
Copying
Garbage Collection

1

Two-Space Copying Collectors

A two-space copying collector compacts memory as it
collects, making allocation easier.

Allocator:

• Partitions memory into to-space and from-space

• Allocates only in to-space (in order, c.f. non-collecting)

Collector:

• Starts by swapping to-space and from-space

• Coloring gray ⇒ copy from from-space to to-space

• Choosing gray records ⇒ go through the new to-space,
update pointers

2

Two-Space Collection

Left = from-space
Right = to-space

3

Two-Space Collection

Mark gray = copy and leave
forward address

4

Two-Space Collection

Choose gray by walking through
to-space

5

Two-Space Collection

Mark referenced as gray

6

Two-Space Collection

Mark black = move gray-choosing
arrow

7

Two-Space Collection

Nothing to color gray; increment
the arrow

8

Two-Space Collection

Color referenced record gray

9

Two-Space Collection

Increment the gray-choosing
arrow

1�

Two-Space Collection

Referenced is already copied, use
forwarding address

11

Two-Space Collection

Choosing arrow reaches the end
of to-space: done

12

Two-Space Collection

Right = from-space
Left = to-space

13

Two-Space Collection

• Cool diagrams, bro

• But what does that look like for an actual heap?

• Like, say, in plai/gc2?

• So let’s go through a more concrete example

• But the actual plai/gc2 implementation is your job
for HW8

14

The Setup

• Each object in memory starts with a tag
Just like in plai/gc2

• Tags tell us how to interpret the heap cells that follow
How many cells are part of the object?
Which cells hold pointers?
Which cells hold fat data?
Just like in plai/gc2

15

The Setup

• The kinds of objects we’ll be dealing with are simplifed
variants of the ones in plai/gc2

• Flat data will be integers only, to keep things simple

• Tag i: one integer
Simpler variant of 'flat

• Tag b: one pointer
Simpler variant of 'cons (like a box)

• Tag c: one integer, then one pointer
Simpler variant of 'clos

• Tag f: forwarding pointer (one pointer)

16

The Strategy

• Traverse the heap, starting at the roots, using breadth-frst search
In contrast, mark-and-sweep uses depth-frst

• Visiting a node = marking it gray
= copying from the from-space to the to-space
 + leaving a forwarding pointer behind in the from-space

17

The Strategy

• Maintain a queue of the gray nodes in the to-space

Marking a node gray → adding it to the queue

Taking a node out of the queue → marking it black

• Use that queue to keep track of the BFS

• Invariant:
objects in the queue have pointers to the from-space;
objects outside the queue (black) have pointers to the to-space

• Represent the queue as two pointers into the to-space
Increment the end pointer when enqueuing
Increment the front pointer when dequeuing
When the two pointers come together, queue is empty

I.e., we’re done

18

Two-Space Collection Example

• 26-cell memory (13 cells per space), 2 roots

Tag i: one integer

Tag b: one pointer

Tag c: one integer, then one pointer

Root 1: 7 Root 2: 0

From: i 75 b 0 c 2 10 c 2 2 c 1 4

19

Two-Space Collection Example

• 26-cell memory (13 cells per space), 2 roots

Tag i: one integer

Tag b: one pointer

Tag c: one integer, then one pointer

Root 1: 7 Root 2: 0

From: i 75 b 0 c 2 10 c 2 2 c 1 4
Addr: 00 01 02 03 04 05 06 07 08 09 10 11 12

2�

Two-Space Collection Example

• 26-cell memory (13 cells per space), 2 roots

Tag i: one integer

Tag b: one pointer

Tag c: one integer, then one pointer

Root 1: 7 Root 2: 0

From: i 75 b 0 c 2 10 c 2 2 c 1 4
Addr: 00 01 02 03 04 05 06 07 08 09 10 11 12

 ^ ^ ^ ^ ^

21

Two-Space Collection Example

• 26-cell memory (13 cells per space), 2 roots

Tag i: one integer

Tag b: one pointer

Tag c: one integer, then one pointer

Root 1: 7 Root 2: 0

From: i 75 b 0 c 2 10 c 2 2 c 1 4
Addr: 00 01 02 03 04 05 06 07 08 09 10 11 12

 ^ ^ ^ ^ ^
To: 0 0 0 0 0 0 0 0 0 0 0 0 0
Q: ^^
Addr: 13 14 15 16 17 18 19 20 21 22 23 24 25

22

Two-Space Collection Example

• 26-cell memory (13 cells per space), 2 roots

Tag i: one integer

Tag b: one pointer

Tag c: one integer, then one pointer

Tag f: forwarding pointer (to to-space)

Root 1: 13 Root 2: 0

From: i 75 b 0 c 2 10 f 13 2 c 1 4
Addr: 00 01 02 03 04 05 06 07 08 09 10 11 12

 ^ ^ ^ ^ ^
To: c 2 2 0 0 0 0 0 0 0 0 0 0
Q: ^ ^
Addr: 13 14 15 16 17 18 19 20 21 22 23 24 25

23

Two-Space Collection Example

• 26-cell memory (13 cells per space), 2 roots

Tag i: one integer

Tag b: one pointer

Tag c: one integer, then one pointer

Tag f: forwarding pointer (to to-space)

Root 1: 13 Root 2: 16

From: f 16 b 0 c 2 10 f 13 2 c 1 4
Addr: 00 01 02 03 04 05 06 07 08 09 10 11 12

 ^ ^ ^ ^ ^
To: c 2 2 i 75 0 0 0 0 0 0 0 0
Q: ^ ^
Addr: 13 14 15 16 17 18 19 20 21 22 23 24 25

24

Two-Space Collection Example

• 26-cell memory (13 cells per space), 2 roots

Tag i: one integer

Tag b: one pointer

Tag c: one integer, then one pointer

Tag f: forwarding pointer (to to-space)

Root 1: 13 Root 2: 16

From: f 16 f 18 c 2 10 f 13 2 c 1 4
Addr: 00 01 02 03 04 05 06 07 08 09 10 11 12

 ^ ^ ^ ^ ^
To: c 2 18 i 75 b 0 0 0 0 0 0 0
Q: ^ ^
Addr: 13 14 15 16 17 18 19 20 21 22 23 24 25

25

Two-Space Collection Example

• 26-cell memory (13 cells per space), 2 roots

Tag i: one integer

Tag b: one pointer

Tag c: one integer, then one pointer

Tag f: forwarding pointer (to to-space)

Root 1: 13 Root 2: 16

From: f 16 f 18 c 2 10 f 13 2 c 1 4
Addr: 00 01 02 03 04 05 06 07 08 09 10 11 12

 ^ ^ ^ ^ ^
To: c 2 18 i 75 b 0 0 0 0 0 0 0
Q: ^ ^
Addr: 13 14 15 16 17 18 19 20 21 22 23 24 25

26

Two-Space Collection Example

• 26-cell memory (13 cells per space), 2 roots

Tag i: one integer

Tag b: one pointer

Tag c: one integer, then one pointer

Tag f: forwarding pointer (to to-space)

Root 1: 13 Root 2: 16

From: f 16 f 18 c 2 10 f 13 2 c 1 4
Addr: 00 01 02 03 04 05 06 07 08 09 10 11 12

 ^ ^ ^ ^ ^
To: c 2 18 i 75 b 16 0 0 0 0 0 0
Q: ^^
Addr: 13 14 15 16 17 18 19 20 21 22 23 24 25

27

Two-Space Collection Example

• 26-cell memory (13 cells per space), 2 roots

Tag i: one integer

Tag b: one pointer

Tag c: one integer, then one pointer

Tag f: forwarding pointer (to to-space)

Root 1: 13 Root 2: 16

From: f 16 f 18 c 2 10 f 13 2 c 1 4
Addr: 00 01 02 03 04 05 06 07 08 09 10 11 12

 ^ ^ ^ ^ ^
To: c 2 18 i 75 b 16 0 0 0 0 0 0
Q: ^ next alloc. here

Addr: 13 14 15 16 17 18 19 20 21 22 23 24 25
28

Two-Space Pros and Cons

• Doesn’t suffer from fragmentation

• Time cost proportional to live data (not garbage!)

• Allocation is simple, just bump a pointer

• Collection doesn’t require much state (handful of
pointers, no stack)

• Only half the heap is in use at any time
Not a big deal when combined with generational
collection

• Still "stop the world"

29

Tips for Debugging Homework 8

You may need to do a lot of debugging, and it may be
painful.

• Write your heap checker frst.

• Make the heap smaller to trigger GC more often.

• To stress-test your GC when debugging, GC on every
allocation (not just when you run out of space).

• Pause to look at the heap when necessary (i.e., call
read).

• Make sure you’re not forgetting any roots.

3�

Further reading

• GC frst appeared circa 1958 (original LISP)

• Went mainstream with Java in the 90s

• Tremedous amount of work: new techniques,
improvements, etc.

• Still an active research area to this day

Good reference: Uniprocessor Garbage Collection Techniques, by Wilson

ftp://ftp.cs.utexas.edu/pub/garbage/gcsurvey.ps

31

