
Compilation

1

Reminder: Why do we want compilation?

• We want to write:

{with {x 3}
{with {y 4}

{+ x y}}}

• We want to interpret:

{{fun {x}
{{fun {y}

{+ x y}}
4}}

3}

• Solution: a compiler to translate between the two!

2

Reminder: What is a compiler?

An interpreter takes a program and produces a result

A compiler takes a program and produces a program

• The latter is what we want to bridge the gap between
programs we want to write

and programs we want to run

3

Reminder: What is a compiler?

An interpreter takes a program and produces a result

A compiler takes a program and produces a program

• The latter is what we want to bridge the gap between
programs we want to write

and programs we want to run

• Note that you can have both an interpreter and a
compiler for a language

Or either, or neither, or many of each!
There is no such thing as an "interpreted language"
or a "compiled" language
And don’t get me started on the word
"transpiler"...

4

Why the gap?

• Writing in a large language, with (technically redundant)
conveniences (e.g., with) is nice

Writing an interpreter for such a language, not so much

• Our available interpreter (e.g., CPU) may only support a
very restricted language (e.g., machine code)

Writing programs in that language may not be
productive

• Running a highly-optimized program is nice
Writing (and debugging!) that program can be painful

In all these cases, a compiler can bridge the gap

So, we’re going to write a compiler to bring with back

���

Compiler Basics

A compiler relates three languages

• A source language
The language of the inputs to the compiler
Akin to an interpreter’s object language

• A target language
The language of the outputs of the compiler

• A meta language (or implementation language)
The language the compiler itself is written in
Same as the meta language of an interpreter

In contrast, an interpreter relates two languages: source
and object

7

Compiler Basics

Examples of language triples (input, output, meta):

• GCC: C, x86-64 machine code, C

• TypeScript: TypeScript, JavaScript, TypeScript

• javac: Java, JVM bytecode, Java
JVM: JVM Bytecode, x86-64 machine code, C++
(JIT compiler, so also an interpreter!)

• Emscripten: C++, JavaScript, C

From a low-level language to a high-level one‽
Unusual, but still a compiler

8

Compiler Basics

• The compiler we will write today relates:
FWAE as the source language
FAE as the target language
PLAI as the meta language

• In this case, source and target languages are very close
We’re using a cannon to kill a fy
• Overkill, but we get to play with cannons!
Take 322 to build a compiler that spans a larger gap

9

Compiler Basics

• The compiler we will write today relates:
FWAE as the source language
FAE as the target language
PLAI as the meta language

• In this case, source and target languages are very close
We’re using a cannon to kill a fy
• Overkill, but we get to play with cannons!
Take 322 to build a compiler that spans a larger gap

• Overall system:

parse compile interp-expr

FAE-ValueFAEFWAES-Exp

1�

FWAE vs FAE

<FWAE> ::= <num>
| {+ <FWAE> <FWAE>}
| {- <FWAE> <FWAE>}

| {with {<id> <FWAE>} <FWAE>}
| <id>
| {fun {<id>} <FWAE>}
| {<FWAE> <FWAE>}

<FAE> ::= <num>
| {+ <FAE> <FAE>}
| {- <FAE> <FAE>}
| <id>
| {fun {<id>} <FAE>}
| {<FAE> <FAE>}

11

FWAE vs FAE

(define-type FWAE
 [W-num (n number?)]
 [W-add (lhs FWAE?)

(rhs FWAE?)]
 [W-sub (lhs FWAE?)

(rhs FWAE?)]
 [W-with (name symbol?)

(named-expr FWAE?)
(body FWAE?)]

 [W-id (name symbol?)]
 [W-fun (param symbol?)

(body FWAE?)]
 [W-app (fun-expr FWAE?)

(arg-expr FWAE?)])
; ugh, name clashes...

(define-type FAE
 [num (n number?)]
 [add (lhs FAE?)

(rhs FAE?)]
 [sub (lhs FAE?)

(rhs FAE?)]
 [id (name symbol?)]
 [fun (param symbol?)

(body FAE?)]
 [app (fun-expr FAE?)

(arg-expr FAE?)])

12

Compiling FWAE

(test (compile (parse `{+ 1 2}))
(parse-fae `{+ 1 2}))

(test (compile (parse `{with {x 3} x}))

(parse-fae `{{fun {x} x} 3}))

(test (compile (parse `{+ 2

{with {y 7}
{+ y 3}}}))

(parse-fae `{+ 2
{{fun {y} {+ y 3}}
7}}))

13

Compiling FWAE

; compile : FWAE? -> FAE?
(define (compile an-fwae)
 (type-case FWAE an-fwae

 [W-num (n) (num n)]
 [W-id (name) (id name)]
 ...))

Those just translate as is

14

Compiling FWAE

; compile : FWAE? -> FAE?
(define (compile an-fwae)
 (type-case FWAE an-fwae

 ...
 [W-add (l r) (add (compile l) (compile r))]
 [W-sub (l r) (sub (compile l) (compile r))]
 [W-fun (param body) (fun param (compile body))]
 [W-app (fun arg) (app (compile fun)

(compile arg))]
 ...))

Structural recursion, in case there’s a
with somewhere in there

1�

Compiling FWAE

; compile : FWAE? -> FAE?
(define (compile an-fwae)
 (type-case FWAE an-fwae

 ...
 [W-with (name bound-expr body)

(app (fun name
(compile body))

(compile bound-expr))]))

And that’s it. The one interesting case.

1�

Optimizing FWAE

• Ok, cool, but now that we have a compiler
Can we do more?

• Sure! Let’s do a (tiny) bit of optimization

17

Constant Folding

• Very basic optimization

• 2 + 2 = 4
Always true, regardless of the rest of the program
(Caveats with machine integers apply)

18

Constant Folding

• Very basic optimization

• 2 + 2 = 4
Always true, regardless of the rest of the program
(Caveats with machine integers apply)

• The optimization: {+ 2 2} ⇒ 4
For all constant values of 2 and 4

19

Constant Folding

• Very basic optimization

• 2 + 2 = 4
Always true, regardless of the rest of the program
(Caveats with machine integers apply)

• The optimization: {+ 2 2} ⇒ 4
For all constant values of 2 and 4

• But I never write code like that!
Compilers do, though
Often used to "clean up" after other optimizations

2�

Constant Folding

(test (compile (parse `{+ 1 2}))
(parse-fae `3))

(test (compile (parse `{+ 1 x}))

(parse-fae `{+ 1 x}))

(test (compile (parse `{f {+ 1 2}}))

(parse-fae `{f 3}))

(test (compile (parse `{- {+ 1 2} 3}))

(parse-fae `0))

21

Constant Folding

(define (compile an-fwae)
 (type-case FWAE an-fwae

 ...
 [W-add (l r) (try-constant-fold

(add (compile l)
(compile r)))]

 [W-sub (l r) (try-constant-fold
(sub (compile l)

(compile r)))]
 ...))

Any time we see an add or sub

See if we can constant fold
22

Constant Folding

(define (try-constant-fold an-fae)
 (type-case FAE an-fae

 [add (l r)
(if (and (num? l) (num? r))

(num (+ (num-n l) (num-n r)))
an-fae)]

 [sub (l r)
(if (and (num? l) (num? r))

(num (- (num-n l) (num-n r)))
an-fae)]))

• Know which language you’re operating on!
We go after the translation, so FAE

• Our implementation happens to be interleaved with translation
So get recursion and nesting for free
But could do as separate, standalone translation pass

23

