Comp Sci 214 — Data Structures — Fall 2022

1 Course Description

Comp Sci 214 teaches the design, implementation, analysis, and proper application of abstract data types, data structures, and their associated algorithms. We will explore a wide variety of data structures both conceptually and concretely via implementation. The class involves a significant hands-on programming component; you will both implement and use several data structures yourself.

2 Course Staff

Instructor Prof. Vincent St-Amour (stamourv@cs.northwestern.edu)
 (Call me Vincent)
Teaching Assistant Leif Rasmussen (leifr@u.northwestern.edu)
Peer mentors Desmond Adanuty, Anoushka Kapur, Jackson Miller, Ethan Pineda, Mattie Poelsterl, Austin Porras, Ella Shin, Akash Shroff, Shreya Sridhar, and Michelle Zhang

3 Prerequisites

- Comp Sci 111 AND (Comp Sci 211 OR Comp Sci 150)
- Comfort with programming
- Basic discrete math. See Huck Bennett’s excellent writeup on Canvas.

4 Learning Objectives

- **Functional correctness**: can you apply data structures and algorithms concepts to produce implementations that display correct behavior and produce correct results?
- **Non-functional correctness**: can you produce programs that are efficient, robust, and maintainable, and demonstrate good programming habits and hygiene?
- **Theory**: can you understand, apply, and contextualize definitions and techniques related to the theoretical aspects of data structures and algorithms: computational complexity, invariants, etc.
- **Evaluation**: can you make informed decisions when picking data structures and algorithms and evaluating alternatives?
- **Integration**: can you combine multiple data structures and algorithms to decompose and solve complex problems?
5 Communication Channels

In this class, we will rely on a variety of communication channels, each serving a different purpose.

5.1 Lectures

Lectures will be synchronous and in person. We will make a best effort attempt at recording them. The recordings will be available from Canvas under the “Panopto” tab. Please see the recording policy at the end of this document.

To ensure the health and safety of our community, DO NOT come to lecture if you have reason to believe you may be sick with COVID-19 (or anything else, really). Please watch the recordings instead and contact the instructor. Please see the COVID-19-related policies at the end of this document.

Questions

I love questions! Keep ‘em coming. During lecture, please ask questions in one of two ways:

• Raise your hand and ask verbally.

• If you prefer to ask anonymously and/or textually, reply to the Piazza (see below) post of the current lecture. A member of the course staff will then ask your question in your stead.

5.2 Piazza

We will use Piazza for discussion, Q&A, and announcements. You can find the class’s Piazza instance here: http://piazza.com/northwestern/fall2022/comp_sci214

We expect you to subscribe to the 214 Piazza board ASAP and monitor it regularly.

Piazza should be the first place you go when you have a question. The course staff will monitor Piazza (as will many of your fellow students), which makes it the best option for getting answers quickly. Your fellow students may also benefit from the discussion. Any questions about the specifics of your solutions must be marked as private, however.

For questions that require longer discussions/explanations, please attend office hours (see below) instead. If all else fails or for sensitive matters, send the instructor an email, either for discussion or to schedule an appointment.

5.3 Canvas

We will use Canvas to distribute materials, assignments, and feedback. All (non-exam) assignments will also be submitted via Canvas.

We expect you to check Canvas regularly.

Please do not use Canvas messages/comments to communicate with us; they are very easy to miss. Please use Piazza instead.

5.4 Office Hours

We will hold a combination of online and in-person office hours, circumstances permitting. We will maintain an up-to-date schedule (with locations) on the "Office Hours" page on Canvas. We will monitor attendance patterns and adjust the schedule to the best of our ability to limit crowding.

Online office hours will be held using the gather.town platform. The room we will use is at: https://app.gather.town/app/fQLPVe12VqWouBD4N/Comp-Sci-214-Office-Hours

See the "Office Hours" page on Canvas for the password to the room.
To ensure we can help students in a first-come first-served order, and to help us group up people with similar questions, we ask that you sign up on this form when you arrive to office hours, or when you have a follow-up question: https://forms.gle/1pC2AXdKleaDpkw99

You can look at the state of the queue to give you an idea of how close you are to being next in line: https://tinyurl.com/2f4jar72

Expectations

Office hours are a great place to get advice and assistance on all aspects of the class (and even CS in general!) In particular, they are not limited to debugging assistance; conceptual questions are welcome too!

Keep in mind, however, that our course staff is here to **help you learn**, not to give you solutions or to solve problems for you. An important part of the learning process is learning to figure things out and solve problems on your own; having members of the course staff do that for you would be doing you a disservice!

This means you should expect our course staff to give you advice and strategies or point you to relevant resources (e.g., documentation, slides, videos), but not to hold your hand (so to speak) while you work through problems. This will be especially true later in the quarter as assignments get more challenging and office hours get busier; to make sure everyone can get help, they won’t have time to do that.

To get the most out of office hours, come prepared. Please come with specific questions or issues: i.e., not “I don’t know what to do.” or “Where do I start?” And be ready to tell us what you have tried to resolve them: e.g., you wrote some test cases to narrow down where a bug could be, you’ve added some printing to understand what your code was doing. This will make it much easier for our course staff to figure out what’s going on, and they’ll be grateful.

Ultimately, though, none of us are psychic: it’s absolutely possible there may be an issue with your code which we cannot figure out. The person who is in the best position to understand it is the person who wrote the code and has been staring at it for hours: i.e., you. Our job is to give you the tools you need to get to that understanding.

6 Resources

Textbook

For some of the topics we will discuss, we will follow the draft of a textbook I am writing for this class; the tentative schedule later in this document details how lectures and textbook chapters line up.

For the most part lectures are intended to be standalone, with the textbook as a supplement for students who want to reinforce their learning or go deeper into a topic. Some topics, however, will not be covered directly in lecture; you will therefore need to read the relevant textbook chapter to be able to understand what follows in class. These topics will be announced in advance.

In addition, if you are looking for a reference, Cormen, Leiserson, Rivest, and Stein’s *Introduction to Algorithms* is the standard one. It is very comprehensive, but not always easy to approach. Its emphasis is also more on the theoretical side of things than this class’s. Nonetheless, it is a useful book to have on hand for computer scientists.

Supplementary Videos

A variety of supplementary videos about various 214-related topics are available on Canvas (on the page of that name). These have been produced by (former) members of the course staff, and provide additional information and advice that we don’t have time to cover in lectures. We recommend watching them early on; they offer valuable advice that can be quite helpful when working on assignments.
7 Assessment

This class uses a form of Specifications Grading (Nilson 2015). In particular, it features almost entirely qualitative assessment, and does not rely on points, percentages, and weighted averages to determine grades.

This is likely quite different from what you have seen in most of your classes, but other instructors report that (almost all) students come to love it once they get used to it—see section 7.6 for why.

7.1 Programming Assignments

This class features five programming homeworks and a final project that has a programming component. All programming assignments and related sub-assignments (see below) must be done individually; see our Academic Integrity policy below.

Programming assignments will chiefly contribute to our functional correctness learning objective. When evaluating your programming submissions, we will give you feedback regarding where they fell short as well as assign the following possible outcomes:

- **Got it**: implements the specification correctly and in full.
- **Almost there**: implements the specification with minor mistakes or omissions.
- **On the way**: has elements of a correct solution, but requires non-trivial further work to be correct and/or complete.
- **Not yet**: requires significant further work.
- **Cannot assess**: we could not evaluate the submission as is; repairs are required before we can do so.

Specifics of what is required to achieve each outcome are included in the handout for each assignment.

Resubmissions

Making mistakes and correcting them is a natural part of the learning process. An outcome of on the way or not yet is NOT a failure: it just means you still have things to learn from this assignment. Our assignments are intentionally challenging in order to maximize your learning; it’s perfectly normal to not get all of them entirely correct on the first try.

To give you the opportunity to incorporate our feedback and get credit for your improved learning, we will allow you to resubmit the code portion of each programming assignment (including the project) one week after the initial deadline. When determining final grades, we will use the best of the two outcomes your submissions have achieved.

Resubmissions are optional: if you’re happy about your first submission, you can skip the second. First submissions, however, are not optional: you must submit to the first submission to be allowed to resubmit.

Self-Evaluations

Each of the five programming homeworks will be followed by a self-evaluation, due one week after the initial deadline. Self-evaluations will consist of a few questions about the code you turned in.

The purpose of these self-evaluations is to evaluate your submissions on non-functional correctness: desirable aspects of programs that go beyond strictly producing correct answers. Aspects like efficiency, testing, robustness, or factoring. In actual programming (i.e., not in classes), these are just as important (if not more so) than raw functional correctness. This class will give you opportunities to cultivate these skills and habits as you work on assignments.

1See schedule below for exact dates.
2However, do see our late policy below.
3Specifically, the code you turned in for the first submission, not the resubmission, and not work in progress towards the resubmission. You can download your original submission from Canvas if need be.
Project Report

Instead of a self-evaluation, the final project will include a written report where you will explain your design and provide rationales for your decisions. More details are included in the final project handout.

The final project and its associated report will contribute significantly to our evaluation and integration learning objectives.

7.2 Worksheets

To evaluate specific aspects of our theory learning objective, we will have two worksheet-style assignments.

To ensure everyone has a solid theoretical foundation, these worksheets will be done as Canvas quizzes with unlimited retries. A minimum score of 80% on each worksheet will be required to pass the class. Bear in mind, this minimum is not intended to be a hurdle or a "weed-out": we believe all of you can achieve that given sufficient time and effort, and we want all of you to have a strong base to build on.

7.3 Exams

Circumstances permitting, we will have two in-person, on-paper midterm exams which will chiefly assess our theory learning objective. No notes or electronics (laptops, calculators, tablets, phones, smart watches, tamagotchis, etc.) will be allowed during exams.

Specifics and logistical details will be announced leading to each exam.

7.4 Final Grades

Final letter grades will be determined as follows. To help you keep track of your progress, please see the self-serve final grade worksheet on Canvas.

Base Grade

Your base grade will be determined based on your performance on homeworks, final project, and the worksheets. The highest grade level whose criteria your performance satisfies will be your base grade:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homeworks</td>
<td>at all</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td># Almost there*</td>
<td>—</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td># On the way*</td>
<td>—</td>
<td>—</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td># not counted</td>
<td>—</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Final project</td>
<td>Got it</td>
<td>Almost there</td>
<td>On the way</td>
<td>On the way</td>
</tr>
<tr>
<td>Minimum outcome</td>
<td>Ok</td>
<td>Ok</td>
<td>Ok</td>
<td>Ok</td>
</tr>
<tr>
<td>Both worksheets</td>
<td>Ok</td>
<td>Ok</td>
<td>Ok</td>
<td>Ok</td>
</tr>
</tbody>
</table>

* or better

For example, a student whose homework submissions earned 4 Got it but one Not yet, whose project submissions earned an Almost there, and who completed the worksheets satisfactorily would earn a base grade of B. As another example, a student whose homework submissions earned 2 Got it, 1 On the way, 1 Not yet, did not submit one of the homeworks, whose project submissions earned an On the way, and who completed the worksheets satisfactorily would earn a base grade of D.

Failing to meet the criteria for a D will result in a base grade of F.

Note: this puts a lot of weight on the final project, which is intentional. We believe the learning experiences from the project are especially valuable. We consider it very important, and we want you to do so as well.

4 And past students agree!
Modifiers

This base grade will then get adjusted with *modifiers* based on your performance on exams, self-evaluations, and the final project report. Each of these can either increase your grade by a partial letter grade, leave your grade unchanged, or decrease your grade by a partial letter grade.

For each of the four possible modifiers, you will earn the highest which your performance satisfies:

<table>
<thead>
<tr>
<th></th>
<th>Increase</th>
<th>Unchanged</th>
<th>Decrease</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exam #1</td>
<td>TBA</td>
<td>TBA</td>
<td>TBA</td>
</tr>
<tr>
<td>Exam #2</td>
<td>TBA</td>
<td>TBA</td>
<td>TBA</td>
</tr>
<tr>
<td>Self-evaluations # 5/5s</td>
<td>4</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td># ≥ 3/5s</td>
<td>3</td>
<td>—</td>
<td>≤ 2</td>
</tr>
<tr>
<td># ≤ 2/5s</td>
<td>1</td>
<td>≤ 2</td>
<td>≥ 3</td>
</tr>
<tr>
<td>Project report</td>
<td>Excellent</td>
<td>Minor errors/omissions</td>
<td>Major errors/omissions</td>
</tr>
</tbody>
</table>

* or better

For reference, the possible letter grades at Northwestern are: F, D, C-, C, C+, B-, B, B+, A-, and A. Going up one partial letter grade means going forward one step in this sequence, and going down one letter grade means going backwards one step.

For example, suppose our hypothetical student who earned a base grade of B did poorly on exam 1 (decrease), well on exam 2 (unchanged), submitted self-evaluations that earned four 5/5s and one 2/5 (increase), and wrote an excellent project report (increase). This would work out to an increase of one partial letter grades, for a final grade of B+. If our hypothetical student instead did well on exam 1 (unchanged) and great on exam 2 (unchanged), while still having increases for self-evaluations and the project report, this would result in an increase of three partial letter grades. Starting from a base grade of B, our hypothetical student would earn a final grade of A.

The letter grade sequence "saturates" on either end: applying four + modifiers to a base of B results in an A (there is no A+), and applying two - modifiers to a base of D results in an F (there are no D-, F+, or F-).

7.5 Late Policy

Unless otherwise indicated, (non-exam) assignments are due by 11:59pm on their due date.

To accomodate everyday slippage and minor life hiccups, each student starts the class with three late tokens. Each of these late tokens can be exchanged for a two-day no questions asked extension to any (non-exam) assignment, or to be allowed to submit to an assignment’s second deadline without having submitted to the first. Only one token can be used per submission. Late tokens will be used automatically when you submit late and/or skip a first submission; you don’t need to reach out to us and ask for permission.

In the event a student runs out of tokens, I’ll be in touch. Being occasionally late is perfectly fine. Being consistently late, on the other hand, may be a sign of deeper underlying issues: let’s talk so we can figure out the best way to help you.

Barring extreme circumstances, we will not grant further ad-hoc extensions or accomodations. If you do end up in a situation that would warrant additional flexibility, you must contact your dean of students and have them contact me. They will help you coordinate extensions and accomodations across all your classes, which will ensure you get the support you need across the board, not just in this class.

5Good job, hypothetical student!
6Joe Holtgreive (jjh@northwestern.edu) for McCormick students, Liz Fekete Trubey (eft@northwestern.edu) for Weinberg students, and others for students in other schools.
7.6 Why this system?

This assessment system carries many benefits to you as a student.

- **Learning and grades align.** Learning is our true goal here; grades are (at best) a distraction. But given the impact grades can (unfortunately) have beyond the classroom, ignoring them altogether may not be an option for everyone. As a compromise, this system ties grades directly to concrete achievements and milestones in your learning, rather than on an amorphous pool of fungible points of assorted provenances.

- **You are in control.** You decide what grade you aim for, and the expectations you’ll need to meet for that goal are stated up front and transparently. Grades are determined solely by your achievements; no cutoffs, curves, or other such nonsense. No more “hoping” for a grade, and no more surprises when letter grades come: you can always tell exactly how things are going, and know what you need to do it you want to change it.

- **High standards, low stakes.** You’re all super smart. Yes, that means you too. You all have the potential to learn a lot in this class and grow as computer scientists. To inspire you to learn as much as you can, we will hold you to high standards; one doesn’t learn much by being consistently meh. At the same time, we recognize that high standards can carry a lot of pressure; which is why we’re also including mechanisms to lower stakes whenever possible (see next item).

- **There is room for mistakes.** Making mistakes is part of the learning process, and you should get credit for learning from them. Resubmissions give you an opportunity to do so. And for places where resubmissions don’t make sense (e.g., exams, self-evaluations), some slack is built-in to the grading standards to allow for small slips.

- **Flexibility built-in.** Life happens; we recognize that. But not all students feel comfortable asking for flexibility when necessary, either as a matter of personality or of upbringing. For this reason, "hiding" flexibility behind explicit requests is not equitable. Instead, this system comes with built-in flexibility in a number of places—resubmissions, late tokens, many possible modifiers, etc.—all of them with no questions asked and no need to ask for it. That way everyone benefits, regardless of comfort level.

Caveats

That being said, this is a large class—which introduces issues of scale and equity—and we’re limited by the length of the term—which introduces issues of scheduling. This means we’ve unfortunately had to make some compromises when designing our assessment strategy.

In an ideal world, we would assess your learning directly using mechanisms like oral exams and code walkthroughs, with infinite retries and no hard deadlines. But we are not in an ideal world, so we’re forced to assess your learning indirectly through your work using automated testing, written exams, and other mechanisms geared towards efficiency. These mechanisms, while sadly necessary in our context, may not reflect your learning 100% accurately.

Therefore, it is your responsibility to make sure the work you submit is as close a reflection of your actual learning as possible, so we can get the best picture we can of where you’re at as a student. And in turn, so you can get as much recognition as possible for your learning. Concretely, this means:

- For programming assignments, being thorough in your testing to avoid silly mistakes, and taking full advantage of our feedback when working on resubmissions.

- For "one-shot” assessments like exams or self-evaluations, be very careful to read instructions completely and thoroughly, and ask for clarifications if need be. We can’t assess your learning if you answer the wrong question.
8 Software

Code examples and programming assignments will use the DSSL2 (Data Structures Student Language version 2) language. It runs on top the Racket environment. You will need to install version 8.6 from:

download.racket-lang.org

If you have an old version from a previous course, some code may not work.

Then, to install DSSL2 proper, from DrRacket open the File menu and select Install Package..., then type `dssl2` as the source. Then click Install. When it’s done, the Install button will change to Update, indicating that the package is installed.

To familiarize yourself with the language, you should consult the DSSL2 reference:

https://docs.racket-lang.org/dssl2/

8.1 Development Environment

The DrRacket IDE (which comes with Racket, and which you may have used in 111) has the most complete DSSL2 integration of any environment; that’s the one I encourage you to use. If you’re already familiar with other environments, varying levels of DSSL2 support are also available for:

- **VSCode**: your colleague Joshua Irvin wrote a DSSL2 plugin for VSCode[^1]. I have not tried it, though, so *caveat emptor*.

- **Vim**: Vim users are welcome to try your colleague Marko Vejnovich’s DSSL2 plugin[^2]. I have not used it myself either.

- **Emacs**: Emacs’s Python mode offers adequate, but far from ideal, DSSL2 support.

You’re welcome to use these alternative environments if you wish, but neither I nor the course staff will be able to offer you support. You’ll be on your own.

8.2 Hardware

By default, we assume that you will be using your personal computer to work on assignments. If need be, you should also have physical access to the Wilkinson Lab, as well as login access to the computers there.

If you cannot access these computers, please reset your password at:

https://selfserv.eecs.northwestern.edu/temp_password/

If that does not work, please contact root@eecs.northwestern.edu. Similarly, contact root if you do not have physical access to the labs.

9 Academic Integrity

Collaboration is a really good thing and we encourage it. On the other hand, cheating is a very serious offense, which carries serious consequences. It’s OK to meet with colleagues, form study groups, discuss assignments with them, compare alternative approaches, go over examples from textbooks or other sources. But it is never ok to share code or homework solutions, or even to see each other’s code or solutions. What you turn in must be your own work. Copying (or even studying) code, solution sets, test cases, etc., from anywhere (e.g., other people, web, GitHub) is strictly prohibited. The only exception to this rule applies to official course resources such as starter code, code from lectures, test cases you received in grading feedback; you may use those as you see fit. Tools which automatically generate code for you (e.g., GitHub copilot) are also strictly prohibited. If you discuss your work with other people, please acknowledge them by listing their names in your submission.

[^1]: https://github.com/Gamefreak130/dssl2_vscode_extension
[^2]: https://github.com/markovejnovic/vim-dssl2/
It is also forbidden to share, post, or otherwise publicise course materials. This includes (but is not limited to) homeworks, exams, solutions, test cases, or your own submissions (in whole or in part). This extends even after the quarter ends; course material remains private information which you may not share or reproduce.

It is the responsibility of every student in this class to be familiar with and to adhere to the Academic Integrity Policies of Northwestern University and the McCormick School of Engineering:

www.mccormick.northwestern.edu/students/undergraduate/academic-integrity.html

Any suspicion of violation of these policies will be reported immediately to the Associate Dean for Undergraduate Studies. If you are in doubt whether your actions constitute a violation of the above policies, ask the instructor (preferably before doing what you’re unsure about).

10 Welcoming Environment

I consider this classroom to be a place where you will be treated with respect. I welcome all students, and expect all of you to do the same. Together, we can create an environment where everyone feels welcome and can engage fully in our community.

Each student has something of value to contribute, especially in engineering disciplines where empathy, communication, and teamwork elevate our contributions to society; and lack thereof can lead to disaster. Individual differences can deepen our understanding of one another, the world around us, and our lifelong role as engineers.

(Credit: Adapted from statements by the ASEE and Prof. Emma DeCosta)

11 Miscellaneous Statements

The registrar has a lot of things they want me to tell you.

11.1 Accessibility Statement

Northwestern University is committed to providing the most accessible learning environment as possible for students with disabilities. Should you anticipate or experience disability-related barriers in the academic setting, please contact AccessibleNU to move forward with the university’s established accommodation process (e: accessiblenu@northwestern.edu; p: 847-467-5530). If you already have established accommodations with AccessibleNU, please let me know as soon as possible, preferably within the first two weeks of the term, so we can work together to implement your disability accommodations. Disability information, including academic accommodations, is confidential under the Family Educational Rights and Privacy Act.

11.2 COVID-19 Expectations for Students

Students, faculty and staff must comply with University expectations regarding appropriate classroom behavior, including those outlined below and in the [COVID-19 Expectations for Students](#). With respect to classroom procedures, this includes:

- Policies regarding masking, social distancing and other public health measures evolve as the situation changes. Students are responsible for understanding and complying with current University, state and city requirements.

- In some classes, masking and/or social distancing may be required as a result of an Americans with Disabilities Act (ADA) accommodation for the instructor or a student in the class even when not generally required on campus. In such cases, the instructor will notify the class.
If a student fails to comply with the COVID-19 Expectations for Students or other University expectations related to COVID-19, the instructor may ask the student to leave the class. The instructor is asked to report the incident to the Office of Community Standards for additional follow-up.

11.3 Exceptions to Class Modality

Class sessions for this course will occur in person. Individual students will not be granted permission to attend remotely except as the result of an Americans with Disabilities Act (ADA) accommodation as determined by AccessibleNU.

Maintaining the health of the community remains our priority. If you are ill for any reason, do not attend class.

Students who are ill, must quarantine, or experience a personal emergency should contact the instructor as soon as possible to arrange to complete coursework.

Should public health recommendations prevent us from holding class in person on a given day, the instructor or the university will notify students.

11.4 Recording Policy

This class or portions of this class will be recorded by the instructor for educational purpose and available to the class during the quarter. Your instructor will communicate how you can access the recordings. Portions of the course that contain images, questions or commentary/discussion by students will be edited out of any recordings that are saved beyond the current term.

Unauthorized student recording of classroom or other academic activities (including advising sessions or office hours) is prohibited. Unauthorized recording is unethical and may also be a violation of University policy and state law. Students requesting the use of assistive technology as an accommodation should contact AccessibleNU. Unauthorized use of classroom recordings – including distributing or posting them – is also prohibited. Under the University’s Copyright Policy, faculty own the copyright to instructional materials – including those resources created specifically for the purposes of instruction, such as syllabi, lectures and lecture notes, and presentations. Students cannot copy, reproduce, display, or distribute these materials. Students who engage in unauthorized recording, unauthorized use of a recording, or unauthorized distribution of instructional materials will be referred to the appropriate University office for follow-up.

11.5 Support for Wellness and Mental Health

Northwestern University is committed to supporting the wellness of our students. Student Affairs has multiple resources to support student wellness and mental health. If you are feeling distressed or overwhelmed, please reach out for help. Students can access confidential resources through the Counseling and Psychological Services (CAPS), Religious and Spiritual Life (RSL) and the Center for Awareness, Response and Education (CARE). Additional information on all of the resources mentioned above can be found here:

https://www.northwestern.edu/counseling/
https://www.northwestern.edu/religious-life/
https://www.northwestern.edu/care/
12 Tentative Schedule

Dates and content are subject to change. Any changes will be announced on Piazza.

<table>
<thead>
<tr>
<th>Date</th>
<th>Homeworks</th>
<th>Self-Evals and Resubmissions</th>
<th>Lecture Topic (and Reading)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tue 9/20</td>
<td>1 out</td>
<td></td>
<td>Intro, DSSL2 Basics</td>
</tr>
<tr>
<td>Thu 9/22</td>
<td></td>
<td></td>
<td>DSSL2 Q&A, Linked Lists</td>
</tr>
<tr>
<td>Tue 9/27</td>
<td>1 due, 2 out</td>
<td>1 out</td>
<td>Abstract Data Types, Stacks, Queues</td>
</tr>
<tr>
<td>Thu 9/29</td>
<td>worksheets out</td>
<td></td>
<td>Asymptotic Complexity</td>
</tr>
<tr>
<td>Fri 9/30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tue 10/4</td>
<td>2 due</td>
<td>1 due</td>
<td>Sorting</td>
</tr>
<tr>
<td>Thu 10/6</td>
<td>3 out</td>
<td>2 out</td>
<td>Dictionary ADT</td>
</tr>
<tr>
<td>Fri 10/7</td>
<td></td>
<td></td>
<td>(Chapters 7 and 8)</td>
</tr>
<tr>
<td>Tue 10/11</td>
<td>worksheets due</td>
<td>2 due</td>
<td>Hash Tables</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Chapter 9)</td>
</tr>
<tr>
<td>Thu 10/13</td>
<td>4 out</td>
<td></td>
<td>Graph ADTs and Representations</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Chapters 10, 11, and 12)</td>
</tr>
<tr>
<td>Tue 10/18</td>
<td></td>
<td></td>
<td>Graph Search</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Chapter 13)</td>
</tr>
<tr>
<td>Thu 10/20</td>
<td></td>
<td></td>
<td>First Midterm Exam</td>
</tr>
<tr>
<td>Tue 10/25</td>
<td>3 due</td>
<td></td>
<td>Single-Source Shortest Path</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Chapter 14)</td>
</tr>
<tr>
<td>Thu 10/27</td>
<td>5 out</td>
<td></td>
<td>Priority Queue ADT</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Chapter 15)</td>
</tr>
<tr>
<td>Fri 10/28</td>
<td></td>
<td>3 out</td>
<td>Data Design</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 out</td>
<td>Data Design, continued</td>
</tr>
<tr>
<td>Tue 11/1</td>
<td>4 due</td>
<td>3 due</td>
<td>Minimum Spanning Trees, Disjoint Sets ADT</td>
</tr>
<tr>
<td></td>
<td>project out</td>
<td>4 out</td>
<td>Self-Balancing Trees</td>
</tr>
<tr>
<td>Thu 11/3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fri 11/4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tue 11/8</td>
<td>5 due</td>
<td>4 due</td>
<td>Amortized Analysis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 out</td>
<td>Relational Model</td>
</tr>
<tr>
<td>Thu 11/10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fri 11/11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tue 11/15</td>
<td></td>
<td>5 due</td>
<td>Probabilistic Data Structures</td>
</tr>
<tr>
<td>Thu 11/17</td>
<td></td>
<td></td>
<td>Thanksgiving: no class</td>
</tr>
<tr>
<td>Tue 11/22</td>
<td>project code due</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thu 11/24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tue 11/29</td>
<td></td>
<td></td>
<td>Persistent Data Structures</td>
</tr>
<tr>
<td>Thu 12/1</td>
<td></td>
<td></td>
<td>Second Midterm Exam</td>
</tr>
<tr>
<td>Tue 12/6</td>
<td></td>
<td>project code due</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>project report due</td>
<td></td>
</tr>
</tbody>
</table>