
Types

1

"Good" vs. "Bad" Expressions

; interp-expr : FAE? ... -> FAE-Value?

• Does interp-expr produce a value for all
expressions?

• Of course not!

• (interp-expr (parse '{5 5})) etc ...

• But do we know enough about expressions to tell
before actually calling interp-expr?

���

Quiz

• Question #1: What is the value of the following
expression?

{+ 1 2}

• Answer: 3

���

Quiz

• Question #2: What is the value of the following
expression?

{+ fun 17 8}

• Wrong answer: error

• Answer: Trick question! {+ fun 17 8} is not an
expression

���

Language Grammar for Quiz

<MFAE> ::= <num>
| true
| false
| {+ <MFAE> <MFAE>}
| {- <MFAE> <MFAE>}
| {= <MFAE> <MFAE>}
| <id>
| {fun {<id>*} <MFAE>}
| {<MFAE> <MFAE>*}
| {if <MFAE> <MFAE> <MFAE>}

1�

Quiz

• Question #3: Is the following an expression?

{{fun {x y} 1} 7}

• Wrong answer: No

• Answer: Yes (according to our grammar)

11�1�

Quiz

• Question #4: What is the value of the following
expression?

{{fun {x y} 1} 7}

• Answer: {fun {y} 1} (according to some
interpreters)

• But no real language would accept
{{fun {x y} 1} 7}

• Let’s agree to call {{fun {x y} 1} 7} an
ill-formed expression because {fun {x y} 1}
should be used only with two arguments

• Let’s agree to never evaluate ill-formed expressions
1��1�

Quiz

• Question #5: What is the value of the following
expression?

{{fun {x y} 1} 7}

• Answer: None - the expression is ill-formed

1��1�

Quiz

• Question #6: Is the following a well-formed
expression?

{+ {fun {} 1} 8}

• Answer: Yes (according to our defnition of
well-formed)

����1

Quiz

• Question #7: What is the value of the following
expression?

{+ {fun {} 1} 8}

• Answer: None - it produces an error:

numeric operation expected number

• Let’s agree that a fun expression cannot be inside a +
form

�����

Quiz

• Question #8: Is the following a well-formed
expression?

{+ {fun {} 1} 8}

• Answer: No (according to our new defnition)

�����

Quiz

• Question #9: Is the following a well-formed
expression?

{+ {{fun {x} x} 7} 5}

• Answer: Depends on what we meant by inside in our
most recent agreement

Anywhere inside - No

Immediately inside - Yes

• Since our intrepreter produces 12, and since that
result makes sense, let’s agree on immediately inside

�����

Quiz

• Question #10: Is the following a well-formed
expression?

{+ {{fun {x} x} {fun {y} y}} 5}

• Answer: Yes, but we don’t want it to be!

����1

Quiz

• Question #11: Is it possible to defne well-formed
(as a decidable property) so that we reject all
expressions that produce errors?

• Answer: Yes: reject all expressions!

�����

Quiz

• Question #12: Is it possible to defne well-formed
(as a decidable property) so that we reject only
expressions that produce errors?

• Answer: No

{+ 1 {if ... 1 {fun {x} x}}}

• If we always knew whether ... produces true or
false, we could solve the halting problem

• See also: Rice’s theorem: all non-trivial, semantic
properties of programs are undecidable

�����

Types

• Solution to our dilemma

In the process of rejecting expressions that are certainly
bad, also reject some expressions that are good

{+ 1 {if {prime? 131101}
1
{fun {x} x}}}

• It’s a tradeoff: do we care more about rejecting bad
programs, or about not rejecting good ones?

Different languages pick different tradeoffs
Typed: Java, Scala, Haskell, etc.
Untyped: Racket, Python, Javascript, etc.
• AKA dynamically typed

��

Types

• Overall strategy:

Assign a type to each expression without evaluating

Compute the type of a complex expression based
on the types of its subexpressions

��

Types

1 : number

true : boolean

{+ 1 2}

number number

number

{+ 1 false}

number boolean

no type

�����

