
Type Soundness

1

Types and evaluation

• Why is a type system useful?

→ It can rule out ill-formed programs before we run them

• What information can a type system give us?

→ The type of data the program should produce as a result

• What is the relationship between:

Γ ⊢ e : τ
and

interp-expr : e -> v

→ v should be consistent with τ

• We’d like types to tell us something useful about the
behavior of our program at run-time

2

Type Soundness

If

 ∅ ⊢ e : τ and

 (interp-expr e) = v

then

 if τ = number then v is a number

 if τ = (τ1 -> τ2) then v is 'procedure

3

Type Soundness

• With type soundness, our types accurately predict the
kind of data we’ll get when we run our program

Guaranteed

• Without type soundness, may get bogus predictions
So can’t rely on it
Invitation for bugs, security vulnerabilities, yikes

• Formal property, can be proven mathematically
Starting from typing rules
Bugs may creep in as you go from rules to code!

4

Type Soundness

Not all type systems used in practice are sound!

• Standard ML: proven sound

• Haskell: subsets have been proven sound
Whole type system proven sound at one point
But constantly evolves, so may be out of date

• Rust: proven sound, at least a subset (IIRC)

• Java: has soundness holes, but mostly hangs together
But soundness holes are enough for security holes!

• C: lol, what’s soundness

5

