
Mark & Sweep
Garbage Collection

1

Garbage Collection

• Allocate until we run out of space; then try to free stuff

• Invariant: only the collector knows about pointers (i.e.,
mutator doesn’t) so we can tag everything and fnd all
reachable data

• Unlike C, C++, assembly;

• Like Python, Java, JavaScript, Racket, ... everything else really

2

Mark & Sweep Garbage Collection Algorithm

• Color all records white

• Color records referenced by roots gray

• Repeat until there are no gray records:

Pick a gray record, r

For each white record that r points to, make it gray

Color r black

• Deallocate all white records

3

Mark & Sweep Garbage Collection

All records are marked white

4

Mark & Sweep Garbage Collection

Mark records referenced by roots
as gray

5

Mark & Sweep Garbage Collection

Need to pick a gray record

Red arrow indicates the chosen
record

6

Mark & Sweep Garbage Collection

Mark white records referenced
by chosen record as gray

7

Mark & Sweep Garbage Collection

Mark chosen record black

8

Mark & Sweep Garbage Collection

Start again: pick a gray record

9

Mark & Sweep Garbage Collection

No referenced records; mark
black

1�

Mark & Sweep Garbage Collection

Start again: pick a gray record

11

Mark & Sweep Garbage Collection

Mark white records referenced
by chosen record as gray

12

Mark & Sweep Garbage Collection

Mark chosen record black

13

Mark & Sweep Garbage Collection

Start again: pick a gray record

14

Mark & Sweep Garbage Collection

No referenced white records;
mark black

15

Mark & Sweep Garbage Collection

No more gray records; deallocate
white records

Cycles do not break garbage
collection

16

Mark & Sweep Garbage Collection

• To turn this into code, we’ll use tags to indicate both
color and kind of data

• Unqualifed tags will denote the black color

• E.g., 'flat vs 'white-flat vs 'gray-flat

17

Mark and sweep implementation, with linear-time allocator

; init-allocator : -> void?
(define (init-allocator)
 (for ([i (in-range 0 (heap-size))])

 (heap-set! i 'free)))

; gc:flat? : location? -> boolean?
(define (gc:flat? addr)
 (equal? (heap-ref addr) 'flat))

; gc:deref location? -> heap-value?
(define (gc:deref addr)
 (unless (gc:flat? addr)

 (error 'gc:flat? "not a flat @ ~a" addr))
 (heap-ref (+ addr 1)))

18

Mark and sweep implementation, with linear-time allocator

; gc:cons? : location? -> boolean?
(define (gc:cons? addr)
 (equal? (heap-ref addr) 'cons))

; gc:first : location? -> location?
(define (gc:first addr)
 (unless (gc:cons? addr)

 (error 'gc:first "not a cons @ ~a" addr))
 (heap-ref (+ addr 1)))

; gc:rest : location? -> location?
(define (gc:rest addr)
 (unless (gc:cons? addr)

 (error 'gc:rest "not a cons @ ~a" addr))
 (heap-ref (+ addr 2)))

19

Mark and sweep implementation, with linear-time allocator

; gc:set-first! : location? location? -> void?
(define (gc:set-first! addr v)
 (unless (gc:cons? addr)

 (error 'gc:set-first! "not a cons @ ~a" addr))
 (heap-set! (+ addr 1) v))

; gc:set-rest! : location? location? -> void
(define (gc:set-rest! addr v)
 (unless (gc:cons? addr)

 (error 'gc:set-rest! "not a cons @ ~a" addr))
 (heap-set! (+ addr 2) v))

2�

Mark and sweep implementation, with linear-time allocator

; gc:closure? : location? -> boolean?
(define (gc:closure? addr)
 (equal? (heap-ref addr) 'clos))

; gc:closure-code-ptr : location? -> heap-value?
(define (gc:closure-code-ptr addr)
 (unless (gc:closure? addr)

 (error 'gc:closure-code-ptr "not a closure @ ~a" addr))
 (heap-ref (+ addr 1)))

; gc:closure-env-ref : location? integer? -> location?
(define (gc:closure-env-ref addr i)
 (unless (gc:closure? addr)

 (error 'gc:closure-env-ref "not a closure @ ~a" addr))
 (heap-ref (+ addr 3 i)))

21

Mark and sweep implementation, with linear-time allocator

; gc:alloc-flat : heap-value? -> location?
(define (gc:alloc-flat v)
 (define address (alloc 2 #f #f))
 (heap-set! address 'flat)
 (heap-set! (+ 1 address) v)
 address)

; gc:cons : root? root? -> location?
(define (gc:cons v1 v2)
 (define address (alloc 3 v1 v2))
 (heap-set! address 'cons)
 (heap-set! (+ address 1) (read-root v1))
 (heap-set! (+ address 2) (read-root v2))
 address)

22

Mark and sweep implementation, with linear-time allocator

; gc:closure : heap-value? (vectorof location?)
; -> location?
(define (gc:closure code-ptr free-variables)
 (define address

 (alloc (+ 3 (length free-variables))
free-variables #f))

 (heap-set! address 'clos)
 (heap-set! (+ address 1) code-ptr)
 (heap-set! (+ address 2) (length free-variables))
 (for ([i (in-range 0 (length free-variables))]

[f (in-list free-variables)])
 (heap-set! (+ address 3 i) (read-root f)))

 address)

23

Mark and sweep implementation, with linear-time allocator

; a roots is either:
; - root?
; - location?
; - (listof roots?)

; alloc : number? roots? roots? -> location?
(define (alloc n roots1 roots2)
 (define a (find-free-space 0 n))
 (cond [a

a]
[else
(collect-garbage roots1 roots2)
(define a (find-free-space 0 n))
(unless a
 (error 'alloc "out of memory"))
a]))

24

Mark and sweep implementation, with linear-time allocator

; find-free-space : location? number?
; -> (or/c location? #f)
(define (find-free-space start n)
 (cond [(= start (heap-size))

#f]
[else
(case (heap-ref start)
 [(flat) (find-free-space (+ start 2) n)]
 [(cons) (find-free-space (+ start 3) n)]
 [(clos) (find-free-space

(+ start 3 (heap-ref (+ start 2))) n)]
 [(free) (if (n-free-blocks? start n)

start
(find-free-space (+ start 1) n))]

 [else (error 'find-free-space
"unexpected tag ~a" start)])]))

25

Mark and sweep implementation, with linear-time allocator

; n-free-blocks? : location? integer? -> boolean?
(define (n-free-blocks? start n)
 (cond [(= n 0) #t]

[(= start (heap-size)) #f]
[else (and (equal? (heap-ref start) 'free)

(n-free-blocks?
(+ start 1) (- n 1)))]))

26

Mark and sweep implementation, with linear-time allocator

Note: this allocator is ridiculously ineffcient, in more
ways than one.

A proper mark-and-sweep garbage collector would use
a free list, as with reference counting (or C’s malloc, for
that matter).

All your favorite tricks from the malloc lab apply.

27

Mark and sweep implementation, with linear-time allocator

; collect-garbage : roots? roots? -> void?
(define (collect-garbage roots1 roots2)
 (validate-heap)
 (mark-white!)
 (traverse/roots (get-root-set))
 (traverse/roots roots1)
 (traverse/roots roots2)
 (free-white!)
 (validate-heap))

28

Mark and sweep implementation, with linear-time allocator

; validate-heap : -> void?
(define (validate-heap)
 (define (valid-pointer? p)

 (unless (< p (heap-size))
 (error 'validate-heap "pointer out of bounds ~a" p))

 (unless (member (heap-ref p) '(flat cons clos))
 (error 'validate-heap "pointer to non-tag ~a" p)))

 (let loop ([i 0])
 (when (< i (heap-size))
 (case (heap-ref i)

 [(flat) (loop (+ i 2))]
 [(cons)

(valid-pointer? (heap-ref (+ i 1)))
(valid-pointer? (heap-ref (+ i 2)))
(loop (+ i 3))]

 [(clos)
(for ([j (in-range 0 (heap-ref (+ i 2)))])
 (valid-pointer? (heap-ref (+ i 3 j))))
(loop (+ i 3 (heap-ref (+ i 2))))]

 [(free) (loop (+ i 1))]
 [else (error 'validate-heap "unexpected tag @ ~a" i)]))))

29

Mark and sweep implementation, with linear-time allocator

; mark-white! : -> void?
(define (mark-white!)
 (let loop ([i 0])

 (when (< i (heap-size))
 (case (heap-ref i)

 [(cons)
(heap-set! i 'white-cons)
(loop (+ i 3))]

 [(flat)
(heap-set! i 'white-flat)
(loop (+ i 2))]

 [(clos)
(heap-set! i 'white-clos)
(loop (+ i 3 (heap-ref (+ i 2))))]

 [(free)
(loop (+ i 1))]

 [else (error 'mark-white!
"unexpected tag @ ~a" i)]))))

3�

Mark and sweep implementation, with linear-time allocator

; free-white! : -> void?
(define (free-white!)
 (let loop ([i 0])

 (when (< i (heap-size))
 (case (heap-ref i)

 [(cons) (loop (+ i 3))]
 [(flat) (loop (+ i 2))]
 [(clos) (loop (+ i 3 (heap-ref (+ i 2))))]
 [(free) (loop (+ i 1))]
 [(white-flat) (heap-set! i 'free)

(heap-set! (+ i 1) 'free)
(loop (+ i 2))]

 [(white-cons) (heap-set! i 'free)
(heap-set! (+ i 1) 'free)
(heap-set! (+ i 2) 'free)
(loop (+ i 3))]

 [(white-clos) (heap-set! i 'free)
(heap-set! (+ i 1) 'free)
(define size (heap-ref (+ i 2)))
(for ([x (in-range 0 size)])
 (heap-set! (+ i 3 x) 'free))
(heap-set! (+ i 2) 'free)
(loop (+ i 3 size))]

 [(free) (loop (+ i 1))]
 [else (error 'free-white! "unexpected tag @ ~a" i)]))))

31

Mark and sweep implementation, with linear-time allocator

; traverse/roots : roots? -> void?
(define (traverse/roots roots)
 (cond [(list? roots)

(for-each traverse/roots roots)]
[(root? roots)
(traverse/loc (read-root roots))]
[(false? roots)
(void)]
[else
(error 'traverse/roots

"unexpected roots: ~a" roots)]))

32

Mark and sweep implementation, with linear-time allocator

; traverse/loc : location? -> void?
(define (traverse/loc loc)
 (case (heap-ref loc)

 [(flat gray-flat) (void)]
 [(cons gray-cons) (void)]
 [(clos gray-clos) (void)]
 [(white-flat)

; can skip gray
(heap-set! loc 'flat)]

 [(white-cons)
(heap-set! loc 'gray-cons)
(traverse/loc (heap-ref (+ loc 1)))
(traverse/loc (heap-ref (+ loc 2)))
(heap-set! loc 'cons)]

 [(white-clos)
(heap-set! loc 'gray-clos)
(for ([i (in-range 0 (heap-ref (+ loc 2)))])

(traverse/loc (heap-ref (+ loc i 3))))
(heap-set! loc 'clos)]

 [else (error 'traverse/loc "unexpected tag @ ~a" loc)]))
33

Mark & Sweep Problems

• Cost of collection proportional to (entire) heap

• Bad locality (and fragmentation!)

• Need to use free lists to track available memory

(But there are times when this is a good choice)

• Our M&S also has a terrible allocator on top of that
Can do better with free lists, etc., see malloc lab

34

