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Abstract
This paper presents the latest chapter in our adventures coping
with a large, sequentially-tuned, legacy runtime system in today’s
parallel world. Specifically, this paper introduces our new graphical
visualizer that helps programmers understand how to program in
parallel with Racket’s futures and, to some extent, what performs
well in sequential Racket.

Overall, our experience with parallelism in Racket is that we can
achieve reasonable parallel performance in Racket without sacri-
ficing the most important property of functional programming lan-
guage implementations, namely safety. That is, Racket program-
mers are guaranteed that every Racket primitive (and thus all func-
tions built using Racket primitives) will either behave properly, or
it will signal an error explaining what went wrong.

That said, however, it is challenging to understand how to best
use futures to achieve interesting speedups, and the visualizer is
our attempt to more widely disseminate key performance details of
the runtime system in order to help Racket programmers maximize
performance.

Categories and Subject Descriptors D.1.1 [Applicative (Func-
tional) Programming]; D.1.3 [Concurrent Programming]: Parallel
Programming

Keywords Racket, parallel functional programming, performance
tuning

1. Introduction
Racket (Flatt and PLT 2010)’s futures (Swaine et al. 2010) are
a construct for parallelism designed specifically to work around
the problem of making Racket’s large, legacy, sequentially-tuned
runtime system thread-safe. In order to achieve thread safety, we
allow futures to execute only a subset of Racket primitives that
are known to be free of side-effects with respect to the runtime
system’s internal state. At a high level, the full set of Racket
primitives can be partitioned into three categories:

• safe - okay to execute in parallel;
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• barricaded - halts parallel execution until the future is touched;
• atomic - requires synchronization with the runtime thread, but

will allow the future to continue to execute in parallel once
completed.

The barricaded category is what makes futures safe, ensuring
that parallel execution does not corrupt the runtime system’s in-
ternal state. Specifically, when a future encounters a primitive in
the barricaded category, the future simply halts parallel execution.
In order to complete the computation that the future began, it is
necessary to explicitly touch the future, which ensures that the fu-
ture completes on the one thread that is allowed to manipulate the
shared state of the runtime system.

To a first approximation, safe primitives are the same ones that
the JIT compiler has a special fast path for. In Racket, this means
that some primitives are safe only when given specific arguments.
For example, when + receives fixnums (roughly machine-word
sized integers) or floating point numbers, then the call to + is
safe. When it encounters other kinds of numbers (e.g., bignums,
rationals, or complex numbers), or encounters non-numbers, then
+ must be barricaded, since those operations may take a long time
to complete, may use an unbounded amount of memory, or may
involve jumping to an unknown exception handler (possibly one
recorded in a portion of the stack that the future shares with the
main computation).

The atomic category currently consists of only two operations:
memory allocation and JIT compilation. We judged that these two
operations are so common and so difficult to eliminate from or-
dinary Racket code that, rather than barricading them (since they
manipulate shared runtime system state), it is better to synchronize
with the runtime thread. Accordingly, a Racket programmer can
still benefit from parallelism if he/she merely reduces the amount
of memory allocation or JIT compilation that happens, instead of
eliminating them entirely.

Consider the following sequential program, which adds the
summation of two lists:

(define a (build-list 1000 (lambda (x) x)))
(define b (build-list 1000 (lambda (x) x)))

(+ (foldl + 0 a) (foldl + 0 b))

Though a trivial example, we might attempt to parallelize the pro-
gram by creating a future for one of the calls to foldl. A com-
parison of the running times of the two versions is surprising: the
parallel version’s running time is almost the same as the sequential
version. Because + is not being directly applied, the JIT compiler



Figure 1: The Visualizer

does not inline it and thus each application of + inside foldl re-
quires a barricade, thwarting our attempt at parallelism.

Naturally, this state of affairs calls for some help so that a Racket
programmer can understand why a program behaves poorly when
run in a future. This desire for tool support is exacerbated by the
incremental nature of future support in Racket. That is, the futures
implementation is designed to enable an incremental approach to
runtime parallelization, in which primitives requiring barricades
may be manually rewritten one-by-one over time to support more
parallel programs.

Although an incremental approach makes adding futures to
Racket possible at all, it results in an implementation in which
the set of barricaded primitives is constantly shrinking. Thus, even
experienced futures programmers cannot always rely on preexisting
intuition about which operations are safe for parallelism.

Our experience attempting to write parallel programs that ex-
hibit good scaling shows that it is often very difficult to understand
how the underlying implementation affects a given program’s po-
tential for parallelism. This paper introduces our graphical profiling
tool and demonstrates how it can help Racket programmers refine
a program to avoid limitations imposed by the implementation.

The paper proceeds as follows: section 2 introduces the futures
API and the visualizer. Section 3 explores how to use the visualizer
to build a fast parallel implementation of a fast Fourier transform.
Section 4 explains the tracing infrastructure used by Racket to
record the information the visualizer requires and finally section 5
discusses related work.

2. Futures and the Visualizer
Programmers can spawn and join on parallel tasks via the following
primitives:

(future thunk) → future?
thunk : (-> any)

Creates a future construct encapsulating a thunk, and indi-
cates to the runtime system that the body of the thunk is a
good candidate for parallel execution.

(touch f) → any?
f : future?

Forces the evaluation of the thunk encapsulated by f (if it
hasn’t been evaluted already) and blocks until its evaluation
is completed.

For example,

(let ([f (future (lambda () (+ 1 2)))])
(list (+ 3 4) (touch f)))

asks the system to evaluate (+ 1 2) and (+ 3 4) in parallel, and
returns the two results in a list.

The visualizer window is shown in Figure 1, with the results of
running this program:

#lang racket
(define (count-down n)

(unless (zero? n)
(count-down (- n 1))))

(define (lots-of-nothing)
(count-down 1000000000))

(define f1 (future lots-of-nothing))
(define f2 (future lots-of-nothing))
(touch f1)
(touch f2)



The window consists of four panes. The left-most portion of the
window shows the barricaded primitives encountered during the
run, as well as the reasons why a future had to synchronize with
the main, runtime thread. In this case, there aren’t any. The upper
middle portion shows what each thread in the system was doing, as
a timeline. In this case, each thread was running a separate future,
and the green bars indicate the future was doing work (as opposed
to waiting for work or waiting for the runtime system). The upper
right portion shows a tree indicating which futures created which
other futures. In this case, the root node is the runtime system
thread, which created the two futures. Finally, the lower portion
of the window gives an overview of the program, but when the
mouse passes over a portion of the upper middle pane, it gives
more information about the operations happening at that point in
the timeline.

3. Parallelizing an FFT
To give a sense of how the visualizer can help guide the imple-
mentation of a parallel algorithm, this section works through the
implementation of a fast Fourier transform (FFT). All of the tim-
ings in this section (except as discussed in the last subsection) were
measured on an 11” MacBook Air with 2 hyperthreaded 1.8 GHz
Core i7’s, for a total of four cores from Racket’s perspective.

3.1 Sequential FFT
To start, a sequential version of the Cooley–Tukey fast Fourier
transform, fft0, is shown in Figure 2. It accepts a series of sam-
ples of a function in the time domain and returns samples of that
function from the frequency domain.

The Cooley–Tukey FFT is a divide-and-conquer recursive al-
gorithm. If the input contains a single sample, it is returned un-
changed. Otherwise, the function exploits a mathematical identity
of the discrete Fourier transform, namely that it can be expressed
in terms of two interleaved Fourier transforms of half the size of
the original. That is, the input is split into two parts: one containing
the samples with even indices and another containing the samples
with odd indices. This is the decimation phase, implemented by
the decimate-in-time function. The Fourier transform is recur-
sively applied to both of the smaller signals. A “twiddle factor” is
then applied to the transform of the odd samples, as seen in the
twiddle-factor function. Finally, the results are combined to
form the complete Fourier transform by appending the pointwise
sum of the results and their pointwise difference.

The mathematical identity that this algorithm relies on only
holds if the two sublists are of equal length and thus our FFT
algorithm only works on lists whose length is a power of 2. This is
not, generally speaking, an important restriction, since the users of
the FFT algorithm typically have the freedom to choose the number
of sample points of the function.

The code features a few Racketisms: functions in Racket can
return multiple values, which can then be bound separately us-
ing the special define-values binding construct. In this case,
decimate-in-time returns the two sublists and the define-
values on line 4 catches the two values, binding them to ss and
ts. The for/list construct on line 11 describes a list compre-
hension: the variables b and c are successively bound to each el-
ement in the sequences (in-list bs) and (in-list cs), re-
spectively. The two lists are traversed in lock-step and the body
of the comprehension is evaluated for each element of bs and cs.
Then, the results of the body of the loop are collected into a list.
The for/fold loop (on line 16) is a generalization of a for loop
that has accumulators: evens and odds in our example. They are
both initially bound to empty lists. The body of the loop (lines 20–
22) is expected to return as many values as there are accumulators.
The second set of bindings in for/fold specifies the sequences

0 (define (fft0 as)
1 (cond
2 [(= (length as) 1) as]
3 [else
4 (define-values (ss ts)
5 (decimate-in-time as))
6 (define bs (fft0 ss))
7 (define cs (twiddle-factor (fft0 ts)))
8 (append (for/list ([b (in-list bs)]
9 [c (in-list cs)])

10 (+ b c))
11 (for/list ([b (in-list bs)]
12 [c (in-list cs)])
13 (- b c)))]))
14

15 (define (decimate-in-time as)
16 (for/fold ([evens ’()]
17 [odds ’()])
18 ([i (in-naturals)]
19 [a (in-list (reverse as))])
20 (if (odd? i)
21 (values (cons a evens) odds)
22 (values evens (cons a odds)))))
23

24 (define (twiddle-factor cs)
25 (define n (length cs))
26 (for/list ([k (in-naturals)]
27 [c (in-list cs)])
28 (* c (exp (/ (* pi 0+1i k) n)))))

Figure 2: Sequential Cooley–Tukey FFT

over which the loop iterates, as with for/list above. In this case,
i iterates over the infinite sequence of natural numbers, and a it-
erates in reverse over the elements of as. All this taken together
means that decimate-in-time returns the even and odd indexed
sublists as described above. For example:

> (decimate-in-time ’(1 2 3 4))
’(1 3)
’(2 4)

3.2 A First-cut Parallel FFT
The sequential FFT implementation has a nice decomposition
structure that immediately suggests a parallelization strategy.
Specifically, the two recursive calls in fft0 can be computed in
parallel. Figure 3 shows the revised implementation.

The function fft1 creates two futures: one that simply recurs
and another that recurs, and then applies the twiddle factor. Once
the two tasks have been spawned, fft1 touches both of them,
waiting for the results.

As has become folklore by now, a first-cut attempt to parallelize
an implementation actually slows it down, and this program is no
exception. Indeed, this version is about 12 times slower than the
sequential implementation.

Opening the visualizer window and looking at the future cre-
ation tree (as shown in figure 4), immediately suggests why: when
passing a list of 64 elements to fft1, our parallel implementation
creates 126 futures despite there being only 4 cores available on our
machine. As we will see, the implementation can cope with more
futures than cores, but with this many more, the time required to
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Figure 4: Future Creation Tree

29 (define (fft1 as)
30 (cond
31 [(= (length as) 1) as]
32 [else
33 (define-values (ss ts)
34 (decimate-in-time as))
35 (define bs
36 (future
37 (λ () (fft1 ss))))
38 (define cs
39 (future
40 (λ () (twiddle-factor (fft1 ts)))))
41 (append
42 (for/list ([b (in-list (touch bs))]
43 [c (in-list (touch cs))])
44 (+ b c))
45 (for/list ([b (in-list (touch bs))]
46 [c (in-list (touch cs))])
47 (- b c)))]))

Figure 3: FFT with Too Much Parallelism

create and manage the futures themselves dominates the time re-
quired to transform the list.1

3.3 Limiting the Amount of Parallelism
Figure 5 shows a revision of our FFT implementation that adds a
depth parameter (d) to control the number of futures.

The fft2/depth function (line 55) is now the main workhorse;
in addition to accepting a list to transform, it also accepts the depth
parameter d; if d is 0, it stops spawning new futures and falls back
to the original, sequential algorithm, fft0.

The initial value of the depth is computed by taking the base 2
logarithm of the number of processors. Since the algorithm works
only on lists with length that is a power of two, we know exactly
how much parallelism we can exploit. The init-d function, on
line 51, shows how this is computed in Racket (the fl->fx func-
tion converts a floating point integer to an exact, fixnum integer).
Otherwise, the code in figure 5 is the same as the code in figure 3,
except that the depth parameter is now being passed around.

Timing this version shows that it is still slower than the original,
sequential FFT implementation, but only by about 10%. To see

1 As you probably already noticed, figure 4 is not a screengrab from the
futures visualizer; instead it is a high-resolution direct rendering of the fu-
ture creation tree. This is because our future visualizer internally constructs
pict objects (from a functional picture library included with Racket) when
drawing them in the visualizer window, but these picts can also be rendered
as pdf and included in papers, which is what we have done here and will do
with the rest of the pictures in this paper. In addition to improving the print
quality of this paper, this approach has the advantage that we can script the
creation of the pictures and thus be confident that they are unlikely to be out
of sync with the prose and the code figures.

48 (define (fft2 as)
49 (fft2/depth as (init-d)))
50

51 (define (init-d)
52 (define pc (processor-count))
53 (fl->fx (ceiling (/ (log pc) (log 2)))))
54

55 (define (fft2/depth as d)
56 (cond
57 [(= (length as) 1) as]
58 [(= d 0) (fft0 as)]
59 [else
60 (define-values (ss ts)
61 (decimate-in-time as))
62 (define bs
63 (future
64 (λ ()
65 (fft2/depth ss (- d 1)))))
66 (define cs
67 (future
68 (λ ()
69 (twiddle-factor
70 (fft2/depth ts (- d 1))))))
71 (append
72 (for/list ([b (in-list (touch bs))]
73 [c (in-list (touch cs))])
74 (+ b c))
75 (for/list ([b (in-list (touch bs))]
76 [c (in-list (touch cs))])
77 (- b c)))]))

Figure 5: Depth-limited FFT

why, we turn to the timeline portion of the visualizer. Figure 6’s
upper half shows a segment of the timeline, about 3.8 milliseconds
into the trace of the parallel FFT. At a first glance, it looks almost
like interesting things are happening in parallel, albeit not very
much work. Mousing over any of those events in the window, as
shown in the bottom half of figure 6, reveals the problem.

When moving the mouse over an event, the visualizer draws
purple lines that connect all of the events on that future and these
lines tell us that even those apparently parallel operations are really
all happening on the same future, which is itself moving between
different threads in the runtime system. In other words, our parallel
program is effectively sequential.

If we turn to the “blocks” section of the visualizer window, we
see that the functions +, *, /, exp, -, append, and touch are
all barricaded. Accordingly, as soon as a future uses one of those
operations it simply pauses to wait for its touch and thus does not
execute in parallel.
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Figure 6: Future Timeline for Depth-limited FFT

3.4 Introducing Typed Racket
There are two problems with the arithmetic operations: they occa-
sionally operate on mixed arguments (e.g., floats and fixnums, or
floats and complexes) and they often operate on complex numbers.
Neither of those operations work in parallel futures.

Happily, porting our program to Typed Racket (Tobin-Hochstadt
and Felleisen 2008) helps with both problems (and improves the
sequential performance, to boot). For the former, the type system
can tell us when we use mixed-mode arithmetic;2 for the latter,
Typed Racket will automatically break up complex numbers into
their real and imaginary components and pass them to and return
them from functions separately, replacing arithmetic on complex
numbers by arithmetic on floats.

Figure 7 shows the revised code for the main FFT function. The
main difference is the addition of type specifications to the top-level
functions. In addition, the for/list expressions must be changed
into for/list: expressions so they can be annotated with types.
Converting decimate-in-time and twiddle-factor requires
similar revisions.

These changes eliminate the arithmetic operation barricades,
leaving append and touch. Eliminating the touch barricade is
not possible, due to the nature of futures, but append is more
interesting. Indeed, why should we expect append to be barricaded
at all? The reason is wrapped up in the history of Racket and
the incremental nature of the implementation of futures. In short,
append is implemented as part of the runtime system and thus has

2 In general, Typed Racket is happy to type-check such mixed-mode arith-
metic (St-Amour et al. 2012), but we can add type annotations that force
consistent types for all the arguments.

78 (: fft3 ((Listof Float-Complex)
79 ->
80 (Listof Float-Complex)))
81 (define (fft3 as)
82 (fft3/depth as (init-d)))
83

84 (: fft3/depth ((Listof Float-Complex)
85 Integer
86 ->
87 (Listof Float-Complex)))
88 (define (fft3/depth as d)
89 (cond
90 [(= (length as) 1) as]
91 [(= d 0) (fft3/seq as)]
92 [else
93 (define-values (ss ts)
94 (decimate-in-time as))
95 (define bs
96 (future
97 (λ ()
98 (fft3/depth ss (- d 1)))))
99 (define cs

100 (future
101 (λ ()
102 (twiddle-factor
103 (fft3/depth ts (- d 1))))))
104 (append
105 (for/list: : (Listof Float-Complex)
106 ([b (in-list (touch bs))]
107 [c (in-list (touch cs))])
108 (+ b c))
109 (for/list: : (Listof Float-Complex)
110 ([b (in-list (touch bs))]
111 [c (in-list (touch cs))])
112 (- b c)))]))

Figure 7: Typed FFT

access to state that it could, in theory, corrupt. All such functions,
by default, are considered unsafe and barricades are automatically
put in place.

In the past, core functions like append were implemented in
the runtime system for performance reasons. These days, functions
like append can be implemented in Racket and still have compet-
itive performance with those implemented in C, partly because the
Racket compiler has improved to the point that it generates reason-
able code and partly because implementing the function in Racket
avoids the cost of the context switch from JIT-generated code to
the C-based runtime system.

At this point, if the authors of the FFT implementation also
contributed to the runtime system, the natural choice would simply
be to port append to Racket and adjust the existing runtime system
to use the Racket version instead. To determine how beneficial this
improvement would be to our FFT, we implement a basic version of
append in Racket and measure the performance of our algorithm.3

3 A general theme in the recent history of the Racket runtime system has
been moving primitives from the C-based runtime system to Racket proper,
and the existence of futures has encouraged this trend. While it is somewhat
annoying that seemingly simple primitives like append have not yet been
migrated, over 750 such primitives exist and, as we shall see, this program
turns out not to be a concrete reason to migrate append.
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Figure 8: Future Timeline for Barricadeless FFT

3.5 Allocation
At this point, on 65536 element lists, the parallel FFT is about
2.4 times as fast as the original sequential one on our four-core
machine. Unfortunately, however, this speedup is not due to paral-
lelism. We can see this by comparing the wall-clock time and the
cpu time that Racket reports for a call to fft3. For the 65536 ele-
ment list case, Racket reports only about 20% more cpu time than
real time.

Looking more closely at the trace reveals why. Specifically,
consider figure 8. It shows a section of the timeline of fft3. As
you can see, there are four futures running in parallel in this section
of the trace. Each little green region (where parallel work occurs) is
preceded by an orange circle and followed by a white one. Mousing
over them reveals that they are synchronization points where the
future is allocating additional memory. So, each future is only able
to do a little bit of work before it must again synchronize to allocate
more memory. This is the current bottleneck that stops us from
getting parallel speedup.

Looking at fft3 with allocation in mind, it is easy to see that
it creates several intermediate lists that are not really necessary.
One easy list to eliminate is the one created by twiddle-factor.
Instead of creating a new list that holds the adjusted values, we can
adjust the values in the loops at the end of our FFT algorithm, when
the elements of the list are used. Figure 9 shows fft4, which is the
result of performing this list fusion.

Timing fft4 reveals a 20% speedup as compared to fft3,
but still no significant parallelism. The visualizer confirms that
allocation-induced synchronization is still to blame.

3.6 In-place FFT
To rectify this problem, we must adjust our FFT implementation to
be in-place. To do so, we first copy the list into an array, perform the
in-place FFT, and then extract the elements of the array, returning
them as a list. To further reduce allocation, the algorithm keeps
separate arrays for the real and imaginary components, avoiding
allocation due to complex number boxing in the process. Figure 12
and figure 13 show the implementation in Racket.

113 (: fft4/depth ((Listof Float-Complex)
114 Integer
115 ->
116 (Listof Float-Complex)))
117 (define (fft4/depth as d)
118 (cond
119 [(= (length as) 1) as]
120 [(= d 0) (fft4/seq as)]
121 [else
122 (define-values (ss ts)
123 (decimate-in-time as))
124 (define bs
125 (future
126 (λ ()
127 (fft4/depth ss (- d 1)))))
128 (define cs
129 (future
130 (λ ()
131 (fft4/depth ts (- d 1)))))
132 (define n/2 (->fl (length (touch cs))))
133 (define-values (l r)
134 (for/lists:
135 ([l : (Listof Float-Complex)]
136 [r : (Listof Float-Complex)])
137 ([b (in-list (touch bs))]
138 [c (in-list (touch cs))]
139 [k (in-naturals)])
140 (define twiddle-c
141 (* c (exp (/ (* pi 0.0+1.0i
142 (->fl k))
143 n/2))))
144 (values (+ b twiddle-c)
145 (- b twiddle-c))))
146 (append l r)]))

Figure 9: Fused FFT

While this code has certainly taken a turn for the worse in
its low-level nature, and it does look like C with a few extra
parentheses, the programming model is decidedly still not C’s:
errors are still caught as soon as they happen, and there is no
explicit memory management required.

Ultimately, we were led here, informed by what we learned from
the visualizer about the current implementation of Racket. And
indeed, figure 10 shows that we are now getting good parallelism
with this version. Specifically, the large contiguous green bars
indicate that significant work is occurring in parallel.

3.7 How Well Did we Do?
Now that we’ve improved the parallel performance on our small
machine, let us see how well this performs on a more significant
machine and to compare it to an FFT implementation in C.

We used a machine with 4 2.1 GHz, 16 core, 64 bit AMD
Opteron 6272s (for a total of 64 cores) running Red Hat Enterprise
Linux Server release 6.2. The C code implements precisely the
algorithm given in figure 12 and figure 13. It was compiled with gcc
version 4.4.6, with optimization level -O2. Additionally, we called
directly into the imperative portion of the Racket implementation,
both to match the C code’s behavior, but also to focus on timing
the core of the algorithm, instead of the conversion from a list to a
vector (and back).
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Figure 10: FFT 5’s Complete Timeline with Input Size 131072
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Figure 11: Comparison Between Racket and C and Parallel Speedup for Racket

These experiments were conducted with revision 55b11bf3 of
the Racket git repository; details regarding setup are available here:
www.eecs.northwestern.edu/~jes947/fv/.

Figure 11 shows the results. The graph on the left shows the
Racket and C times at each depth, normalized to the C time. We
measured times for depths up to one more than what init-d
computes for our benchmarking machine. Each result is the average
of 125 runs. The error bars extend one standard deviation in each
direction. Generally speaking, Racket scales slightly better than
the C code, but is about twice as slow. This scaling, however, is
probably because the Racket version does more work than the C
version in the first place.

The graph on the right of figure 11 shows the parallel speedup
for Racket compared to sequential Racket. We used the same data
and methodology as for the graph on the left. Note that the hori-
zontal axis is depth, not number of cores used (the number of cores
doubles at each new depth).

4. Extracting Traces
The visualizer extracts information about a program run via Racket’s
logging system. Whenever a future is started, blocked, etc., the run-
time system logs an event that records the future’s identity, the OS-
level thread in which the event took place, a symbol representing
the future-related action, the wall-clock time at which the action
occurred, and optionally the name of a Racket-level procedure to
help correlate the event with the program source. The visualizer
can then reconstruct a trace of the computation from information
in the logged events.

Since logging support is always enabled in a Racket build, the
visualizer requires no additional low-level hooks into the runtime
system. Like other logging systems, Racket’s logging system keeps
track of event consumers, so that log-entry producers can detect
whether events are worth reporting and avoid the overhead of log-
ging information that would be ignored. To track consumers, the



147 (: fft5 ((Listof Float-Complex)
148 ->
149 (Listof Float-Complex)))
150 (define (fft5 as)
151 (define as-r
152 (apply flvector (map real-part as)))
153 (define as-i
154 (apply flvector (map imag-part as)))
155 (define n (flvector-length as-r))
156 (define xs-r (make-flvector n 0.0))
157 (define xs-i (make-flvector n 0.0))
158 (define d (init-d))
159 (fft5/depth as-r as-i xs-r xs-i n 0 d)
160 (for/list ([r (in-flvector as-r)]
161 [i (in-flvector as-i)])
162 (make-rectangular r i)))
163

164 (: decimate-in-time
165 (FlVector FlVector
166 FlVector FlVector
167 Integer Integer
168 -> Void))
169 (define (decimate-in-time as-r as-i
170 xs-r xs-i
171 n/2 start)
172 (for ([i (in-range n/2)])
173 (define si (+ start i))
174 (define si2 (+ si i))
175 (define si21 (+ si2 1))
176 (define sin2 (+ si n/2))
177 (flvector-set!
178 xs-r si (flvector-ref as-r si2))
179 (flvector-set!
180 xs-i si (flvector-ref as-i si2))
181 (flvector-set!
182 xs-r sin2 (flvector-ref as-r si21))
183 (flvector-set!
184 xs-i sin2 (flvector-ref as-i si21))))
185

186 (: twiddle-factor
187 (FlVector FlVector
188 Integer Integer -> Void))
189 (define (twiddle-factor cs-r cs-i
190 n/2 start)
191 (define c (/ (* pi 0.0+1.0i) (->fl n/2)))
192 (for ([k (in-range n/2)])
193 (define k-start (+ k start))
194 (define res
195 (* (make-rectangular
196 (flvector-ref cs-r k-start)
197 (flvector-ref cs-i k-start))
198 (exp (* c (->fl k)))))
199 (flvector-set! cs-r k-start
200 (real-part res))
201 (flvector-set! cs-i k-start
202 (imag-part res))))

Figure 12: In-place FFT, part i

203 (: fft5/depth
204 (FlVector FlVector FlVector FlVector
205 Integer Integer Integer
206 -> Void))
207 (define (fft5/depth as-r as-i xs-r xs-i
208 n start d)
209 (unless (= n 1)
210 (define n/2 (quotient n 2))
211 (decimate-in-time as-r as-i xs-r
212 xs-i n/2 start)
213 (cond
214 [(= d 0)
215 (fft5/depth xs-r xs-i as-r as-i
216 n/2 start 0)
217 (fft5/depth xs-r xs-i as-r as-i
218 n/2 (+ start n/2) 0)
219 (twiddle-factor xs-r xs-i n/2
220 (+ start n/2))]
221 [else
222 (define bs
223 (future
224 (λ ()
225 (fft5/depth xs-r xs-i as-r
226 as-i n/2 start
227 (- d 1)))))
228 (define cs
229 (future
230 (λ ()
231 (fft5/depth xs-r xs-i as-r
232 as-i n/2
233 (+ start n/2) (- d 1))
234 (twiddle-factor xs-r xs-i n/2
235 (+ start n/2)))))
236 (touch bs)
237 (touch cs)])
238 (for ([k (in-range n/2)])
239 (define sk (+ start k))
240 (define sk2 (+ sk n/2))
241 (define br (flvector-ref xs-r sk))
242 (define bi (flvector-ref xs-i sk))
243 (define cr (flvector-ref xs-r sk2))
244 (define ci (flvector-ref xs-i sk2))
245 (flvector-set! as-r sk2 (- br cr))
246 (flvector-set! as-i sk2 (- bi ci))
247 (flvector-set! as-r sk (+ br cr))
248 (flvector-set! as-i sk (+ bi ci)))))

Figure 13: In-place FFT, part ii



log is not an object that can be read directly; instead, logged events
are received through log receiver objects that include a particular
level, such as “error,” “warning,” or “debug.” The current effective
logging level (the highest level at which a receiver is active) can be
queried and compared against the level of a potential log event.

The log-level test is cheap enough for the runtime thread to
use at any time, but it involves enough objects and caches that it
would not be safe within a future. Instead of using the log directly,
each future thread maintains its own queue of events, which the
runtime thread periodically converts into regular log events (if there
is any relevant receiver). A future thread’s log queue is a fixed-size
array that contains only atomic values, which minimizes its locking
and memory-management requirements. Furthermore, entries are
added to the log queue only for events that require some other
synchronization, such as changing the state of a future, so log-
queue locking piggy-backs on existing locks. Since the log queue
has a fixed size, it can overflow, in which case a “queue overflow”
event replaces the most recent event; log overflow is rare, and the
explicit event ensures that the visualizer can fall back to reporting
approximate information if an overflow occurs.

Despite efforts to minimize the cost of logging, when many
events are generated and consumed by a receivers, overhead is un-
avoidable. Such a setting, however, corresponds to a slow program
whose performance is being analyzed, so the overhead remains
small relative to the computation and worthwhile to the user.

5. Related Work
Futures are one of two forms of parallelism available in Racket,
the other being places (Tew et al. 2011). The two approaches share
the common problem of coping with Racket’s large, legacy runtime
system. Unlike futures, places circumvent this problem by cloning
most of the runtime system state and thus allow communication
between parallel tasks only via explicit message passing. This ap-
proach has the advantage that any Racket program can be made
to run in parallel (unlike futures, where programs must avoid bar-
ricades), but with the disadvantages that creating a place is more
expensive and in most cases communication requires copying data.

Futures are based on similar constructs in Multilisp (Halstead
1985), but differ in that Racket’s futures require an explicit touch
and may not exhibit parallelism because of the legacy code in the
runtime system.

Threadscope (Jones Jr. et al. 2009) is a visualization tool for Par-
allel Haskell. It organizes trace information into a timeline display-
ing work done by individual Haskell Execution Contexts, which
roughly correspond to operating system threads. The tool uses
a non-allocating, buffered per-thread logging scheme that incurs
minimal overhead (similar to Racket’s future logging). Berthold
and Loogen (2007) developed the Eden Trace Viewer, a similar
tool, for Eden, a parallel extension to Haskell that supports dis-
tributed computation. The Eden viewer is designed to assist in per-
formance tuning and provides visual displays of state and commu-
nication data at the machine, thread, and process level.

Runciman and Wakeling (1993) demonstrated the use of a “par-
allelism profile graph” to aid in the subtle problem of the optimal
placement of parallel annotations. Instead of processing logs from
actual parallel execution, they used a compiler extension to pro-
duce programs that simulate parallelism, which generated logs used
to construct their profile graphs. Racket has a similar construct:
would-be-future, that runs sequentially, but produces the same
logging that future would. This helps the Racket programmer de-
termine the extent to which his/her program encounters barricades.

Various tools have been developed to aid in optimizing parallel
programs designed for distributed environments. Jumpshot (Zaki et
al. 1999) is a free visualizer for MPI programs that displays both

communication patterns and timelines of process state on a per-
node and global basis.

VAMPIR (Knupfer et al. 2008) is a commercial visualization
tool which can be used to profile programs in both distributed and
shared-memory environments. The tool is capable of using mul-
tiple methods of instrumentation depending on program environ-
ment and libraries used (MPI, OpenMP), and offers graphical dis-
plays for a large array of metrics. VAMPIR uses an open trace for-
mat (Knupfer et al. 2006), which is shared with a number of other
tools. While reusing that trace format would give us interoperabil-
ity with these existing tools, our traces record Racket-specific infor-
mation that cannot be accomodated by OTF; restricting logging to
such a format would greatly limit the usefulness of our visualizer.

Kergommeaux et al. (2000) developed Paje for ATHAPASCAN,
a system leveraging two levels of parallelism using a distributed
network of shared-memory multi-processor nodes. Paje reads log
information into a simulator which is used to produce interactive
timeline visualizations at the network, node, and processor levels.

Cilkview (He et al. 2010) is an analysis tool targeting the Cilk++
extensions to C++. It is able to give upper and lower bounds
on the parallelism available in a specific program by running it
sequentially and recording some information about its behavior. It
also provides a harness to run the program at different levels of
parallelism to test the results of its analysis.

IBM’s Tuning Fork (Bacon et al. 2007) is a trace-based visual-
ization tool targeting real-time systems. It provides both real-time
and replayable information display in an extensible framework with
some innovative default visualizations, notably an “oscilloscope”
view that can show behavior across a wide range of time scales.
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