
S3: the Small Scheme Stack

A Scheme TCP/IP Stack Targeting Small
Embedded Applications

Vincent St-Amour
Université de Montréal

Joint work with Lysiane Bouchard and Marc Feeley

Scheme and Functional Programming Workshop
September 20, 2008

1 / 37

Outline

◮ Motivation for a Scheme network stack

◮ Protocols supported by S3

◮ Application program interface

◮ Implementation

◮ Related work

◮ Experimental results

2 / 37

Small embedded systems

◮ High volume
◮ Low cost
◮ Low memory
◮ Low computational power
◮ Need to interact with

◮ user (configuration, control)
◮ storage device (to keep logs)
◮ other embedded systems (automation, distribution)

3 / 37

Why use TCP/IP in embedded systems

Networking infrastructure

◮ is ubiquitous (⇑ accessibility)

◮ gives access to many services (⇑ features)

◮ eliminates need for I/O periperals (⇓ cost)

4 / 37

Sample application: house temperature monitor

NFS

SMTPHTTP

AD−HOC

NETWORK

5 / 37

Goals

◮ Show that a network stack can be implemented in Scheme

◮ Why use Scheme?
◮ Why not?
◮ Scheme’s high-level features → compact code

◮ Portability to different Scheme implementations

6 / 37

Outline

◮ Motivation for a Scheme network stack

◮ Protocols supported by S3

◮ Application program interface

◮ Implementation

◮ Related work

◮ Experimental results

7 / 37

Protocols supported by S3

OSI Model Layers

8 / 37

TCP

◮ Most complex protocol implemented in S3

◮ Connection-based
◮ Server listens for connections on a port number
◮ Client connects to that port

◮ Stream paradigm
◮ Packets are acknowledged by receiver
◮ Sender retransmits after timeout

9 / 37

Highlights of our approach

◮ We target very small systems (2 kB data, 32 kB program,
< $5)

◮ Discard seldom-used features of the protocols

◮ Minimal buffering

◮ Polling-based API

◮ Scheme-specific
◮ PICOBIT Scheme virtual machine
◮ Higher-order functions

10 / 37

Outline

◮ Motivation for a Scheme network stack

◮ Protocols supported by S3

◮ Application program interface

◮ Implementation

◮ Related work

◮ Experimental results

11 / 37

S3 Configuration

◮ Packet limits and MAC address

◮ Contained in S-expressions (could be program-generated)

◮ Compiled and linked with the stack

◮ Example :

(define pkt-allocated-length 590)

(define my-MAC ’#u8(#x00 #x20 #xfc #x20 #x0d #x64))

(define my-IP1 ’#u8(10 223 151 101))

(define my-IP2 ’#u8(10 223 151 99))

12 / 37

Polling

◮ Avoid synchronization mechanisms (mutexes, condition
variables, ...) so that S3 can be integrated easily to other
Scheme systems

◮ Single-thread system

◮ Cooperative multitasking

◮ Non-blocking operations + polling

◮ Explicit task switching with the call (stack-task)

13 / 37

TCP

◮ (tcp-bind portnum max-conns tcp-filter tcp-recv)

◮ (tcp-filter dest-ip source-ip source-portnum)

◮ (tcp-recv connection)

◮ (tcp-read connection [length])

◮ (tcp-write connection data)

◮ (tcp-close connection [abort?])

14 / 37

TCP counter server
(define counter 0) ;; current count

;; connections that need to be serviced

(define connections ’())

(define (main-loop)

(stack-task)

(for-each (lambda (c)

(tcp-write c (u8vector counter))

(set! counter (+ counter 1))

(tcp-close c))

connections)

(set! connections ’())

(main-loop))

(tcp-bind 24 10

(lambda (dest-ip source-ip source-port)

(equal? dest-ip my-ip))

(lambda (c)

(set! connections (cons c connections))))

(main-loop)

15 / 37

UDP

◮ (udp-bind portnum udp-filter udp-recv)

◮ (udp-filter dest-ip source-ip source-portnum)

◮ (udp-recv source-ip source-portnum data)

◮ (udp-write dest-ip source-port dest-port data)

16 / 37

UDP echo server

(define (main-loop)

(stack-task)

(main-loop))

(udp-bind 7

(lambda (dest-ip source-ip source-port)

(equal? dest-ip my-ip))

(lambda (source-ip source-port data)

(udp-write source-ip 7 source-port data)

(stack-task)))

(main-loop)

17 / 37

Outline

◮ Motivation for a Scheme network stack

◮ Protocols supported by S3

◮ Application program interface

◮ Implementation

◮ Related work

◮ Experimental results

18 / 37

Virtual machine

PICOBIT Scheme system :

◮ Compiler written in Scheme

◮ Virtual machine written in C

◮ Bytecode more abstract than machine instructions

Notable constraints :

◮ Objects in ROM are immutable

◮ 24-bit integers

◮ Small number of object encodings (either 256 or 8192)

19 / 37

PICOBIT optimizations

◮ Constant propagation

◮ Tree-shaker (eliminates dead globals and functions)

◮ Function inlining for single calls

◮ Jump cascade tightening

◮ Specialized instruction set for S3

◮ Functions only used in calls are not allocated an object
encoding

20 / 37

PICOBIT object representation

Regular objects

◮ Pairs, numbers, symbols, closures, continuations

◮ Always 4 bytes long

◮ Simple garbage collector (mark-and-sweep)

◮ Configurable encoding (8 or 13 bit references)

21 / 37

PICOBIT object representation

Byte vectors

◮ Omnipresent in S3

◮ Stored separately from regular objects
◮ Header stored in object space

◮ Data stored in a contiguous block in vector space
◮ Data space reclaimed when header gets garbage-collected

◮ Byte vector copy and equality implemented as virtual machine
instructions

22 / 37

TCP connection automaton

ack

close FINclose

RST

SYN
SYN+ack

SYN

FIN ack

SYN+ack
SYN+ack

ack

FIN ack

FIN+ack
ack

ack ack

timeout

FIN

2MSL timeout

active close ack

socket

listen
passive open

SYN
connect

active open

FIN
ack

passive close
SYN_RCVD

ESTABLISHED

SYN_SENT

LISTEN

CLOSED

FIN_WAIT_1

FIN_WAIT_2 TIME_WAIT

CLOSING

CLOSE_WAIT

LAST_ACK

23 / 37

First-class procedures

◮ TCP state functions :
◮ Tasks stored as state functions within the connection

(define (tcp-visit conn)

(set-state-function! conn ((state-function conn)))

(set-info! conn tcp-attempts-count 0)

(set-timestamp! conn))

◮ Continuation-based coroutine mechanism
◮ Dynamic creation of state functions

◮ Filter / reception functions

24 / 37

Garbage collection

◮ Objects with multiple owners

No need to implement reference counting in the stack

◮ Dangling pointer bugs and memory leaks eliminated

◮ Benefits on programmer productivity and code simplicity

◮ Mark-and-sweep

25 / 37

Packet limit

◮ S3 constraints
◮ One packet in the stack at a time
◮ No buffering
◮ Low amount of traffic for expected applications

◮ Pros
◮ No costs related to the upkeep of a packet queue (code, space,

time)
◮ Not a threat to communication integrity

◮ Cons
◮ Higher risk of congestion
◮ Dropping packets might cause delays

◮ Most networking hardware already does a certain amount of
buffering !

26 / 37

Reply generation

◮ Generated in-place

◮ Information stored only once

◮ Minimal changes to the headers

◮ Possible thanks to Scheme’s mutable vectors

◮ Example :

27 / 37

Preallocated length packets

Approach :

◮ Fixed size vectors

◮ A packet might trigger a response longer than itself

◮ Packets are stored in a preallocated vector of length
considered sufficient

Pros :

◮ In-place response generation

◮ No allocation / deallocation costs

◮ Two vectors of the right size may be larger than a single
preallocated one

Cons :

◮ May waste space

28 / 37

Integration

◮ Easy integration with Scheme applications

◮ No FFI needed between applications and S3

◮ Hardware access done within the virtual machine
(libpcap linked with the PICOBIT virtual machine for
workstation tests)

29 / 37

Outline

◮ Motivation for a Scheme network stack

◮ Protocols supported by S3

◮ Application program interface

◮ Implementation

◮ Related work

◮ Experimental results

30 / 37

Related work

Embedded stacks :

◮ uIP (C, TCP only, real world use)

◮ lwIP (C, TCP & UDP)

◮ PowerNet (Forth, commercial product)

Functional stacks :

◮ FoxNet (SML, big, aims speed)

◮ House (Haskell, only UDP)

31 / 37

Outline

◮ Motivation for a Scheme network stack

◮ Protocols supported by S3

◮ Application program interface

◮ Implementation

◮ Related work

◮ Experimental results

32 / 37

Goal

◮ MIN size(system) =
size(stack) + size(application) + [size(VM)]

◮ Comparison with uIP
◮ Similar feature set
◮ Similar design choices

◮ No buffering
◮ Application program interface

33 / 37

Space usage

Source code :

◮ S3 : 1113 lines of Scheme

◮ uIP : 7725 lines of C

Binary :

◮ S3 (bytecode) :

Full S3 5.1 kB

TCP only 4.7 kB

UDP only 2.0 kB

RARP only 1.0 kB

◮ Näıve commenting out of protocols
◮ Other combinations possible to adapt to the target system

◮ uIP : 10 kB of machine code on PIC18

34 / 37

Virtual machine size

◮ size(VM) :

CPU 13 bit references 8 bit references

i386 17.0 kB -

MSP430 10.4 kB -

PIC18 10.7 kB 4.8 kB

PPC604 17.7 kB -

◮ size(stack) + size(VM) on PIC18 :
S3version References Total size Break-even point

(size(application))

Full S3 13 bit 15.8 kB 11.4 kB

TCP only 13 bit 15.4 kB 10.8 kB

UDP only 8 bit 6.8 kB S3 always smaller

RARP only 8 bit 5.8 kB S3 always smaller

◮ Expected break-even point calculated using
size(applicationC) = 2 size(applicationScheme)

35 / 37

Future work

◮ Support for more protocols (PPP)

◮ Easy inclusion / exclusion of protocols using the PICOBIT
tree-shaker

◮ Reducing VM size further with a specialized C compiler for
(PICOBIT) virtual machines

◮ Browser-based operating system with JSS

36 / 37

Conclusion

◮ Abstraction can bring savings

◮ Bytecode-based approach

◮ Suitable for complex applications on small embedded systems

◮ Competitive with C

37 / 37

	Motivation for a Scheme network stack
	Protocols supported
	Application Program Interface
	Implementation
	Related work
	Experimental results

