
Garbage Collection
Basics

1

Freeing memory is a pain

• Need to decide on a protocol (who frees what when?)

• Pollutes interfaces

• Errors hard to track down

• Remember 211 / 213?

• ... but lets try an example anyway
(fre isn't hot until it burns me)

���

Freeing memory is a pain

void removeSome (node *head) {
 node *current;
 while (current) {
 if (shouldRemove(current->payload)) {
 current->prev->next = current->next;
 current->next->prev = current->prev;
 }
 current = current->next;
 }
}

We're not freeing anything; leaking like a sieve.

���

Freeing memory is a pain

void removeSome (node *head) {
 node *current;
 while (current) {
 if (shouldRemove(current->payload)) {
 free(current->payload);
 current->prev->next = current->next;
 current->next->prev = current->prev;
 }
 current = current->next;
 }
}

Better, but still leaking.

���

Freeing memory is a pain

void removeSome (node *head) {
 node *current, *next;
 while (current) {
 if (shouldRemove(current->payload)) {
 free(current->payload);
 free(current);
 current->prev->next = current->next;
 current->next->prev = current->prev;
 }
 current = current->next;
 }
}

Now we're freeing too soon.

���

Freeing memory is a pain

void removeSome (node *head) {
 node *current, *next;
 while (current) {
 if (shouldRemove(current->payload)) {
 free(current->payload);
 current->prev->next = current->next;
 current->next->prev = current->prev;
 free(current);
 }
 current = current->next;
 }
}

Still too soon.

1��11

Freeing memory is a pain

void removeSome (node *head) {
 node *current, *next;
 while (current) {
 next = current->next;
 if (shouldRemove(current->payload)) {
 free(current->payload);
 current->prev->next = next;
 next->prev = current->prev;
 free(current);
 }
 current = next;
 }
}

Finally got it right. I think...

But what a mess! Logic and memory management tangled up!
1��1�

Automatic storage management

PLs come with their own implementation of allocation;
why not freeing too?

When can we free an object?

• When we can guarantee that it won’t be used again in
the computation (ground truth)

• ... when it isn’t reachable (conservative approximation);
this is garbage collection

1��1�

Garbage Collection

Garbage collection: a way to know whether a record
is live i.e., accessible

• Values reachable directly (without pointers) are live
(the roots)

E.g., values on the stack and in registers

• A record referenced by a live record is also live

• A program can only possibly use live records, because
there is no way to get to other records

• A garbage collector frees all records that are not live

• Allocate until we run out of memory, then run a
garbage collector to get more space

1��1�

The World According to Garbage Collectors

Running programs are divided into two parts:

• The collector: manages the heap, allocates memory,
collects garbage to free space

That’s the part we’ll be interested in

• The mutator: asks the collector for memory, does
the work the program is supposed to do

In general programming, that’s what we write
Now, it’s secondary; mostly used for test cases

The collector provides functions, called by the mutator:
• Allocate a number
• Allocate a pair
• Give me the frst element of that pair
• Etc.

1�

Learning Garbage Collectors, the PLAI Way

Two languages for learning garbage collectors:

• #lang plai/gc2/collector

• #lang plai/gc2/mutator

Collectors implement a specifc API, for use by mutators.
• See the docs: search for init-allocator

Collectors use an API provided by the collector language
to access the heap and roots
• See the docs: search for heap-ref

��

Learning Garbage Collectors, the PLAI Way

Two languages for learning garbage collectors:

• #lang plai/gc2/collector

• #lang plai/gc2/mutator

The mutator language transforms mutators to keep
track of roots, make allocations explicit, and use the
collector API

Mutators are regular* PLAI programs
• No need to use the (low-level) collector API directly!
• * some small differences, see the docs.

�1

Learning Garbage Collectors, the PLAI Way

Two languages for learning garbage collectors:

• #lang plai/gc2/collector

• #lang plai/gc2/mutator

(I can’t stress enough how nice this is compared to the
traditional way of learning GC.)

��

Rules of the game

• Our heap is a big vector, mapping addresses to values

• All values need to be allocated in the heap

• All values need to be tagged (to remember their
type)

• Atomic values (ft in one cell in memory) include
numbers (a lie), symbols (a less bad lie), booleans, and
the empty list

• Compound values (require multiple cells in memory)
include pairs and closures

• If an operation may allocate, its arguments must be in
roots so we don’t accidentally collect them.

��

A non-collecting collector

• Put the allocation pointer at address 0

• Allocate all constants in the heap, tag them with 'flat

• Allocate all conses in the heap, tag them with 'cons

• Allocate all closures in the heap, tag them with 'clos

��

A non-collecting collector

#lang plai/gc2/collector

(define (init-allocator)
 (heap-set! 0 1))

(define (alloc n)
 (define addr (heap-ref 0))
 (unless (<= (+ addr n) (heap-size))

 (error 'allocator "out of memory"))
 (heap-set! 0 (+ addr n))
 addr)

��

A non-collecting collector, cont’d

(define (gc:flat? addr)
 (equal? (heap-ref addr) 'flat))

(define (gc:alloc-flat x)
 (define addr (alloc 2))
 (heap-set! addr 'flat)
 (heap-set! (+ addr 1) x)
 addr)

(define (gc:deref addr)
 (unless (equal? (heap-ref addr) 'flat)

 (error 'gc:deref "not a flat @ ~a" addr))
 (heap-ref (+ addr 1)))

��

A non-collecting collector, cont’d

(define (gc:cons f r)
 (define addr (alloc 3))
 (heap-set! addr 'cons)
 (heap-set! (+ addr 1) (read-root f))
 (heap-set! (+ addr 2) (read-root r))
 addr)

(define (gc:cons? addr)
 (equal? (heap-ref addr) 'cons))

��

A non-collecting collector, cont’d

(define (gc:first addr)
 (check-pair addr)
 (heap-ref (+ addr 1)))

(define (gc:rest p)
 (check-pair p)
 (heap-ref (+ p 2)))

(define (check-pair addr)
 (unless (equal? (heap-ref addr) 'cons)

 (error 'check-pair "not a pair @ ~a" addr)))

��

A non-collecting collector, cont’d

(define (gc:set-first! addr v)
 (check-pair addr)
 (heap-set! (+ addr 1) v))

(define (gc:set-rest! addr v)
 (check-pair addr)
 (heap-set! (+ addr 2) v))

��

A non-collecting collector, cont’d

(define (gc:closure code-pointer free-vars)
 (define addr (alloc (+ 2 (length free-vars))))
 (heap-set! addr 'clos)
 (heap-set! (+ addr 1) code-pointer)
 (for ([i (in-range 0 (length free-vars))]

[v (in-list free-vars)])
 (heap-set! (+ addr 2 i)

(read-root v)))
 addr)

��

A non-collecting collector, cont’d

(define (gc:closure? addr)
 (equal? (heap-ref addr) 'clos))

(define (gc:closure-code-ptr addr)
 (unless (gc:closure? addr)

 (error "not a closure @ ~a" addr))
 (heap-ref (+ addr 1)))

(define (gc:closure-env-ref addr i)
 (unless (gc:closure? addr)

 (error "not a closure @ ~a" addr))
 (heap-ref (+ addr 2 i)))

�1

Testing a collector

We can use with-heap to test a collector. The
expression

(with-heap h-expr body-exprs ...)

expects h-expr to evaluate to a vector and then it
uses that vector as the memory that heap-ref and
heap-set! refer to while evaluating the
body-exprs.

��

Testing our non-collecting collector

(let ([h (vector 'x 'x 'x 'x 'x)])
 (test (with-heap h

(init-allocator)
(gc:alloc-flat #f)
h)

(vector 3 'flat #f 'x 'x)))

��

Testing our non-collecting collector

(let ([h (vector 'x 'x 'x 'x 'x 'x 'x 'x 'x)])
 (test (with-heap

h
(init-allocator)
(gc:cons
(simple-root (gc:alloc-flat #f))
(simple-root (gc:alloc-flat #t)))

h)
(vector 8 'flat #f 'flat #t 'cons 1 3 'x)))

; (Of course, this is not enough testing.)

��

Testing with mutator programs

#lang plai/gc2/mutator
(allocator-setup "mygc.rkt" 200) ; heap size

(define c1 (cons 2 (cons 3 empty)))
(define c2 (cons 1 c1))

; point to the same location
(test/location=? (rest c2) c1)
; produce the same value
(test/value=? (rest c1) '(3))

��

We can also use random testing to generate mutators.

A plai library generates code that makes interesting
heap structures (randomly), and then makes up a
traversal of them.

The next three slides give three example random
mutators and the calls into the library that generated
them.

��

Random mutators

#lang racket
(require plai/random-mutator)
(save-random-mutator "tmp.rkt" "mygc.rkt" #:gc2? #t)

#lang plai/gc2/mutator
(allocator-setup "mygc.rkt" 200)
(define (build-one)
 (let* ((x0 'x)
 (x1 (cons #f #f))
 (x2 (cons x1 #f))
 (x3
 (lambda (x)
 (if (= x 0)
 x0
 (if (= x 1)
 x2
 (if (= x 2) x2 (if (= x 3) x2 (if (= x 4) x1 x2)))))))
 (x4
 (lambda (x)
 (if (= x 0)
 x1
 (if (= x 1)
 x0
 (if (= x 2)
 x1
 (if (= x 3)
 x2
 (if (= x 4)
 x1
 (if (= x 5)
 x2
 (if (= x 6)
 x3
 (if (= x 7) x0 (if (= x 8) x0 x3)))))))))))
 (x5 (lambda (x) (if (= x 0) x3 x0)))
 (x6 (lambda (x) x1)))
 (set-first! x1 x4)
 (set-rest! x1 x2)
 (set-rest! x2 x5)
 x4))
(define (traverse-one x4)
 (symbol=? 'x ((rest ((first ((first ((first (x4 4)) 0)) 0)) 3)) 1)))
(define (trigger-gc n)
 (if (zero? n) 0 (begin (cons n n) (trigger-gc (- n 1)))))
(define (loop i)
 (if (zero? i)
 'passed
 (let ((obj (build-one)))
 (trigger-gc 200)
 (if (traverse-one obj) (loop (- i 1)) 'failed))))
(loop 200) ��

Random mutators

#lang racket
(require plai/random-mutator)
(save-random-mutator "tmp.rkt" "mygc.rkt" #:gc2? #t)

#lang plai/gc2/mutator
(allocator-setup "mygc.rkt" 200)
(define (build-one) (let* ((x0 0)) x0))
(define (traverse-one x0) (= 0 x0))
(define (trigger-gc n)
 (if (zero? n) 0 (begin (cons n n) (trigger-gc (- n 1)))))
(define (loop i)
 (if (zero? i)
 'passed
 (let ((obj (build-one)))
 (trigger-gc 200)
 (if (traverse-one obj) (loop (- i 1)) 'failed))))
(loop 200)

��

Random mutators

#lang racket
(require plai/random-mutator)
(save-random-mutator "tmp.rkt" "mygc.rkt" #:gc2? #t)

#lang plai/gc2/mutator
(allocator-setup "mygc.rkt" 200)
(define (build-one)
 (let* ((x0 empty)
 (x1
 (lambda (x)
 (if (= x 0)
 x0
 (if (= x 1)
 x0
 (if (= x 2)
 x0
 (if (= x 3)
 x0
 (if (= x 4)
 x0
 (if (= x 5)
 x0
 (if (= x 6) x0 (if (= x 7) x0 x0)))))))))))
 x1))
(define (traverse-one x1) (empty? (x1 0)))
(define (trigger-gc n)
 (if (zero? n) 0 (begin (cons n n) (trigger-gc (- n 1)))))
(define (loop i)
 (if (zero? i)
 'passed
 (let ((obj (build-one)))
 (trigger-gc 200)
 (if (traverse-one obj) (loop (- i 1)) 'failed))))
(loop 200) ��

