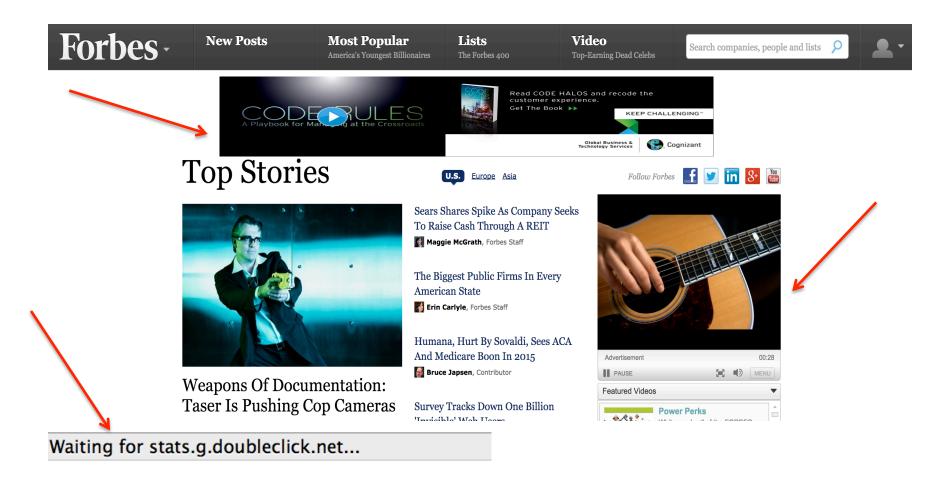
Leveraging Machine Learning to Improve Unwanted Resource Filtering

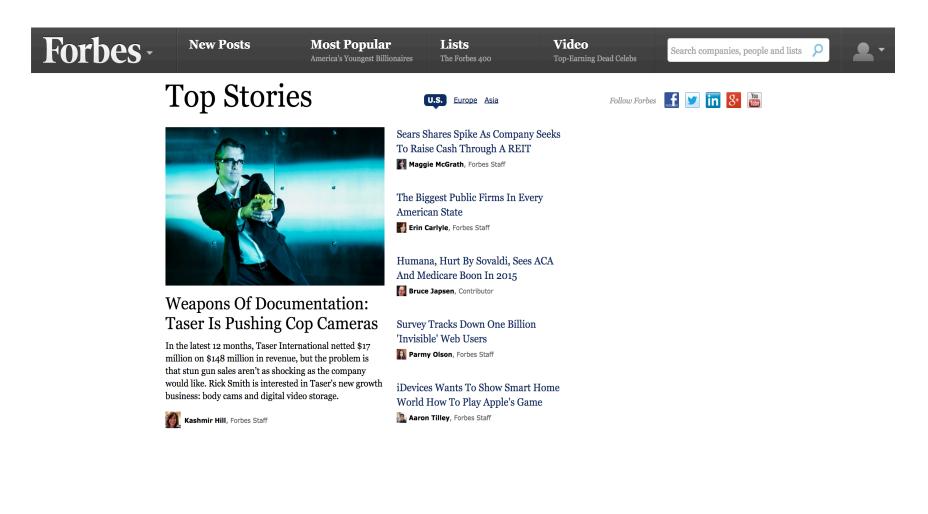
Sruti Bhagavatula Christopher Dunn Chris Kanich Minaxi Gupta Brian Ziebart

Bloomington

Introduction



Introduction



Typical Advertisement

▼<html>

#shadow-root

<head></head>

▼ <body style="margin:0" marginwidth="0" marginheight="0">

▼

> <script type="text/javascript">...</script>

</body>

</html>

</iframe>

Typical DOM structure of an advertisement element in a page.

Ad-Blocking

- URLs matched against filters
- DOM element names matched against element hiding filters
- Iframe content removed
- Resource requests blocked

_300_250_ _300_60_ _300x160_ _300x250-_300x250. _300x250 _300x250a_ _300x250b. _300x250px. _300x250px. _300x250v2. _300x600. _300x600.

Blocked Advertisement

```
\Vertical_ads_iframe_/16921351/9gag-list-sidebar1-300x250-atf_0_hidden__" name=
width="0" height="0" scrolling="no" marginwidth="0" marginheight="0" frameborder="0" src=",
"border: 0px; vertical-align: bottom; visibility: hidden; display: none;">
\Vertical-align: bottom; visibility: hidden; display: none
```

After the iframe and images were matched and blocked.

AdBlockPlus Filters

- Typical EasyList general URL filters. (right)
- Multiple filter lists tens of thousands of filters total.
- Updated every few days with new specific regexes.

```
?view=ad&
?wm=*&prm=rev&
?ZoneID=*&PageID=*&SiteID=
^fp=*&prvtof=
^mod=wms&do=view *&zone=
125ad.
160 ad
160x550.
                          adwrap.
                          afd ads.
300x250Banner
                          affiliate/banners/
468x60ad.
728x90ad
                          affiliate ad.
acorn ad
                          afs ads.
                          alt/ads/
                          argus ad
                          assets/ads/
                          background ad.
                          background ad/
/totemcash1.
/tower ad
/towerbannerad/*
/tr2/ads/*
/track.php?click=*&domain=*&uid=$xmlhttprequest
/track.php?uid=*.*&d=
/track ad
/trackads/*
/tracked ad.
/trade punder.
/tradead
```

Motivation

- Advertisements are distracting and a potential security and privacy risk.
- Ad blockers use thousands of hand-crafted filters manually updated through constant advertisement tracking and user feedback.
- Ad blocking assisted by machine learning can improve ad blocking quality and decrease filter crafting effort.

Approach

- Crawl URLs of today and compare with present and historical filters.
- Bootstrap a supervised classifier based on historical regex matches to identify new ads.
- Train multiple classification algorithms to test suitability to the problem.

Related Work

 Classification of advertisement images using C4.9 [Kushmerick '99].

- Classification of advertisements using Weighted Majority Algorithm [Nock et al. '05].
- Rule-based classification of advertisements.
 [Krammer '08].

Datasets

- Depth 2 web crawl from Alexa top 500
 60,000 URLs total
- URLs matched against EasyList filters binary class labels.
- 2 sets of class labels:
 - "Old" labels matched against September 23rd, 2013 filter list.
 - "New" labels matched against February 23rd, 2014 filter list.

Feature Sets

- A. Ad-related keywords (2 features)
- B. Lexical features (2 features)
- C. Related to the original page (2 features)
- D. Size and dimensions in URL (2 features)
- E. In an iframe container (1 feature)
- F. Proportion of external requested resources (3 features)

Select Features

• Base Domain in URL:

http://l.betrad.com/ct/0/pixel.gif?
ttid=2&d=www.livejournal.com&

• Ad Size in URL:

http://cdn.atdmt.com/b/HACHACYMCAYKC/ Adult_300x250.gif

Evaluation Methodology

- Evaluate coverage using old filters and improvement using current filters.
- Bootstrap the classifier using older classifications of EasyList for training.
- Evaluate against classifications based on newer EasyList to evaluate its ability to recognize unrecognized ads.

Evaluation Methodology

- Specific metrics:
 - Baseline Accuracy =

No. of positively classified URLs matched by both lists

No. of URLs matched by both lists.

– New-ad Accuracy =

No. of positively classified URLs matched by the new but not old

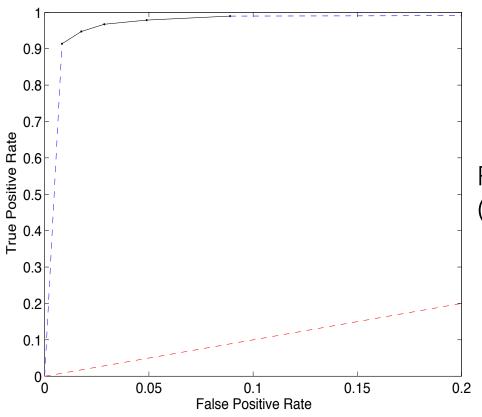
No. of URLs matched by the new but not old

Comparison of Classifiers

Classification Method	Avg. Accuracy	Precision	FP-rate
Naïve Bayes	89.50%	89.09%	14.3%
SVM (linear)	92.10%	92.36%	7.4%
SVM (poly)	90.51%	90.56%	7.34%
SVM (rbf)	92.18%	92.43%	7.7%
L2-reg. Logistic Regression	92.44%	92.43%	7.5%
K-Nearest Neighbors	97.55%	98.60%	1.3%

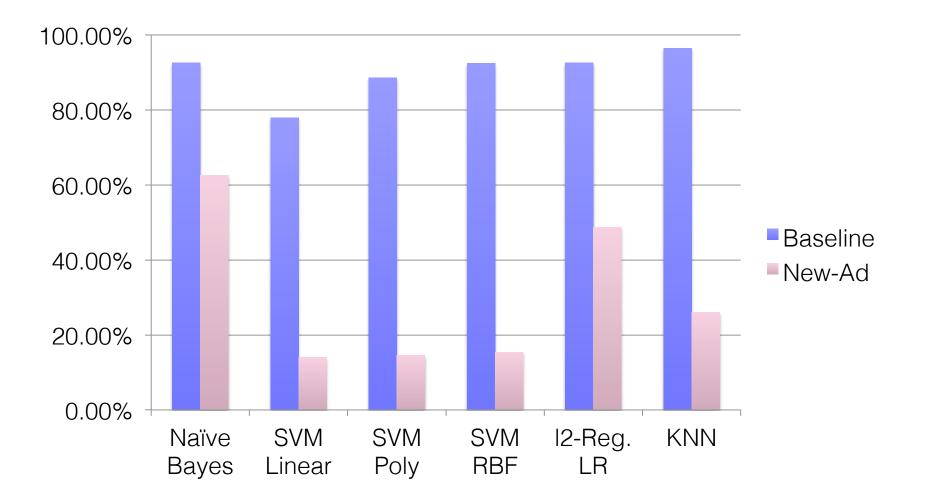
k-Nearest Neighbors had the best overall accuracy and other measures.

ROC Curve



Receiver Operating Characteristic (ROC) curve of the kNN classifier.

Baseline and New-Ad Accuracy



Performance of features with kNN

Feature Set (f)	Avg. Accuracy	Baseline Accuracy	New-ad Accuracy
А	90.21%	81.82%	48.78%
В	97.42%	95.20%	48.78%
С	96.82%	95.16%	34.96%
D	95.94%	93.38%	27.64%
E	96.22%	94.21%	21.95%
F	76.88%	57.50%	9.76%

Table of average accuracy, baseline accuracy and new-ad accuracy without each feature set (f)

Ad-related keywords and **proportion of external resources** feature sets are the most crucial ones.

Minimizing False Positives

- Compared False Positives against very recent filter list from June 7th, 2014.
- Approximately 7% of them were matched by the more recent filters.
- 70% of positively misclassified ads were actually advertisements unrecognized by EasyList.

Future Work

• Incrementally learn accurate and new ads based on user feedback.

 Crowdsource feedback on new advertisements and falsely classified resources.

- Machine learning based classifier which was able to automatically learn currently known and unknown ads and up to 50% of new ads.
- Further enable user choice on what ads, tracking beacons, and other undesirable web assets are loaded on their machines, improving the end-user experience and overall web security.

Thank you!

• Questions?

Bloomington