
Capture-Avoiding
Substitution

1

Reminder: The Problem

• Our current version of substitution can turns free
identifers into bound identifers

(subst {with {y 10} z}

'z

{fun {x} {+ x y}})

⇒ {with {y 10} {fun {x} {+ x y}}}

• The y in the function body was free, is now bound

• We can this process capture

• This shouldn’t happen

2

Capture-Avoiding Substitution

• Solution: a new version of substitution that does not capture

• Strategy: look before we leap
As we substitute, rename binding and bound identifers to use
names that we know can’t cause collisions

3

Capture-Avoiding Substitution: An Example

(subst {with {y 10} {+ y z}}

'z {fun {x} {+ x y}})

• We found a binding: the with binds y

• Let’s rename y to something new

⇒

(subst {with {w 10} {+ w z}}

'z {fun {x} {+ x y}})

• That’s equivalent; we renamed consistently

• And w is not free in either the expression we’re
substituting, or the expression we’re substituting in

• So no risk of confict! ���

Capture-Avoiding Substitution: An Example

⇒

(subst {with {w 10} {+ w z}}

'z {fun {x} {+ x y}})
⇒

{with {w 10} {+ w {fun {x} {+ x y}}}}

• And now we’re done

• No capture; y was free, and it still is

6

Capture-Avoiding Substitution: The Rules

(subst x x e) ⇒ e

(subst x y e) ⇒ x

(subst {e1 e2} x e)

⇒ {(subst e1 x e)

(subst e2 x e)}

(subst {fun {x} e1} x e)

⇒ {fun {x} e1}

7

Capture-Avoiding Substitution: The Rules

(subst {fun {x} e1} y e)

⇒ {fun {w}

(subst (subst e1 x w)

y e)}

• where w is free in both {fun {x} e1} and e

8

Why do we care?

• For implementing an interpreter? No big deal
Only a problem when programs have free variables
And deferred substitution is usually better anyway

• But substitution has many other uses!
Compiler optimization
Polymorphic type systems (generics)
Proofs about languages

• In such cases, it’s important to get substitution right

• Comes up in subsequent classes
Jesse’s statics of PLs (type systems)
Christos’s dynamics of PLs (semantics)

9

