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ABSTRACT

This paper presents a model of the TCP Vegas congestion
control mechanism as a distributed optimization algorithm.
Doing so has three important benefits. First, it helps us
gain a fundamental understanding of why TCP Vegas works,
and an appreciation of its limitations. Second, it allows us
to prove that Vegas stabilizes at a weighted proportionally
fair allocation of network capacity when there is sufficient
buffering in the network. Third, it suggests how we might
use explicit feedback to allow each Vegas source to determine
the optimal sending rate when there is insufficient buffering
in the network. We present simulation results that validate
our conclusions.

1. INTRODUCTION

TCP Vegas was introduced in 1994 as an alternative source-
based congestion control mechanism for the Internet [7]. In
contrast to the TCP Reno algorithm [12], which induces
congestion to learn the available network capacity, a Vegas
source anticipates the onset of congestion by monitoring the
difference between the rate it is expecting to see and the
rate it is actually realizing. Vegas’ strategy is to adjust the
source’s sending rate (congestion window) in an attempt to
keep a small number of packets buffered in the routers along
the path.

Although experimental results presented in [7] and [2] show
that TCP Vegas achieves better throughput and fewer losses
than TCP Reno under many scenarios, at least two concerns
remained: is Vegas stable, and if so, does it stabilize to a
fair distribution of resources; and does Vegas result in per-
sistent congestion. In short, Vegas has lacked a theoretical
explanation of why it works.
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This paper addresses this shortcoming by presenting a model
of Vegas as a distributed optimization algorithm. Specifi-
cally, we show that the global objective of Vegas is to max-
imize the aggregate utility of all sources (subject to the ca-
pacity constraints of the network’s resources), and that the
sources solve the dual of this maximization problem by im-
plementing an approximate gradient projection algorithm.
This model implies that Vegas stabilizes at a weighted pro-
portionally fair allocation of network capacity when there is
sufficient buffering in the network, that is, when the network
has enough buffers to accommodate the extra packets the al-
gorithm strives to keep in the network. If sufficient buffers
are not available, equilibrium cannot be reached, and Vegas
reverts to Reno.

Our analysis shows that Vegas does have the potential to
induce persistent queues (up to the point that Reno-like
behavior kicks in), but that by augmenting Vegas with ap-
propriate active queue management (AQM) it is possible
to avoid this problem. AQM serves to decouple the buffer
process from the feedback required by each Vegas source to
determine its optimal sending rate.

The paper concludes by presenting simulation results that
both serve to validate the model and to illustrate the impact
of this explicit feedback mechanism. All proofs are omitted
and can be found in the full version of this paper [21].

2. AMODEL OF VEGAS

This section presents a model of Vegas and shows that 1)
the objective of Vegas is to maximize aggregate source util-
ity subject to capacity constraints of network resources, and
2) the Vegas algorithm is a dual method to solve the max-
imization problem. The goal of this effort is to better un-
derstand Vegas’ stability, loss and fairness properties, which
we discuss in Section 3.

2.1 Preliminaries

A network of routers is modeled by a set L of unidirectional
links of capacity c;, [ € L. 1t is shared by a set S of sources.
A source s traverses a subset L(s) C L of links to the des-
tination, and attains a utility Us(xs) when it transmits at
rate xs (e.g., in packets per second). Let ds be the round
trip propagation delay for source s. For each link, [ let
S(l) = {s € S|1€ L(s)} be the set of sources that uses link
l. By definition ! € L(s) if and only if s € S(1).

According to one interpretation of Vegas, a source monitors
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the difference between its expected rate and its actual rate,
and increments or decrements its window by one in the next
round trip time according to whether the difference is less or
greater than a parameter a.' If the difference is zero, the
window size is unchanged. We model this by a synchronous
discrete time system. Let ws(t) be the window of source
s at time t and let Ds(t) be the associated round trip time
(propagation plus queueing delay). Note that D;(t) depends
not only on the window ws(t) of source s, but also on those
of all other sources, possibly even those sources that do not
share a link with s. We model the change in window size
by one packet per round trip time in actual implementation,
with a change of 1/Ds(t) per discrete time. Thus, source s
adjusts its window according to:

Vegas Algorithm:

ws(t) + gy if 25l };% <as
wtD = 0 wet) - plyy i g - pr > e
ws(t) else

In the original paper [7], ws(t)/ds is referred to as the Expected
rate, ws(t)/Ds as the Actual rate, and the difference ws(t)/ds—

ws(t)/Ds(t) as DIFF. The actual implementation estimates
the round trip propagation delay ds by the minimum round
trip time observed so far. The unit of s is, say, KB/s. We
will explain the significance of «s on fairness in Section 3.

When the algorithm converges the equilibrium windows w*
(wf, s € S) and the associated equilibrium round trip times
D* = (Dj3, s € S) satisty

w;
D

wy

ds

forall s € S (2)

:aS

Let xs(t) := ws(t)/Ds(t) denote the bandwidth realized
by source s at time t. The window size ws(t) minus the
bandwidth—delay product dszs(t) equals the total backlog
buffered in the path of s. Hence, multiplying the condi-
tional in (1) by ds, we see that a source increments or decre-
ments its window according to whether the total backlog
ws(t) — dsws(t) is smaller or larger than asds. This is a
second interpretation of Vegas.

2.2 Objective of Vegas

We now show that Vegas sources have

Us (Is) (3)

as their utility functions. Moreover the objective of Vegas
is to choose source rates x = (zs,s € S) so as to

asdslog s

I;lza,é( Z Us (a:s) (4)
subject to Z zs < ¢, l€L (5)

!The algorithm in [7] tries to keep this difference between
as and (s, with as < (s to reduce oscillation. We assume
for analytical simplicity that as = (3s. This captures the
essence of Vegas. The usual practice of using as < (s re-
duces oscillation by enlarging the equilibrium rate vector
from a unique point to a set.
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Constraint (5) says that the aggregate source rate at any
link ! does not exceed the capacity. We will refer to (4-5) as
the primal problem. A rate vector x that satisfies the con-
straints is called feasible and a feasible x that maximizes (4)
is called primal optimal (or simply optimal). A unique opti-
mal rate vector exists since the objective function is strictly
concave, and hence continuous, and the feasible solution set
is compact.

THEOREM 1. Let w* = (wi,s € S) be the equilibrium
windows of Vegas and D* = (Dj3,s € S) the associated equi-
librium round trip times. Then the equilibrium source rates
z* = (z%,s € S) defined by x5 = w; /D5 is the unique opti-
mal solution of (3 5).

2.3 VegasAlgorithm

We first describe a scaled gradient projection algorithm,
adapted from [20], to solve the dual problem of (4-5). Then
we interpret the Vegas algorithm as a smoothed version of
this algorithm. The convergence of the scaled gradient pro-
jection algorithm hence underlies the stability of Vegas.

Associated with each link [ is a dual variable p; > 0. The
dual problem of (4-5) is to choose the dual vector p = (pi,1 €
L) so as to (see [20]):

I;lzig D(p) := zs: Bq(p®) + zl:PlCz (6)

where
B.(p') = max Uswe) —p’ (™)
P o= > m (8)
l1eL(s)

If we interpret the dual variable p; as the price per unit
bandwidth at link [, then p°® in (8) is the price per unit
bandwidth in the path of s. Hence xsp® in (7) represents
the bandwidth cost to source s when it transmits at rate xs,
Us(zs) — wsp® is the net benefit of transmitting at rate ws,
and Bs(p®) represents the maximum benefit s can achieve
at the given (scalar) price p°. A vector p > 0 that minimizes
the dual problem (6) is called dual optimal. Given a vector
price p = (pi,1 € L) or a scalar price p° = ZZEL(S) D1, wWe
will abuse notation and denote the unique maximizer in (7)
by 2(p) or by z.(p°).

We will refer to p; as link price, p°® = ZleL(s) p; as path
price (of source s), and the vector p = (p;,l € L) simply as
price. In case of Vegas with its particular utility function,
the link price p; turns out to be the queueing delay at link
l; see Section 3. An optimal p* is a shadow price (Lagrange
multiplier) with the interpretation that p; is the marginal
increment in aggregate utility > Us(zs) for a marginal in-
crement in link I’s capacity c¢;.

A scaled gradient projection algorithm to solve the dual
problem takes the following form [20]. Let p;(t) be the link
price at time ¢ and p°(t) = >,y Pi(t) denote the path
price of source s at time t. Then at time t source s sets its
rate to (setting derivative of Us(zs(t)) — zs(¢)p°(t) to zero):

zs(p°(t)) )

asds
ps(t)

xs(t)



Let «'(p(t)) = > sesq) Ts(p(t)) denote the aggregate source
rate at link . Link / computes p;(t) according to:

p(t+1) [pe() + 10u(2 (p(2)) — )]

where v > 0 and 6; > 0 are constants.

(10)

The following result says that the scaled gradient projection
algorithm defined by (9-10) converges to yield the unique
optimal source rates, and underlies the stability of Vegas.

THEOREM 2. Provided that the stepsize 7y is sufficiently
small, then starting from any initial rates x(0) > 0 and
prices p(0) > 0, every limit point (z*,p*) of the sequence
(z(t),p(t)) generated by algorithm (10-9) is primal-dual op-
timal.

We now interpret the Vegas algorithm as approximately car-
rying out the scaled gradient projection algorithm (9-10).
In order to execute this algorithm, Vegas, a source-based
mechanism, must address two issues: how to compute the
link prices and how to feed back the path prices to individual
sources for them to adjust their rates. We now show that,
first, the price computation (10) is performed by the buffer
process at link I. Second, the path prices are implicitly fed
back to sources through round trip times. Given the path
price p°(t), source s carries out a smoothed version of (9).

Suppose the input rate at link [ from source s is xs(t) at
time ¢. Then the aggregate input rate at link [ is z'(t) =
> ses Ts(t), and the buffer occupancy b;(t) at link I evolves
according to:

bt + 1) [on(t) + (1) cl]+

Dividing both sides by ¢; we have

WD _ [, 1

+
tew-a] oy
Identifying p;(t) = bi(t)/c1, we see that (11) is the same as
(10) with stepsize v = 1 and scaling factor 6; = 1/¢;, ex-
cept that the source rates x5(t) in '(t) are updated slightly
differently from (9), as explained next.

o] o] ]

Recall from (1) that the Vegas algorithm updates the win-
dow ws(t) based on whether

ws(t) — xs(t)ds < asds or ws(t) —

From the proof of Theorem 1, this quantity is related to the
backlog, and hence the prices, in the path:

zs(t)ds > asdy(12)

ws(t) —ws(t)ds = ws(t) p°(t) (13)
Thus, the conditional in (12) becomes (cf. (9)):
sds Qsds

zs(t) < @) or xs(t) > @) (14)

Hence, a Vegas source compares the current source rate z(t)
with the target rate asds/p®(t). The window is incremented
or decremented by 1/Ds(t) in the next period according as
the current source rate z4(t) is smaller or greater than the
target rate asds/p°(t). In contrast, the algorithm (9) sets
the rate to the target rate in one step.
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3. DELAY, FAIRNESSAND LOSS
3.1 Delay

The previous section developed two equivalent interpreta-
tions of the Vegas algorithm. The first is that a Vegas source
adjusts its rate so as to maintain its actual rate to be be-
tween as and B; KB/s lower than its expected rate, where
as (typically 1/ds) and (s (typically 3/ds) are parameters
of the Vegas algorithm. The expected rate is the maximum
possible for the current window size, realized if and only
if there is no queueing in the path. The rationale is that
a rate that is too close to the maximum underutilizes the
network, and one that is too far indicates congestion. The
second interpretation is that a Vegas source adjusts its rate
so as to maintain between «,ds (typically 1) and Bsds (typi-
cally 3) number of packets buffered in its path, so as to take
advantage of extra capacity when it becomes available.

The duality model suggests a third interpretation. The dy-
namics of the buffer process at link ! implies the relation
(comparing (10) and (11)):

bi(t)

n(t) = (15)
It says that the link price p;(t) is the queueing delay at
link [ faced by a packet arrival at time t. The path price
P°(t) = X i (s) Pi(t) is thus the end-to-end queueing delay
(without propagation delay). It is the congestion signal a
source needs to adjust its rate, and the source computes it
by taking the difference between the round trip time and
the (estimated) propagation delay. Then (9) implies that a
Vegas source sets its (target) rate to be proportional to the
ratio of propagation to queueing delay, the proportionality
constant being between as and (3s. Hence the larger the
queueing delay, the more severe the congestion and the lower
the rate. This interpretation of Vegas will be used to modify
Vegas when used with REM; see Section 5 below.

It also follows from (9) that in equilibrium the bandwidth—
queueing—delay product of a source is equal to the extra
packets asds buffered in its path:

* kS

rgp = asds (16)

This is just Little’s Law in queueing theory. The relation
(16) then implies that queueing delay must increase with
the number of sources. This is just a restatement that every
source attempts to keep some extra packets buffered in its
path.

3.2 Fairness

Although we did not recognize it at the time, there are two
equally valid implementations of Vegas, each springing from
a different interpretation of an ambiguity in the algorithm.
The first, which corresponds to the actual code, defines the
as and (s parameters in terms of bytes (packets) per round
trip time, while the second, which corresponds to the prose
in [7], defines as and (3, in terms of bytes (or packets) per
second. These two implementations have an obvious impact
on fairness: the second favors sources with a large propaga-
tion delay,

In terms of our model, Theorem 1 implies that the equilib-
rium rates z* are weighted proportionally fair [13, 15]: for



any other feasible rate vector =, we have

*

3 auds Ts=%

x* -

The first implementation has as = «/ds inversely propor-
tional to the source’s propagation delay. Then the utility
functions Us(zs) = asdslogzs = alogxs are identical for
all sources, and the equilibrium rates are proportionally fair
and are independent of propagation delays. We call this im-
plementation proportionally fair (PF).

The second implementation has identical as = « for all
sources. The the utility functions and the equilibrium rates
are weighted proportional fair, with weights proportional to
sources’ propagation delays. (16) implies that if two sources
r and s face the same path price, e.g., in a network with a
single congested link, then their equilibrium rates are pro-
portional to their propagation delays:

T T

d-  ds
In a network with multiple congested links, weighting the
utility by propagation delay has a balancing effect to the
’beat down’ phenomenon, if the propagation delay is propor-
tional to the number of congested links in a source’s path.
We call the second implementation weighted proportionally
fair (WPF).

This contrasts with TCP Reno which attempts to equalize
window [14, 16, 19]:

z. Dy = x:D;

and hence a source with twice the (round trip) delay receives
half as much bandwidth. This discrimination against con-
nections with high propagation delay is well known in the
literature, e.g., [8, 10, 18, 22, 5].

3.3 Loss

Provided that buffers at links [ are large enough to accom-
modate the equilibrium backlog b] = pjc;, a Vegas source
will not suffer any loss in equilibrium owing to the feasibil-
ity condition (5). This is in contrast to TCP Reno which
constantly probes the network for spare capacity by linearly
increasing its window until packets are lost, upon which the
window is multiplicatively decreased. Thus, by carefully ex-
tracting congestion information from observed round trip
time and intelligently reacting to it, Vegas avoids the per-
petual cycle of sinking into and recovering from congestion.
This is confirmed by the experimental results of 7] and [2].

As observed in [7] and [5], if the buffers are not sufficiently
large, equilibrium cannot be reached, loss cannot be avoided,
and Vegas reverts to Reno. This is because, in attempting to
reach equilibrium, Vegas sources all attempt to place asds
number of packets in their paths, overflowing the buffers in
the network.

This plausibly explains an intriguing observation in [11] where
a detailed set of experiments assess the relative contribution
of various mechanisms in Vegas to its performance improve-
ment over Reno. The study observes that the loss recovery

mechanism, not the congestion avoidance mechanism, of Ve-
gas makes the greatest contribution. This is exactly what
should be expected if the buffers are so small as to pre-
vent Vegas from reaching an equilibrium. In [11], the router
buffer size is 10 segments; with background traffic, it can
be easily filled up, leaving little space for Vegas’ backlog.
The effect of buffer size on the throughput and retransmis-
sion of Vegas is illustrated through simulations in Section
7.4 below.

4. PERSISTENT CONGESTION

This section examines the phenomenon of persistent conges-
tion, as a consequence of both Vegas’ exploitation of buffer
process for price computation and of its need to estimate
propagation delay. The next section explains how this can
be overcome by Random Exponential Marking (REM) [4],
in the form of the recently proposed ECN bit [9, 26].

4.1 Coupling Backlog and Price

Vegas relies on the buffer process to compute its price p;(t) =
bi(t)/ci. The equilibrium prices depend not on the conges-
tion control algorithm but solely on the state of the net-
work: topology, link capacities, number of sources, and their
utility functions. As the number of sources increases the
equilibrium prices, and hence the equilibrium backlog, in-
creases (since b; = p;c;). This not only necessitates large
buffers in the network, but worse still, it leads to large feed-
back delay and possibly oscillation. Indeed, if every source
keeps asds = « packets buffered in the network, the equi-
librium backlog will be aN packets, linear in the number N
of sources.

4.2 Propagation Delay Estimation

We have been assuming in our model that a source knows
its round trip propagation delay ds. In practice it sets this
value to the minimum round trip time observed so far. Er-
ror may arise when there is route change, or when a new
connection starts [23]. First, when the route is changed to
one that has a longer propagation delay than the current
route, the new propagation delay will be taken as increased
round trip time, an indication of congestion. The source
then reduces its window, while it should have increased it.
Second, when a source starts, its observed round trip time
includes queueing delay due to packets in its path from ex-
isting sources. It hence overestimates its propagation delay
ds and attempts to put more than asds packets in its path,
leading to persistent congestion.> We now look at the effect
of estimation error on stability and fairness.

Suppose each source s uses an estimate ds(t) := (1+€s)ds(t)
of its round trip propagation delay ds in the Vegas algo-
rithm (1), where €; is the percentage error that can be
different for different sources. Naturally we assume —1 <
€s < Ds(t)/ds(t) — 1 for all ¢ so that the estimate satisfies

2A remedy is suggested for the first problem in [23] where
a source keeps a record of the round trip times of the last
L - N packets. When their minimum is much larger than
the current estimate of propagation delay, this is taken as
an indication of route change, and the estimate is set to the
minimum round trip time of the last N packets. However,
persistent congestion may interfere with this scheme. The
use of Random Exponential Marking (REM) eliminates per-
sistent congestion and facilitates the proposed modification.



0 < ds(t) < Ds(t). The next result says that the estimation
error effectively changes the utility function from (3) to:

Us(zs) (14 €s)asdslog xs + €sdss (17)

THEOREM 3. Let w* = (wi,s € S) be the equilibrium
windows of Vegas and D* = (D3, s € S) the associated equi-
librium round trip times. Then the equilibrium source rates

* = (x3,8 € S) defined by x5 = w;i /Dy is the unique opti-

z
mal solution of (4—5) with utility functions given by (17).

The significance of Theorem 3 is twofold. First, it implies
that incorrect propagation delay does not upset the stability
of Vegas algorithm— the rates simply converge to a differ-
ent equilibrium. Second, it allows us to compute the new
equilibrium rates, and hence assess the fairness, when we
know the relative error in propagation delay estimation. It
provides a qualitative assessment of the effect of estimation
error when such knowledge is not available.

Although Vegas can be stable in the presence of error in
propagation delay estimation, the error may cause two prob-
lems. First, overestimation increases the equilibrium source
rate. This pushes up prices and hence buffer backlogs, lead-
ing to persistent congestion. Second, error distorts the util-
ity function of the sources, leading to an unfair network
equilibrium in favor of newer sources. These are illustrated
in the simulations in Section 7.2 below.

4.3 Remarks

We did not see persistent congestion in our original simula-
tions of Vegas. This is most likely due to three factors. First,
Vegas reverts to Reno-like behavior when there is insufficient
buffer capacity in the network. Second, our simulations did
not take the possibility of route changes into consideration,
but on the other hand, evidence suggests that route changes
are not likely to be a problem in practice [25]. Finally, the
situation of connections starting up serially is pathological.
In practice, connections continually come and go; hence all
sources are likely to measure a baseRTT that represents the
propagation delay plus the average queuing delay.

5. VEGASWITH REM

Persistent congestion is a consequence of Vegas’ reliance on
queueing delay as a congestion measure, which makes back-
log indispensable in conveying congestion to the sources.
This section shows how REM (Random Exponential Mark-
ing) [4] can be used to correct this situation.

Our goal is to preserve the equilibrium rate allocation of Ve-
gas without the danger of persistent congestion described in
the last section. It is hence essential that the active queue
management scheme strives to clear the buffer while main-
taining high utilization. Recall the three interpretations of
Vegas discussed in Section 3.1. To preserve the equilibrium
rate allocation, we use the third interpretation that a Vegas
source sets its rate to be proportional to the ratio of propa-
gation delay to path price as expressed by (9), except that
path price now is no longer the round trip delay. Instead it is
computed and fed back using the REM algorithm, explained
below. When packet loss is detected through duplicate ac-
knowledgments, Vegas halves its window, as Reno would.
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The purpose of AQM is not to replace a loss signal due to
buffer overflow by a probabilistic dropping or marking, but
rather to feed back the path price.

There are two ideas in REM that suit our purpose. First,
REM strives to match rate and clear buffer, leading to high
utilization and low queue. With small queue, minimum
round trip time would be an accurate approximation to
propagation delay. Round trip times however no longer con-
vey price information to a source. The second idea allows
sources to estimate their path prices from observed drop-
ping or marking rate. We now summarize REM; see [4, 3]
for design rationale, performance evaluation, and parameter
setting.

Each link [ updates a link price p;(t) in period t based on
the aggregate input rate z'(t) and the buffer occupancy b;(t)
at link I:

[p2() +~(ubi(8) + 2" (1) —e)] ™ (18)

where v > 0 is a small constant and 0 < p; < 1. This
price adjustment 818) leads to small backlog (b ~ 0) and
high utilization (z** ~ ¢;) in equilibrium, regardless of the
equilibrium price p;. To convey prices to sources, link [
marks each packet arriving in period t, that is not already
marked at an upstream link, with a probability m;(t) that
is exponentially increasing in the congestion measure:

p(t+1)

1— ¢—Pl (t)

my (t)

where ¢ > 1 is a constant. Once a packet is marked, its
mark is carried to the destination and then conveyed back
to the source via acknowledgment.

Source s estimates the end—to—end marking probability m®(t)
by the fraction m°(t) of its packets marked in period ¢, and
estimates the path price p®(t) by:

(t) —log, (1 —m*(t))

where log, is logarithm to base ¢. It then adjusts its rate
using marginal utility (cf. (9)):

~S

p

Oésds (o7 ds
p(t) —log, (1 —m*(t))

In practice a source may adjust its rate more gradually by
incrementing it slightly if the current rate is less than the
target (the right hand side of (19)), and decrementing it
slightly otherwise, in the spirit of the original Vegas algo-
rithm (1):

xs(t)

(19)

Vegas with REM:

1 . s(t) asds

ws(t) + ooy i — gsgtg <50

— 1 s ws(t sds

ws(t+1) = ¢ wt) =~ piy i — BHH > 550
ws(t) else

6. RELATED WORK

The optimal flow control problem (4-5) is formulated in [13].
It is solved using a penalty function approach in [15, 16] and
extended in [24] and [17]. The problem is solved using a du-
ality approach in [20] leading to an abstract algorithm whose
convergence has been proved in asynchronous environment.



A practical implementation of this algorithm is studied in
[4]. The idea of treating source rates as primal variables
and congestion measures (queueing delay in Vegas) as dual
variables, and TCP/AQM as a distributed primal-dual al-
gorithm to solve (4 5), with different utility functions, is
extended in [19] to other schemes, such as Reno/DropTail,
Reno/RED, and Reno/REM. The utility functions of these
schemes are derived.

In [24] a network is modeled by a set of inequalities which,
in our context, are the feasibility condition (5), the Karush-
Kuhn-Tucker condition for the constrained optimization (4
5), and the relation between window and backlog. One of the
main results of [24] is a proof, using fixed point theory, that,
given window sizes, there exists a unique rate vector that
satisfies these inequalities. An alternative proof is to observe
that the set of inequalities define the optimality condition
for the strict convex program (3-5), implying the existence
of a unique solution. Theorem 1 is first proved in [24]; our
proof has a somewhat more intuitive presentation.

A single-link dynamical system model of Vegas is used in
[5] to show that, in the case of homogeneous propagation
delay, the system converges to a set where each source keeps
between as and (3s packets in the link. The proof relies on an
interesting contraction property that says that the difference
between window sizes of any two sources can only decrease
over time.

A model of Vegas with a single link, two sources and o < 3 is
used in [23] to show that, in equilibrium, each source main-
tains between o and § number of packets in the path, and
that Vegas does not favor sources with short delays (their
model corresponds to the PF model here; see Section 3.2).
The problem of persistent congestion due to propagation de-
lay estimation is discussed but no analysis is presented. We
assume « = 3 and consider a multi-link multi-source opti-
mization model whose solution yields an equilibrium char-
acterization from which rates, queue sizes, delay, and fair-
ness properties can be derived. This model also clarifies the
precise mechanism through which persistent congestion can
arise, its consequences and a cure.

A single link model and simulations are also used in [6] to in-
vestigate the effect of persistent congestion on fairness both
in the case when a = 3 and a < 8. They conclude that over-
estimation of propagation delay leads to (unfairly) larger
equilibrium rate in both cases. When o = f3, there is a
unique equilibrium rate vector, whereas when a < 3, the
equilibrium rates can be any point in a set depending on
detail dynamics such as the order of connection start times,
making fairness harder to control. They hence suggest that
a be set equal to § in practice, but do not propose any
solution to reduce error in propagation delay estimation.

7. VALIDATION

This section presents four sets of simulation results. The
first set shows that source rate converges quickly under Ve-
gas to the theoretical equilibrium, thus validating our model.
The second set illustrates the phenomenon of persistent con-
gestion discussed in Section 4. The third set shows that the
source rates (windows) under Vegas/REM behave similarly
to those under plain Vegas, but the buffer stays low. The
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last set shows that enough buffer space is necessary for Vegas
to work properly.

We use the ns-2 network simulator [1] configured with the
topology shown in Figure 1. Each host on the left runs an
FTP application that transfers a large file to its counterpart
on the right. We use a packet size of 1KB. The various
simulations presented in this section use different latency
and bandwidth parameters, as described below. Simulations
with multiple links are presented in [21].

Host 1a Host 1b
Host 2a Host 2b
Host 3a Host 3b
Host 4a Host 4b
Host 5a Host Sb

Figure 1: Network Topology

7.1 Experiment 1: Equilibrium and Fairness
We run five connections across the network (i.e., between
Hostla and Hostlb, 2a and 2b etc.) to understand how
they compete for bandwidth. The round trip latency for
the connections are 15ms, 15ms, 20ms, 30ms and 40ms re-
spectively. The shared link has a bandwidth of 48Mbps and
all host-router links have a bandwidth of 100Mbps. Routers
maintain a FIFO queue with unlimited capacity.

TCP Vegas Sending Rate for Hostla (Proportionally Fair) TCP Vegas Sending Rate for Host3a (Proportonally Fair)
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TCP Vegas Sending Rate for Hostéa (Proportionally Fair) TCP Vegas Sending Rate for Host5a (Proportionally Fair)
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Figure 2: Experiment 1(a), PF: sending rates
(Host2a, not shown here, behaved similarly to
Hostla.)

As described in Section 3, there are two different imple-
mentations of Vegas with different fairness properties. For
proportional fairness, we set as = 2 packets per RTT and
we let as = s in ns-2. The model predicts that all connec-
tions receive an equal share (1200KBps) of the bottleneck



link and the simulations confirm this. This contrasts sharply
with Reno which is well known to discriminate against con-
nections with large propagation delays. Figure 2 plots the
sending rate against the predicted rates (straight lines): all
connections quickly converge to the predicted rate. Ta-
ble 1 summarizes other performance values,® which further
demonstrate how well the model predicts the simulation.

TCP Vegas window sizes for Host2a (Weighted Proportionally Fair)

TCP Vegas window sizes for Hostda (Weighted Proportionally Fair)

window size KB
window size KB

theoretical equilibrium window ——
ownd ——

theoretical equilibrium window ——
ownd ——

o 1 2 3 4 5 & 7 8 o 1 2 3 4 5 & 7 8
time (second) time (second)

(a) Host2a delay=15ms (b) Host4a delay=30ms

Figure 3: Experiment 1(b), (WPF): congestion win-
dow size for two (of the five) connections

For weighted proportional fairness, we set as to 2 packets per
10ms, which means each source will have a different number
of extra packets in the pipe and the optimal sending rate
will be proportional to the propagation delay. The results
for the two (of the five) connections are shown in Figure 3,
except this time we show the congestion windows instead
of the sending rates. The other performance numbers are
in Table 2, which again show that the simulations closely
follow the model’s predictions. All simulation numbers are
averages in equilibrium.

We repeated these simulations with multiple links using the
topology in [7] and the measurements agree well with model
predictions; see [21].

7.2 Experiment 2. Persistent Congestion

We next validate that Vegas leads to persistent congestion
under pathological conditions. We set the round trip latency
to 10ms for all connections, the host-router links are all 1600
Mbps, and the bottleneck link has a bandwidth of 48 Mbps.
We set as to 2 packets-per-ms, so each source strives to
maintain 20 packets in their path. We assume the routers
have infinite buffer capacity.

We first hard-code the round trip propagation delay to be
10 ms for each source, thus eliminating the error in propa-
gation delay estimation. We then run five connections, each
starting 20 seconds after the previous connection. That is,
Host 1a starts sending at time 0, 2a starts at 20s, and so
on. As shown in Figure 4(a), the buffer occupancy increases
linearly in the number of sources.

Next, we take propagation delay estimation error into ac-
count by letting the Vegas sources discover the propagation

3The reported baseRTT includes both the round trip latency
and transmit time.
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Figure 4: Experiment 2: buffer occupancy at router

baseRTT (ms) | Hostla | Host2a | Host3a | Hostda | Hostba

no error 10.18 10.18 10.18 10.18 10.18
w/ error (S) 10.18 13.36 20.17 31.5 49.86
w/ error (M) 10.18 13.51 20.18 31.2 19.80

Table 4: Experiment 2: error in propagation delay
estimation

delay for themselves. As shown in Figure 4(b), buffer oc-
cupancy grows much faster than linearly in the number of
sources (notice the different scales in the figure). We have
also applied Theorem 3 to calculate the equilibrium rates,
queue size, and baseRTT (estimated propagation delay). The
predicted and measured numbers are shown in Tables 3 and
4. They match very well, further verifying our model.

As Table 3 shows, distortion in utility functions not only
leads to excess backlog, it also strongly favors new sources.
Without estimation error, sources should equally share the
bandwidth. With error, when all five sources are active,
r1:%2:x3:%4:25=1:14:23:4.5:11.6.

7.3 Experiment 3: Vegas+ REM

Finally, we implement REM at Routerl, which updates link
price every lms according to (18). We adapt Vegas to ad-
just its rate (congestion window) based on estimated path
prices, as described in Section 5. Vegas makes use of packet
marking only in its congestion avoidance phase; its slow-
start behavior stays unchanged.*

We use the same network setup as in Section 7.2. The bot-
tleneck link also has a bandwidth of 48Mbps. Host-router
links are 1600Mbps and s is 2 pkts-per-ms. In order to
verify our new mechanism in different situations, this time
we let sources (Host1-5a) have a round trip latency of 10ms,
10ms, 20ms, 10ms, 30ms respectively. REM parameters are:
¢ = 1.1, iy = 0.5, v = 0.005.

We start 5 connections with an inter-start interval of 20s
in order to test our claim that REM reduces the estimation
error in Vegas’ propagation delay. Figure 5 plots the con-
gestion window size of the five connections and buffer occu-

4During slow-start, Vegas keeps updating the variable frac-
tion 1’ (t), but does not use it in window adjustment.



Host la 2a 3a 4a Ha
M S M S M S M S M S
baseRTT (ms) 15.34 | 15.34 | 15.34 | 15.34 | 20.34 | 20.34 | 30.34 | 30.34 | 40.34 | 40.34
RTT w/ queueing (ms) 17 17.1 17 17.1 22 21.9 32 31.9 42 41.9
Sending rate (KB/s) 1200 1205 1200 1183 1200 1228 1200 1247 1200 1161
Congestion window (pkts) | 20.4 | 20.5 | 204 | 20.2 | 26.4 27 38.4 | 39.9 | 504 | 49.8
Buffer occupancy Model Simulation
at Routerl (pkts) 10 9.8

Table 1: Experiment 1(a), (PF): comparison of theoretical and simulation results. M-Model, S-Simulation.

Host Ila 2a 3a 4a 5a
M S M S M S M S M S
baseRTT (ms) 15.34 | 15.34 | 15.34 | 15.34 | 20.34 | 20.34 | 30.34 | 30.34 | 40.34 | 40.34
RTT w/ queueing (ms) 19.4 19.55 19.4 19.58 | 24.4 24.4 34.4 34.3 44.4 44.3
Sending rate (KB/s) 756.3 | 781 | 756.3 | 774 1003 | 994 1496 | 1495 | 1990 | 1975
Congestion window (pkts) | 14.7 | 15.1 14.7 | 149 | 245 | 24.6 | 51.5 | 51.7 | 88.4 | 88.6
Buffer occupancy Model Simulation
at Routerl (pkts) 24.34 24.24

Table 2: Experiment 1(b), (WPF): comparison of theoretical and simulation results. M-Model, S-Simulation.

pancy at Routerl. As expected, each of the five connections
converges to its appropriate bandwidth share. When the
link is not congested, source rate oscillates more severely,
as seen from Hostla during time 0 - 20s. This is a conse-
quence of the log utility function; see [4]. As more sources
become active (40 - 100s), oscillation becomes smaller and
convergence faster. REM eliminates the superlinear growth
in queue length of Figure 4(b) while maintaining high link
utilization (90% to 96%). As a result propagation delay can
be accurately estimated, as shown in Table 5.

baseRTT (ms) | Hostla | Host2a | Host3a | Hostda | Hostba
Model 10.18 10.18 20.18 10.18 30.18
Simulation 10.18 10.18 20.18 10.18 30.19

Table 5: Experiment 3:
Vegas+REM.

comparison of baseRTT in

7.4 Experiment 4: Effect of Buffer Capacity

Our model and all previous simulations assume an “infi-
nite” buffer capacity. The next simulation studies the effect
of buffer capacity on the performance of Vegas and Reno. It
confirms our discussion in Section 3.3 and offers a plausible
explanation for the intriguing observation that the conges-
tion avoidance mechanism of Vegas contributes little to its
throughput and retransmission improvement over Reno.

In [11], TCP Vegas is decomposed into several individual
mechanisms and the effect of each on performance is assessed
by taking the approach of a 2F factorial design with repli-
cations. This work deploys a very useful methodology and
gives us some insights into the relative importance of differ-
ent algorithms in Vegas. However, the final conclusion that
Vegas’ more aggressive recovery mechanism has the largest
effect on performance, while its congestion avoidance mech-
anism contributes little, could be limited by the fact that
in that setup, the bottleneck router only has a 10 packet
queue, which could be easily filled up by background traf-
fic. As a result, without enough buffer for its backlog, Vegas
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reverts to Reno and the changes to its recovery mechanism
then stand out as the largest contributor to performance. If
buffer space is enough, Vegas will maintain a steady send-
ing rate without any retransmission. To validate our claim,
we simulate the same topology as in [11], which is simi-
lar to Figure 1, but the bottleneck link has a capacity of
200 KB/sec and a latency of 50ms, and host-router connec-
tions are 10Mbps Ethernet. To isolate the effect of buffer
size on the behavior of congestion avoidance mechanism, we
omit the background traffic in our simulations and only start
three persistent FTP transfers from Hostla to Host1lb. Such
long transfers minimize the effect of other mechanisms such
as slow-start on the performance and our measurements are
based on the first 50 seconds of the transfer. We set aog = 1
and (s = 3 pkts-per-round-trip respectively for Vegas. Fig-
ure 6 shows the average throughput, retransmission and re-
transmission during congestion avoidance of the three flows
as a function of buffer size at Routerl. These plots confirms
that Vegas has a steady send rate and no retransmissions as
long as the buffer sizes exceeds a threshold. The threshold
is a bit larger than the total Vegas’ backlog (3-9 packets
in this case) because of queue fluctuations during transient.
In contrast, increasing the buffer size continuously helps the
performance of Reno though retransmission remains signif-
icant even at large buffer size.

This simulation illustrates that TCP Vegas’ congestion avoid-
ance mechanism will only get its full benefit when the net-
work has enough buffer space to hold Vegas’ backlog. In
that case, Vegas will have a stable send rate and no retrans-
mission, and the performance advantage, although not as
pronounced, can be ascribed to Vegas’ congestion avoidance
mechanism. When buffer space is small, Vegas’ cwnd be-
haves like Reno’s and Vegas’ recovery mechanism plays a
larger role in the performance difference.

Returning to the original question of whether the recovery
mechanism or the congestion avoidance mechanism plays a
bigger role in performance, it is worth noting that there is
a danger in trying to isolate their respective contributions.



Time Ia (KB/s) | 2a (KB/s) | 3a (KB/s) | 4a (KB/s) | 5a (KB/s) | Queue (pkts)
M S M S M S M S M S M S
0—20s | 6000 | 5980 20 19.8
20 —40s | 2000 | 2050 | 4000 | 3920 60 59
40— 60s | 940 | 960 | 1490 | 1460 | 3570 | 3540 127 | 1273
60 80s | 500 | 510 | 730 | 724 | 1350 | 1340 | 3390 | 3380 238 | 237.5
80 —100s | 290 | 290 | 400 | 404 | 670 | 676 | 1300 | 1298 | 3340 | 3278 | 416 | 416.3
Table 3: Experiment 2(b): equilibrium rates and queue lengths with propagation delay error. M-Model,
S-Simulation
Throughput vs. Buffer Size Retransmission vs. Buffer Size Retransmission in Congestion Avoidance vs. Buffer Size
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Figure 6: Experiment 4: effect of buffer capacity on performance. All numbers are averaged on three long
lasting flows over a 50 second period. For Vegas, o = 1, = 3 packet per RTT.

This is because the recovery mechanism was designed to
retransmit more aggressively than Reno, while the conges-
tion avoidance mechanism was designed primarily to reduce
loss (not increase throughput), and hence, provide balance
against the effects of the recovery mechanism.

8. CONCLUSIONS

We have shown that TCP Vegas can be regarded as a dis-
tributed optimization algorithm to maximize aggregate source
utility over their transmission rates. The optimization model
has four implications. First it implies that Vegas measures
the congestion in a path by end—to—end queueing delay. A
source extracts this information from round trip time mea-
surement and uses it to optimally set its rate. The equi-
librium is characterized by Little’s Law in queueing theory.
Second, it implies that the equilibrium rates are weighted
proportionally fair. Third, it clarifies the mechanism, and
consequence, of potential persistent congestion due to error
in the estimation of propagation delay. Finally, it suggests
a way to eliminate persistent congestion using REM that
keeps buffer low while matching rate. We have presented
simulation results that validate our conclusions.
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