State

Purely Functional Programs

So far, our object languages have been purely functional

* A function produces the same result every time for the
same arguments

* That’s nice in some ways: much easier to test and debug!

* But that can be limiting: some problems naturally need to
keep track of changes over time
© Can still always be expressed purely functionally!
© But can get really awkward...

Purely Functional Graph Search

Graph search to check for path between two nodes. A 214 classic.

Important bit: need to keep track of the nodes we'’ve seen.

(define (search graph src dest seen)

(cond
[(= src dest) (cons #t seen)] ; accumulator goes up
[(member src seen) (cons #f seen)]
[else
(foldl (lambda (neighbor acc) ; accumulator goes sideways

(if (car acc)
acc
(search graph neighbor dest
(cdr acec)))) ; accumulator goes down
(cons #f (cons src seen))
(neighbors graph src))]))

* Need to carry the seen set both up and down the call tree
* Means returning two values: the actual result, and the seen set

* This is really awkward

Graph Search, with State

Boom. Much better.
No more funny accumulator plumbing.

Only ever need to return the actual result.

(define (search graph src dest)

(define seen '()) ; mutable seen set
(define (helper cur)
(cond [(= cur dest) #t]

[(member cur seen) #£f]
; imperatively update state
[else (set! seen
(cons cur seen))
(ormap helper
(neighbors graph cur))]))
(helper src))

Graph Search, with Boxes

Boxes: simplest form of state, stores one value that can change.
Think of them as a mutable, single-element array.

Can initialize with contents, change contents, read contents.

(define (search graph src dest)

(define seen (box '())) ; initialize
(define (helper cur)
(cond [(= cur dest) #t]
[(member cur (unbox seen)) #£f] ; read
; write

[else (set-box! seen
(cons cur (unbox seen)))
(ormap helper
(neighbors graph cur))]))
(helper src))

BFAE = FAE + Boxes

<BFAE> := <num>

{+ <BFAE> <BFAE>}

{- <BFAE> <BFAE>}
<id>

{fun {<id>} <BFAE>}
{<BFAE> <BFAE>}
{newbox <BFAE>}
{setbox <BFAE> <BFAE>}
{openbox <BFAE>}

{seqn <BFAE> <BFAE>}

{with {b {newbox 0}}
{seqgn
{setbox b 10}
{openbox b}}} = 10

Implementing Boxes with Boxes

(define-type BFAE-Value
[numV (n number?)]
[closureV (param-name symbol?)
(body BFAE?)
(ds DefSub?)]
[boxV (container (box/c BFAE-Value?))])

Implementing Boxes with Boxes

; interp : BFAE? DefSub? -> BFAE-Value?
(define (interp a-bfae ds)
(type-case BFAE a-bfae

[newbox (val-expr)
(boxV (box (interp val-expr ds)))]
[setbox (box-expr val-expr)
(set-box! (boxV-container
(Lnterp box-expr ds))
(interp val-expr ds))]
[openbox (box-expr)
(unbox (boxV-container
(interp box-expr ds)))1))

Nice parlor trick.
But we haven’t learned anything about how boxes work!

