Copying
Garbage Collection



Two-Space Copying Collectors

A two-space copying collector compacts memory as it
collects, making allocation easier.

Allocator:

* Partitions memory into to-space and from-space

* Allocates only in to-space

Collector:

* Starts by swapping to-space and from-space

* Coloring gray = copy from from-space to to-space

* Choosing gray records = go through the new to-space,
update pointers



Two-Space Collection

Left = from-space
Right = to-space

O




Two-Space Collection

Mark gray = copy and leave
forward address

O O

O




Two-Space Collection

Choose gray by walking through
to-space

O O<

O




Two-Space Collection

7547

o i

Mark referenced as gray

7
.

c
-




Two-Space Collection

Mark black = move gray-choosing
arrow

() @

75

O




Two-Space Collection

Nothing to color gray; increment
the arrow

() @

75

O




Two-Space Collection

Color referenced record gray

() @

74




Two-Space Collection

74

Increment the gray-choosing

arrow

10



Two-Space Collection

75

Referenced is already copied, use

forwarding address

11



Two-Space Collection

Choosing arrow reaches the end
of to-space: done

() @

75




Two-Space Collection

Right = from-space
Left = to-space

13



Two-Space Collection

Cool diagrams, bro

But what does that look like for an actual heap!?
Like, say, in plai/gc2?

So let’s go through a more concrete example

But the actual plai/gc2 implementation is your job
for HW8

14



The Setup

* Each object in memory starts with a tag
© Just like in plai/gc2

* Tags tell us how to interpret the heap cells that follow
© How many cells are part of the object?
© Which cells hold pointers!?

© Which cells hold flat data?
O Just like in plai/gc2

15



The Setup

* The kinds of objects we’ll be dealing with are simplified
variants of the ones in plai/gc2

* Flat data will be integers only, to keep things simple

* Tags will be numbers, not symbols
© Like real GCs, but unlike plai/gc2

* Tag i: one integer
O Simpler variant of ' flat

* Tag b: one pointer
© Simpler variant of ' cons (like a box)

* Tag c: one integer, then one pointer
© Simpler variant of 'clos

* Tag f: forwarding pointer (one pointer)

16



The Strategy

* Traverse the heap, starting at the roots, using breadth-first search
O |n contrast, mark-and-sweep uses depth-first

* Visiting a node = marking it gray
© = copying from the from-space to the to-space
O + |leaving a forwarding pointer behind in the from-space

17



The Strategy

* Maintain a queue of the gray nodes in the to-space
© Marking a node gray — adding it to the queue

© Taking a node out of the queue — marking it black
* Use that queue to keep track of the BFS

 Invariant:
© objects in the queue have pointers to the from-space;
© objects outside the queue (black) have pointers to the to-space

* Represent the queue as two pointers into the to-space
© Increment the end pointer when enqueuing
© Increment the front pointer when dequeuing
© When the two pointers come together, we're done

18



Two-Space Collection Example

* 26-byte memory (13 bytes per space), 2 roots
© Tag i: one integer
© Tag b: one pointer

© Tag c: one integer, then one pointer

Root |: 7 Root 2: 0
From: 1 75 b 0 ¢ 210 ¢ 2 2

C

19



Two-Space Collection Example

* 26-byte memory (13 bytes per space), 2 roots
© Tag i: one integer
© Tag b: one pointer

© Tag c: one integer, then one pointer

Root |: 7 Root 2: 0

From: 1 75 b 0 ¢ 210 ¢ 2 2 ¢ 1 4
Addr: 00 01 02 03 04 05 06 07 08 09 10 11 12

20



Two-Space Collection Example

* 26-byte memory (13 bytes per space), 2 roots
© Tag i: one integer
© Tag b: one pointer

© Tag c: one integer, then one pointer

Root |: 7 Root 2: 0

From: 1 75 b 0 ¢ 210 ¢ 2 2 ¢ 1 4
Addr: 00 01 02 03 04 05 06 07 08 09 10 11 12

A A A A A

21



Two-Space Collection Example

* 26-byte memory (13 bytes per space), 2 roots

From:
Addr:

To:
Q:
Addr:

© Tag i: one integer
© Tag b: one pointer

© Tag c: one integer, then one pointer

Root |: 7 Root 2: 0

i75 b 0 ¢ 210 ¢ 2 2 ¢ 1 4
00 01 02 03 04 05 06 07 08 09 10 11 12

A A A A A

o 0 0o 0 0 0 0 0 0 0 O o0 O

AN

13 14 15 16 17 18 19 20 21 22 23 24 25

22



Two-Space Collection Example

* 26-byte memory (13 bytes per space), 2 roots

From:
Addr:

To:
Q:
Addr:

© Tag i: one integer
© Tag b: one pointer
© Tag c: one integer, then one pointer

© Tag f: forwarding pointer (to to-space)

Root |: 13 Root 2: 0

i75 b 0 ¢ 210 £13 2 ¢ 1 4
00 01 02 03 04 05 06 07 08 09 10 11 12

c 2 2 0 0 0 O O O O 0O o0 o

13 14 15 16 17 18 19 20 21 22 23 24 25

23



Two-Space Collection Example

* 26-byte memory (13 bytes per space), 2 roots

From:
Addr:

To:
Q:
Addr:

© Tag i: one integer
© Tag b: one pointer
© Tag c: one integer, then one pointer

© Tag f: forwarding pointer (to to-space)

Root |: 13 Root 2: 16

£f16 b 0 ¢ 210 £13 2 ¢ 1 4
00 01 02 03 04 05 06 07 08 09 10 11 12

c 2 2 i75 0 0 O O O O O O

13 14 15 16 17 18 19 20 21 22 23 24 25

24



Two-Space Collection Example

* 26-byte memory (13 bytes per space), 2 roots

From:
Addr:

To:
Q:

Addr:

© Tag i: one integer
© Tag b: one pointer
© Tag c: one integer, then one pointer

© Tag f: forwarding pointer (to to-space)

Root |: 13 Root 2: 16

£f 16 £18 ¢ 210 £ 13 2 ¢ 1 4
00 01 02 03 04 05 06 07 08 09 10 11 12

c 218 i 75 b 0 0 0 O O O O

13 14 15 16 17 18 19 20 21 22 23 24 25

25



Two-Space Collection Example

* 26-byte memory (13 bytes per space), 2 roots

From:
Addr:

To:
Q:

Addr:

© Tag i: one integer
© Tag b: one pointer
© Tag c: one integer, then one pointer

© Tag f: forwarding pointer (to to-space)

Root |: 13 Root 2: 16

£f 16 £18 ¢ 210 £ 13 2 ¢ 1 4
00 01 02 03 04 05 06 07 08 09 10 11 12

c 218 i 75 b 0 0 0 O O O O

13 14 15 16 17 18 19 20 21 22 23 24 25

26



Two-Space Collection Example

* 26-byte memory (13 bytes per space), 2 roots

From:
Addr:

To:
Q:

Addr:

© Tag i: one integer
© Tag b: one pointer
© Tag c: one integer, then one pointer

© Tag f: forwarding pointer (to to-space)

Root |: 13 Root 2: 16

£f 16 £18 ¢ 210 £ 13 2 ¢ 1 4
00 01 02 03 04 05 06 07 08 09 10 11 12

A A A A A

c 218 i 75 b1l6e 0 0 O O O O

AN

13 14 15 16 17 18 19 20 21 22 23 24 25

27



Two-Space Pros and Cons

* Doesn’t suffer from fragmentation
 Time cost proportional to live data (not garbage!)
* Allocation is simple, just bump a pointer

* Collection doesn’t require much state (handful of
pointers, no stack)

* Only half the heap is in use at any time
* Not a big deal when combined with generational
collection

» Still "stop the world"

28



Tips for Debugging Homework 8

You may need to do a lot of debugging, and it may be
painful.

* Write your heap checker first.
* Make the heap smaller to trigger GC more often.

* To stress-test your GC when debugging, GC on every
allocation (not just when you run out of space).

* Pause to look at the heap when necessary (i.e., call
read).

* Make sure you'’re not forgetting any roots.

29



Further reading

* GC first appeared circa 1958 (original LISP)
* Went mainstream with Java in the 90s

* Tremedous amount of work: new techniques,
improvements, etc.

« Still an active research area to this day

Good reference: Uniprocessor Garbage Collection Techniques, by Wilson

ftp://ftp.cs.utexas.edu/pub/garbage/gcsurvey.ps

30



