Higher-Order Functions (Part II)
FAE with Deferred Substitution

Argument expression:

\[
\begin{align*}
& \text{(interp {with \{y 7\} y})} \\
\Rightarrow & \quad \text{y = 7} \\
& \text{(interp y) } \Rightarrow \text{ 7}
\end{align*}
\]

Function expression:

\[
\begin{align*}
& \text{(interp {with \{y 10\} \{fun \{x\} \{+ \ y \ x\}\}}}) \\
\Rightarrow & \quad \text{y = 10} \\
& \text{(interp \{fun \{x\} \{+ \ y \ x\}\}) } \Rightarrow \text{ ?}
\end{align*}
\]
FAE Values

A function value needs to keep its deferred substitution

```
(define-type FAE-Value
  [numV (n number?)])

[closureV (param-name symbol?)
  (body FAE?)
  (ds DefSub?)])
```

```
(define-type DefSub
  [mtSub]
  [aSub (name symbol?)
    (value FAE-Value?)
    (rest DefSub?)])
```

```
(test (interp {with {y 10} {fun {x} [+ y x]}})
  (closureV 'x {+ y x}
    (aSub 'y (num 10) (mtSub))))
```
Continuing Evaluation

Function: \[
\{ \text{fun} \ \{x\} \ \{+ \ y \ x\}\}
\]

Argument: 7

To apply, interpret the function body with the given argument:

\[
\begin{array}{c}
\text{interp} \ \{+ \ y \ x\} \\
\end{array}
\]

\[
\begin{array}{c}
x = 7 \\
y = 10
\end{array}
\]
FAE Interpreter with Deferred Substitution

; interp : FAE? DefSub? -> FAE-Value?
(define (interp a-fae ds)
 (type-case FAE a-fae
 [num (n) (numV n)]
 [add (l r) (num+ (interp l ds) (interp r ds))]
 [sub (l r) (num- (interp l ds) (interp r ds))]
 [id (name) (lookup name ds)]
 [fun (param-name body)
 (closureV param-name body ds)]
 [app (fun-expr arg-expr)
 (define fun-val
 (interp fun-expr ds))
 (define arg-val
 (interp arg-expr ds))
 (interp (closureV-body fun-val)
 (aSub (closureV-param-name fun-val)
 arg-val
 (closureV-ds fun-val))))]))