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What We Sometimes Need
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What We Sometimes Need

• Escaping because of an error (exceptions)

• Escaping because we found the answer (early return)

• Revisiting an earlier decision we made (backtracking)

• Alternating between computations (coroutines)

• These are all forms of control operations
I.e., of deviating from the normal control fow of our program
Control is all about messing with what happens next
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Control Example

int main () {
   int z = do_stuff(...);
   process(z);
}
 
int do_stuff (int x) {
   if (is_prime(x)) {
       x = x + 1;
   }
 
   y = x * 15;
   printf("y is %d", y);
   return y;
}

You are here.
What happens next?
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Control Example

int main () {
   int z = do_stuff(...);
   process(z);
}
 
int do_stuff (int x) {
   if (is_prime(x)) {
       x = x + 1;
   }
 
   y = x * 15;
   printf("y is %d", y);
   return y;
}

You are here.
What happens next?

This. Comes after the if.
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Control Example

int main () {
    int z = do_stuff(...);
    process(z);
}
 
int do_stuff (int x) {
    if (is_prime(x)) {
        x = x + 1;
        return x;
    }
    y = x * 15;
    printf("y is %d", y);
    return y;
}

You are here.
What happens next?
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Control Example

int main () {
    int z = do_stuff(...);
    process(z);
}
 
int do_stuff (int x) {
    if (is_prime(x)) {
        x = x + 1;
        return x;
    }
    y = x * 15;
    printf("y is %d", y);
    return y;
}

This. We returned early.

You are here.
What happens next?

And we just ignored this part.
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KFAE

Let’s add (two favors of) early return to FAE!

<KFAE> ::= <num>
| {+ <KFAE> <KFAE>}
| {- <KFAE> <KFAE>}
| <id>
| {fun {<id>} <KFAE>}
| {<KFAE> <KFAE>}
| {ret-0}
| {ret <KFAE>}

{+ {{fun {x} {+ x {ret 10}}}
5}

3} ⇒ 13
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KFAE

{{fun {x} {+ x {ret-0}}} 5} ⇒ 0
 
{+ {{fun {x} {+ x {ret-0}}} 5}

3}

⇒ 3
 

{{fun {x} {+ x {ret 2}}} 5} ⇒ 2
 
{+ {{fun {x} {+ x {ret 10}}} 5}

3}

⇒ 13
 

{ret 2} ⇒ error: not inside a function
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KFAE

(define-type KFAE
  [num (n number?)]
  [add (lhs KFAE?)

(rhs KFAE?)]
  [sub (lhs KFAE?)

(rhs KFAE?)]
  [id  (name symbol?)]
  [fun (param-name symbol?)

(body KFAE?)]
  [app (fun-expr KFAE?)

(arg-expr KFAE?)]
  [ret-0] ;                 just return 0
  [ret (ret-expr KFAE?)]) ; return any value
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KFAE, Parlor Trick Version

Just like we did with state, let’s start by implementing
object-language control with meta-language control.

Just to get used to programming with control a bit.

Specifcally, we’ll use PLAI exceptions to implement
KFAE early return.

• Key idea: when we return (early or not), we go back
to the call site

I.e., we are done interpreting the body of the
function
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KFAE, Parlor Trick Version

Raise an exception to escape out of where we are.

Use the return value as the value of the exception.

PLAI raise = throw in some other languages.

; interp : KFAE? DefSub? -> KFAE-Value?
(define (interp an-fae ds)
  (type-case KFAE an-fae

  ...
  [ret-0 ()

(raise (numV 0))]
  ...))
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KFAE, Parlor Trick Version

Raise an exception to escape out of where we are.

Use the return value as the value of the exception.

PLAI raise = throw in some other languages.

; interp : KFAE? DefSub? -> KFAE-Value?
(define (interp an-fae ds)
  (type-case KFAE an-fae

  ...
  [ret-0 ()

(raise (numV 0))]
  [ret (ret-expr)

(raise (interp ret-expr ds))]))
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KFAE, Parlor Trick Version

with-handlers = functional variant of try-catch.

Run the body. If an exception is raised, run the appropiate handler.

The result of with-handlers is the result of the body (if no
exception) or the result of the handler (if exception).

[app (fun-expr arg-expr)
(type-case KFAE-Value (interp fun-expr ds)
  [closureV (param-name body closed-ds)

; outside the with-handlers!
; we're not inside the function body yet
(define arg-val (interp arg-expr ds))
(with-handlers ([; if you catch a KFAE-Value...

KFAE-Value?
; ...use this handler
(lambda (v) v)])

  (interp body (aSub param-name
arg-val
closed-ds)))])] 16



KFAE, Parlor Trick Version

To return, we need to be inside a function body.

So until we enter a function body, returning is an error.

(define (interp-expr a-kfae)
  (with-handlers

  ([KFAE-Value?
(lambda (v)
  (error 'interp "not inside a function"))])

  (interp a-kfae (mtSub))))
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KFAE, For Real

Ok, cool. But how do we really implement control?

• We’ll use continuation-passing style (CPS).

• Key idea: split up the work we do right now and the work
we do next.

And represent the latter as an explicit value: the
continuation
Pass it around as an argument, like we do with deferred
substitutions and stores
• That’s what the finish argument to interp2 was!
To change what we do next, change the continuation!

• Analogy: Store : the heap :: continuation : the stack!
Generalized stack: don’t just push when we call a
function; push any work we keep for later
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Continuations

• Typically represented as functions: calling a continuation = doing
the work we saved for later (c.f., callbacks in JavaScript)

• We’ll use explicit data structures instead (c.f. promises in JS).

; one kind of "stack frame" per kind of work we leave for later
(define-type Cont
  [done]
  [numop-do-right  (rhs KFAE?)

(ds  DefSub?)
(op (-> number? number? number?))
; link each "next step" to the next
(rest-k Cont?)]

  [numop-do-op     (l-val KFAE-Value?)
(op (-> number? number? number?))
(rest-k Cont?)]

  [app-do-arg      (arg-expr KFAE?)
(ds  DefSub?)
(rest-k Cont?)]

  [app-do-body     (fun-val KFAE-Value?)
(rest-k Cont?)]

  [app-do-return   (rest-k Cont?)])
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Dramatis Personae

• interp takes an additional continuation argument

; KFAE? DefSub? Cont? -> KFAE-Value?
(define (interp a-kfae ds k)
  ...)

• interp-expr gets the ball rolling
After interpreting the whole program, nothing to do next

; KFAE? -> KFAE-Value?
(define (interp-expr a-kfae)
  (interp a-kfae (mtSub) (done)))

• interp-cont "pops the stack", does the next computation
Takes the result of the previous computation as argument

; KFAE-Value? Cont? -> KFAE-Value?
(define (interp-cont v k)
  ...)
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Interp

Base cases. The only work we do is producing a value.

Our part is done, so we move on to the continuation.

; KFAE? DefSub? Cont? -> KFAE-Value?
(define (interp a-kfae ds k)
  (type-case KFAE a-kfae

  [num (n) (interp-cont (numV n) k)]
  [id  (name) (interp-cont (lookup name ds) k)]
  [fun (param-name body)

(interp-cont (closureV param-name
body
ds)

k)]
  ...))
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Interp

Numeric operations are really three steps:
• Interpreting the frst operand
• Interpreting the second operand
• Doing the numeric operation

In CPS, we do frst step right now, leave rest for later
• I.e., create a continuation to do step 2

[add (l r)
(interp l ds

; new continuation!
(numop-do-right r ds + k))]

[sub (l r)
(interp l ds

(numop-do-right r ds - k))]
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Interp-Cont

When we get around to doing that next step...

; KFAE-Value? Cont? -> KFAE-Value?
(define (interp-cont v k)
  (type-case Cont k

  [numop-do-right (rhs ds op rest-k)
  ; Step 2: interpret the right hand side...
  (interp rhs ds

; ...then do step 3 later
(numop-do-op v op rest-k))]

  ...))
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Interp-Cont

Then fnally step 3

; KFAE-Value? Cont? -> KFAE-Value?
(define (interp-cont v k)
  (type-case Cont k

  ...
  [numop-do-op (l-val op rest-k)

  (unless (numV? l-val)
  (error 'interp "expected number"))

  (unless (numV? v)
  (error 'interp "expected number"))

  (interp-cont (numV (op (numV-n l-val)
(numV-n v)))

; we're done with our work
; continue with the original continuation
rest-k)]

  ...))

24



Interp

Function application is four steps:
• Interpret the function position
• Interpret the argument position
• Interpret the function body
• Return (was implicit before)

(define (interp a-kfae ds k)
  (type-case KFAE a-kfae

  ...
  [app (fun-expr arg-expr)

(interp fun-expr ds ; step 1
(app-do-arg arg-expr ds k))]))
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Interp-Cont

(define (interp-cont v k)
  (type-case Cont k

  ...
  [app-do-arg (arg-expr ds rest-k)

  (interp arg-expr ds ; step 2: argument
(app-do-body v rest-k))]

  [app-do-body (fun-val rest-k)
  ; step 3: function body
  (type-case KFAE-Value fun-val

  [closureV (param-name body ds)
(interp body (aSub param-name v ds)

(app-do-return rest-k))]
  [else

(error 'interp "expected function")])]
  ; step 4: return (nothing more to do)
  [app-do-return (rest-k) (interp-cont v rest-k)]
  ...))
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Interp-Cont

And when we’re done, just return the result

(define (interp-cont v k)
  (type-case Cont k

  ...
  [done () v]))
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Whither early return?

Returning early = skipping all work until the end of the app

Skipping work = dropping it from the continuation!

(define (interp a-kfae ds k)
  (type-case KFAE a-kfae

  ...
  [ret-0 () (return (numV 0) k)]))

 
(define (return v k)
  (type-case Cont k

  ; not the end of an app; skip
  [numop-do-right (rhs ds op rest-k) (return v rest-k)]
  [numop-do-op (l-val op rest-k)     (return v rest-k)]
  [app-do-arg (arg-expr ds rest-k)   (return v rest-k)]
  [app-do-body (fun-val rest-k)      (return v rest-k)]
  ; *this* is the end of an app; back to work!
  [app-do-return (rest-k)            (interp-cont v rest-k)]
  ; we tried to return, but did not find an app
  [done () (error 'interp "not inside a function")]))
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Returning arbitrary values

Need to interpret return value, then return
• then = build up the continuation!

(define-type Cont
  ...
  [do-early-return (rest-k Cont?)])
 
(define (interp a-kfae ds k)
  (type-case KFAE a-kfae

  [ret (ret-expr)
(interp ret-expr ds

(do-early-return k))]))
 
(define (interp-cont v k)
  (type-case Cont k

  ...
  [do-early-return (rest-k) (return v rest-k)]))

And just skip these do-early-return frames when
returning 29



Ret within Ret

ret is an expression

So can have ret inside ret!

{{fun {x} {ret {ret 2}}}
5} ⇒ 2

 
{{fun {x} {+ x {ret {+ 4 {ret 2}}}}}
5}

⇒ 2

That’s a bit weird, but it follows naturally from our rules.

This kind of behavior makes sense for, e.g., exceptions.
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Exception within Exception

Source: https://docs.microsoft.com/en-us/windows/desktop/uxguide/mess-error
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Continuation-Passing Style, with Functions

• Control is probably the trickiest concept we’ll see

• So let’s see a third way to implement it!

"Classic" CPS uses functions as continuations:

interp : KFAE? DefSub?
(KFAE-Value? -> KFAE-Value?)
-> KFAE-Value?

That’s closer to what we did with interp2

The function represents "the work that is left to do"

To do that work: we call the function

To change that work: we use a different function
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interp-expr

After we’re done interpreting the whole program,
nothing more to do!

; KFAE? -> KFAE-Value?
(define (interp-expr a-kfae)
  (interp a-fae (mtSub)

(λ (x) x)))
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Base cases. Our work is done, move on to continuation
(by calling it!).

; interp : KFAE? DefSub?
;         (KFAE-Value? -> KFAE-Value?)
;         -> KFAE-Value?
(define (interp a-fae ds k)
  (type-case FAE a-fae

  [num (n) (k (numV n))]
  [id (name) (k (lookup name ds))]
  [fun (param-name body)

(k (closureV param-name body ds))]
  ...))
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Numeric operations are 3 steps: interp left, interp right,
then do the operation.

(define (numop op l r ds k)
  ; step 1
  (interp l ds

(λ (l-v)
  ; step 2
  (interp r ds

(λ (r-v)
  ; step 3
  (k (numV

(op (numV-n l-v)
(numV-n r-v)))))))))
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Application is 4 steps: interp fun, interp arg, interp body,
return

[app (fun-expr arg-expr)
; step 1
(interp fun-expr ds
   (λ (fun-val)

  ; step 2
  (interp arg-expr ds

   (λ (arg-val)
  ; step 3
  (interp

(closureV-body fun-val)
(aSub (closureV-param-name fun-val)

arg-val
(closureV-ds fun-val))

; step 4; nothing to do
(lambda (result)
  (k result)))))))]
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ret-0, take 1

Can’t call k since that would not skip any work

[ret-0 () (numV 0)]

so let’s not do that!

{+ {{fun {x} {+ x {ret-0}}}
5}
3}

⇒ 0

Oops, we return too far!

All the way to the beginning, in fact.

Makes sense: we drop all our continuation
37



Two Continuations

Solution: when we interpret, we can either return, or
continue as normal.

Two possible things to run = two continuations!

; interp : KFAE? DefSub?
;          (KFAE-Value? -> KFAE-Value?)
;          (KFAE-Value? -> KFAE-Value?)
;          -> KFAE-Value?
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Two Continuations

Returning is only valid inside a function.

If we try to call the return continuation outside of a
function, error.

(define (interp-expr a-kfae)
  (interp a-kfae (mtSub)

(λ (x) x)
(λ (x)
  (error 'interp

"not inside a function"))))

; interp : KFAE? DefSub?
;          (KFAE-Value? -> KFAE-Value?)
;          (KFAE-Value? -> KFAE-Value?)
;          -> KFAE-Value?

39



Two Continuations

For the base cases, we don’t return; use the same
continuation as before.

; interp : KFAE? DefSub?
;         (KFAE-Value? -> KFAE-Value?)
;         (KFAE-Value? -> KFAE-Value?)
;         -> KFAE-Value?
(define (interp a-fae ds k ret-k)
  (type-case FAE a-fae

  [num (n) (k (numV n))]
  [id (name) (k (lookup name ds))]
  [fun (param-name body)

(k (closureV param-name body ds))]
  ...))

4�



Two Continuations

Enter a function body ⇒ change what return means!

Now it means: return from this function body

[app (fun-expr arg-expr)
(interp fun-expr ds ; step 1
(λ (fun-val)
  (interp arg-expr ds ; step 2

(λ (arg-val)
  (interp (closureV-body fun-val) ; step 3

(aSub (closureV-param-name fun-val)
arg-val
(closureV-ds fun-val))

 ; step 4
 (lambda (result) (k result))
 ; if you return, continue with this k!
 (lambda (result) (k result))))

; if we return when interpreting fun or arg
; we're still in the old function body
ret-k))

ret-k)]
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ret-0, take 2

When we return, use the new continuation!

(define (interp a-fae ds k ret-k)
  (type-case FAE a-fae

  ...
  [ret-0 () (ret-k (numV 0))]
  ...))

We continue execution after the current function body!

{+ {{fun {x} {+ x {ret-0}}}
5}
3}

⇒ 3
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ret

After we get the return value, go to the return
continuation!

If we have to return along the way, we return!

(define (interp a-fae ds k ret-k)
  (type-case FAE a-fae

  ...
  [ret (ret-expr)

(interp ret-expr ds
(lambda (ret-val)
  (ret-k ret-val))
(lambda (ret-val)
  (ret-k ret-val)))]

  ...))
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For completeness

(define (numop op l r ds k ret-k)
  (interp l ds

(lambda (l-v)
  (interp r ds

(lambda (r-v)
 (k (numV

(op (numV-n l-v)
(numV-n r-v)))))

ret-k))
ret-k))

Pass ret-k along in case either operand returns.

Otherwise continue execution as normal
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What if I want to add stores?

Anything that would normally be an output to the
interpreter becomes an input to the continuation!

interp : BFAE? DefSub? Store?
(Value*Store? -> Value*Store?)
-> Value*Store?
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CPS is Awesome

• Used in compilers for higher-order languages
See Guy Steele’s MS thesis (1978)
One of the two MS theses in CS that people
actually read

• Used in linguistics

• Connections to embeddings of double-negation in
intuitionistic logic

• Cheney on the MTA (see last lecture of the quarter)

• Reynolds’s "The Discoveries of Continuations" (1993)
Independently discovered in a variety of settings
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Beyond Early Return

• Homework 7: Exceptions

• More general: frst-class continuations
Continuations as values in the object language!
Can pass them around, put them in boxes, invoke
them later!
Keyword: call-with-current-continuation (call/cc)
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