
#lang plai

Out meta-language of choice

1

The PLAI Language

• A dialect of Racket, and close cousin of the 111
student languages

• Designed to make writing meta-programs easy

• You need to get back into the 111 way of thinking /
programming

• Today we’ll see the new tools PLAI brings to the table

2

Data-Driven Design

Key Idea of 111-style programming: the shape of your data
determines the shape of your functions

Step 1: defne the shape of the data you’re working with
• PLAI provides define-type to help

Step 2: write examples / test cases, following that shape
• PLAI provides test to help

Step 3: sketch out your functions, following that shape
• PLAI provides type-case to help

Step 4: fll out each case
• That’s the part that requires the most thinking
• But some cases will be trivial!

3

Running Example: GUIs

Pick a fruit:
Apple
Banana
Coconut

Ok Cancel

Possible functions:

• Read all the text on the screen

• Can I click on a given button?

• Enable a given button

• Etc.

4

Representing GUIs

Pick a fruit:
Apple
Banana
Coconut

Ok Cancel

• labels
a label string

• buttons
a label string
enabled state

• lists
a list of choice strings
selected item

(define-type GUI
 [label (text string?)]
 [button (text string?)

(enabled? boolean?)]
 [choice (items (listof string?))

(selected integer?)])

define-type
Declare each variant
Declare data each needs to keep track of
And specify what kind of data for each

6

Read Screen

Produce a list with all the text we fnd in the given GUI

test compares a computed value with an expected value

(test (read-screen (label "Hi"))
'("Hi"))

(test (read-screen (button "Ok" true))
'("Ok"))

(test (read-screen (choice '("Apple" "Banana") 0))
'("Apple" "Banana"))

7

Read Screen

Produce a list with all the text we fnd in the given GUI

type-case dispatches on the possible variants, and
introduces local variables for each of their felds

; read-screen : GUI? -> (listof string?)
(define (read-screen g)
 (type-case GUI g

 [label (t) (list t)]
 [button (t e?) (list t)]
 [choice (i s) i]))

8

Assemblings GUIs

Pick a fruit:
Apple
Banana
Coconut

Ok Cancel

• label

• buttons

• lists

• vertical stacking
two sub-GUIs

• horizontal stacking
two sub-GUIs

(define-type GUI
 [label (text string?)]
 [button (text string?)

(enabled? boolean?)]
 [choice (items (listof string?))

(selected integer?)]
 [vertical (top GUI?)

(bottom GUI?)]
 [horizontal (left GUI?)

(right GUI?)])

12

Assemblings GUIs

Pick a fruit:
Apple
Banana
Coconut

Ok Cancel

• label

• buttons

• lists

• vertical stacking
two sub-GUIs

• horizontal stacking
two sub-GUIs

(define gui1
 (vertical

(horizontal
(label "Pick a fruit:")
(choice '("Apple" "Banana" "Coconut")

0))
(horizontal
(button "Ok" false)
(button "Cancel" true))))

13

Read Screen, take 2

; read-screen : GUI? -> (listof string?)
(define (read-screen g)
 (type-case GUI g

 [label (t) (list t)]
 [button (t e?) (list t)]
 [choice (i s) i]
 [vertical (t b) (append (read-screen t)

(read-screen b))]
 [horizontal (l r) (append (read-screen l)

(read-screen r))]))

; ... earlier test cases ...
(test (read-screen gui1)

'("Pick a fruit:"
"Apple" "Banana" "Coconut"
"Ok" "Cancel"))

14

Function and Data Shapes Match

(define-type GUI
 [label (text string?)]
 [button (text string?)

(enabled? boolean?)]
 [choice (items (listof string?))

(selected integer?)]
 [vertical (top GUI?)

(bottom GUI?)]
 [horizontal (left GUI?)

(right GUI?)])

(define (read-screen g)
 (type-case GUI g

 [label (t) (list t)]
 [button (t e?) (list t)]
 [choice (i s) i]
 [vertical (t b) (append (read-screen t)

(read-screen b))]
 [horizontal (l r) (append (read-screen l)

(read-screen r))]))
16

Further Techniques

That was the basic way of designing our functions, which will
work most of the time.

But sometimes we’ll need slightly different function shapes.

Two examples:
• Passing information along
• Passing accumulators

17

Passing Information Along

We need the button name in the leaves of the tree.

We recur on g and name follows along unchanged.

; enable-button : GUI? string? -> GUI?
(define (enable-button g name)
 (type-case GUI g

 [label (t) g]
 [button (t e?) (cond [(equal? t name) (button t true)]

[else g])]
 [choice (i s) g]
 [vertical (t b) (vertical (enable-button t name)

(enable-button b name))]
 [horizontal (l r) (horizontal (enable-button l name)

(enable-button r name))]))
...
(test (enable-button gui1 "Ok")

(vertical
(horizontal (label "Pick a fruit:")

(choice '("Apple" "Banana" "Coconut") 0))
(horizontal (button "Ok" true)

(button "Cancel" true))))
18

Passing Accumulators

Edit each label to add depth in the GUI tree

(test (show-depth Hello

Ok Cancel
)

1 Hello

2 Ok 2 Cancel
)

1�

Passing Accumulators

The n argument is an accumulator. We update it as we go deeper.

; show-depth-at : GUI? integer? -> GUI?
(define (show-depth-at g n)
 (type-case GUI g

 [label (t) (label (prefix n t))]
 [button (t e?) (button (prefix n t) e?)]
 [choice (i s) g]
 [vertical (t b) (vertical (show-depth-at t (+ n 1))

(show-depth-at b (+ n 1)))]
 [horizontal (l r) (horizontal (show-depth-at l (+ n 1))

(show-depth-at r (+ n 1)))]))

; show-depth : GUI -> GUI
(define (show-depth g)
 (show-depth-at g 0))

2�

