
State

1

Purely Functional Programs

So far, our object languages have been purely functional

• A function produces the same result every time for the
same arguments

• That’s nice in some ways: much easier to test and debug!

• But that can be limiting: some problems naturally need to
keep track of changes over time

Can still always be expressed purely functionally!
But can get really awkward...

2

Purely Functional Graph Search

Graph search to check for path between two nodes. A 214 classic.

Important bit: need to keep track of the nodes we’ve seen.

(define (search graph src dest seen)
 (cond

 [(= src dest) (cons #t seen)] ; accumulator goes up
 [(member src seen) (cons #f seen)]
 [else

(foldl (lambda (neighbor acc) ; accumulator goes sideways
 (if (car acc)

acc
(search graph neighbor dest

(cdr acc)))) ; accumulator goes down
(cons #f (cons src seen))
(neighbors graph src))]))

• Need to carry the seen set both up and down the call tree

• Means returning two values: the actual result, and the seen set

• This is really awkward
3

Graph Search, with State

Boom. Much better.

No more funny accumulator plumbing.

Only ever need to return the actual result.

(define (search graph src dest)
 (define seen '()) ; mutable seen set
 (define (helper cur)

 (cond [(= cur dest) #t]
[(member cur seen) #f]
; imperatively update state
[else (set! seen

(cons cur seen))
(ormap helper

(neighbors graph cur))]))
 (helper src))

4

Graph Search, with Boxes

Boxes: simplest form of state, stores one value that can change.

Think of them as a mutable, single-element array.

Can initialize with contents, change contents, read contents.

(define (search graph src dest)
 (define seen (box '())) ; initialize
 (define (helper cur)

 (cond [(= cur dest) #t]
[(member cur (unbox seen)) #f] ; read
; write
[else (set-box! seen

(cons cur (unbox seen)))
(ormap helper

(neighbors graph cur))]))
 (helper src))

5

BFAE = FAE + Boxes

<BFAE> ::= <num>
| {+ <BFAE> <BFAE>}
| {- <BFAE> <BFAE>}
| <id>
| {fun {<id>} <BFAE>}
| {<BFAE> <BFAE>}
| {newbox <BFAE>} NE

W

| {setbox <BFAE> <BFAE>} NE
W

| {openbox <BFAE>} NE
W

| {seqn <BFAE> <BFAE>} NE
W

{with {b {newbox 0}}
 {seqn

{setbox b 10}
{openbox b}}} ⇒ 10

6

Implementing Boxes with Boxes

(define-type BFAE-Value
 [numV (n number?)]
 [closureV (param-name symbol?)

(body BFAE?)
(ds DefSub?)]

 [boxV (container (box/c BFAE-Value?))])

7

Implementing Boxes with Boxes

; interp : BFAE? DefSub? -> BFAE-Value?
(define (interp a-bfae ds)
 (type-case BFAE a-bfae

 ...
 [newbox (val-expr)

(boxV (box (interp val-expr ds)))]
 [setbox (box-expr val-expr)

(set-box! (boxV-container
(interp box-expr ds))

(interp val-expr ds))]
 [openbox (box-expr)

(unbox (boxV-container
(interp box-expr ds)))]))

Nice parlor trick.
But we haven’t learned anything about how boxes work!

���

