz.

Figure 3 shows the speedup and efficiency of the sim-
ulation service up to the 16 processors we have available.
As the number of processors increases from 1 to 16, we
get linear speedup, and the efficiency quickly plateaus.
The suggests that the service can scale to the demands
that high quality audio will place on it, at least in clusters.

Is it wise to use the second processor on our 2-way SMP
machines? In such a machine, the memory bandwidth is
shared by the processors. If the simulation is bound by
memory bandwidth, using the second processor would not
improve performance. To evaluate this, we compared the
scalability of always adding processors on separate ma-
chines to adding the second processor before going to a
separate machine. From Figure 4 we can see that, al-
though adding separate machines performs slightly better,
there is really not much difference. We conclude that us-
ing the second processor on our machines is sensible.

We are particular interested in how the simulation ser-
vice can adapt to dynamically changing resource avail-
ability and have built support for controlling adaptation
using our various adaptation tools into the system. In
the following, we have chosen � to 500 Hz, so that a
request can be serviced on single processor, using about
15 seconds of compute time. We evaluate four different
server selection algorithms implemented using the RPS
Toolkit [6]: random, in which a random host is chosen,
load measurement, in which the host with the lowest load
average is chosen, load prediction [7], in which the host
with the lowest predicted load is chosen, and RTSA [4], a
prediction-based real-time scheduling advisor that simul-
taneously tries to help the client’s task meet a deadline
and to avoid congestion. To generate a competitive back-
ground workload, we play back [8] load traces [5] col-
lected on a variety of hosts.

We conducted five experiments, the results of which are
reported in Figure 5 and discussed below. Each experi-
ment consists of 100 repetitions run at intervals chosen
randomly from zero to 30 seconds. Our metrics are the
mean and variance of wall clock time and slowdown (wall
clock time / task size). We seek to minimize the mean and
variance of both.

Do the algorithms negatively impact performance when
there is no competing workload? Experiment 0 tries to
answer this by comparing them on 4 hosts that are all free
of load. We can see that all four algorithms perform well
with average slowdown of about 1.0 for each.

How do the algorithms perform when faced with static

4



(a) Speedup (b) MFLOP/s/proc

Figure 3: Speedup and efficiency to 16 processors (8 dual processor nodes).

Distributed

2-way SMP

Distributed

2-way SMP

(a) Speedup (b) MFLOP/s/proc

Figure 4: Performance comparison: 2-way SMP vs. Distributed memory

competing workloads? Experiment 1 forces the algo-
rithms to choose from among two servers that are free of
load and two servers that are staticly heavily loaded. We
can see that using load information is critical to avoiding
congested hosts.

How do the algorithms perform when faced with dy-
namic load? Experiment 2 makes the algorithms choose
between a host that has a dynamic high load (captured on
an interactive production cluster machine) and a host with
a dynamic medium load (captured on a batch production
cluster machine). Here we see a progression of perfor-
mance as we add prediction into the mix. Surprisingly,
the RTSA is able to bring in the best average performance,
even though it is simultaneously trying to avoid congest-
ing either host. The cost of this avoidance is the higher
variability in the results.

What happens as we make the set of hosts larger? In ex-

periment 3, the algorithms are faced with four servers with
dynamic load. The first two are like those in experiment
2, while the last two are emulating a low load desktop and
a medium load cycle server. Here performance is roughly
the same among the different algorithms.

What happens in a large set of hosts with high dynamic
load. In experiment 4, all four hosts have the dynamic
high load of the interactive production cluster machine.
The main benefit that prediction provides here is much
less variance in the results. The RTSA introduces consid-
erable additional variance in pursuing its twin goals.

5 Conclusion and future work

The principle goal of this paper was to describe an in-
teractive application, virtualized audio, that is both en-
abled by high performance computing and that presents

5



Wall Clock Time Slowdown
Description Algorithm Average (s) StdDev (s) Average StdDev
EXPERIMENT 0 Random 14.73 0.47 1.00 0.0010
4 hosts with Load Measurement 14.77 0.46 1.01 0.013
no load Load Prediction 14.67 0.51 1.01 0.015

RTSA 14.88 0.49 1.01 0.015
EXPERIMENT 1 Random 24.08 7.14 1.64 0.49
2 hosts with no Load Measurement 14.94 0.46 1.01 0.011
no load, 2 with Load Prediction 14.83 0.50 1.01 0.014
high static load RTSA 15.05 0.21 1.01 0.012
EXPERIMENT 2 Random 21.53 4.32 1.44 0.30
1 host with high Load Measurement 19.18 2.00 1.26 0.14
dynamic load, 1 host Load Prediction 17.24 1.45 1.14 0.09
with low dynamic load RTSA 16.95 1.70 1.09 0.12
EXPERIMENT 3 Random 20.41 6.26 1.38 0.42
4 hosts, each with Load Measurement 16.68 1.75 1.14 0.097
different low to Load Prediction 16.54 1.59 1.13 0.090
high dynamic load RTSA 16.63 1.55 1.14 0.096
EXPERIMENT 4 Random 25.36 3.74 1.72 0.25
4 hosts each with Load Measurement 23.48 3.99 1.60 0.27
high dynamic load Load Prediction 23.83 3.38 1.62 0.23

RTSA 23.99 4.59 1.64 0.29

Figure 5: Server selection results.

new challenges to the HPC community. Most exciting
to us is that the application exposes numerous adapta-
tion mechansisms that could be controlled by a scheduler
or adaptation advisor to provide stable and consistent re-
sponsiveness. We presented preliminary results showing
the effects of controlling one mechanism, server selection,
with different approaches based on resource measurement
and prediction.

We intend to continue implementing virtualized audio,
albeit slowly given our other current commitments. We
also plan to conduct additional research on server selec-
tion, adaptation, and dynamic load balancing of the simu-
lation and filtering services.

Acknowledgements

We would like to thank Curtis Barrett, who wrote an
initial, sequential monaural implementation, and Sam
Benediktson, Aja Nichols, and Jim Trieu, who are help-
ing to implement the current design.

References
[1] ALLEN, J. B., AND BERKLEY, D. A. Method for sim-

ulating small-room acoustics. Journal of the Acoustical
Society of America 65, 4 (April 1979), 943–950.

[2] BEGAULT, D. R. 3-D Sound For Virtual Reality and Mul-
timedia. AP Professional, 1994.

[3] DHILLON, N. S. Cellular approach for modeling room
acoustics: A framework for implementations based on the
ray tracing algorithm. Master’s thesis, University of Wis-
consin – Madison, August 1994.

[4] DINDA, P. A. A prediction-based real-time scheduling ad-
visor. In Proceedings of IPDPS 2002. To Appear.

[5] DINDA, P. A. The statistical properties of host load. Sci-
entific Programming 7, 3,4 (1999). A version of this paper
is also available as CMU Technical Report CMU-CS-TR-
98-175. A much earlier version appears in LCR ’98 and as
CMU-CS-TR-98-143.

[6] DINDA, P. A., AND O’HALLARON, D. R. An extensi-
ble toolkit for resource prediction in distributed systems.
Tech. Rep. CMU-CS-99-138, School of Computer Sci-
ence, Carnegie Mellon University, July 1999.

[7] DINDA, P. A., AND O’HALLARON, D. R. Host load
prediction using linear models. Cluster Computing 3, 4
(2000). Earlier version in HPDC 1999.

[8] DINDA, P. A., AND O’HALLARON, D. R. Realistic CPU
workloads through host load trace playback. In Proc. of 5th
Workshop on Languages, Compilers, and Run-time Sys-
tems for Scalable Computers (LCR2000) (Rochester, New
York, May 2000), vol. 1915 of Lecture Notes in Computer
Science, Springer-Verlag.

[9] GUPTA, S., VEDULA, S., AND KANADE, T. Incorpora-
tion of audio in virtualized reality. Tech. Rep. CMU-RI-
TR-00-22, Carnegie Mellon University Robotics Institute,
2000.

[10] OPPENHEIM, A. V., SCHAFER, R. W., AND BUCK, J. R.
Discrete Time Signal Processing. Prentice Hall, 1999.

[11] OPPENHEIM, A. V., WILLSKY, A. S., AND YOUNG, I. T.
Signals and Systems. Prentice Hall, 1983.

6


