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The language Esterel has found success in many safety-critical applications, such as fly-by-wire systems and

nuclear power plant control software. Its imperative style is natural to programmers building such systems

and its precise semantics makes it work well for reasoning about programs.

Existing semantics of Esterel generally fall into two categories: translation to Boolean circuits, or operational

semantics that give a procedure for running a whole program. In contrast, equational theories enable reasoning

about program behavior via equational rewrites at the source level. Such theories form the basis for proofs of

transformations inside compilers or for program refactorings, and defining program evaluation syntactically.

This paper presents the first such equational calculus for Esterel. It also illustrates the calculus’s usefulness

with a series of example equivalences and discuss how it enabled us to find bugs in Esterel implementations.
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1 INTRODUCTION
The language Esterel has found success in many safety-critical applications. It has been used in the

creation and verification of the maintenance and test computer, landing gear control computer,

and virtual display systems of civilian and military aircraft at Dassault Aviation (Berry et al. 2000);

the control software of the N4 nuclear power plants; the Airbus A320 fly-by-wire system; and the

specification of part of Texas Instrument’s digital signal processors (Benveniste et al. 2002).

This success with real time and embedded systems in domains that need strong guarantees

can be partially attributed to its computational model. Esterel treats computation as a series of

deterministic reactions to external stimuli. All parts of a reaction complete in a single, discrete time

step, called an instant. Furthermore, in this synchronous reactive paradigm (Benveniste and Berry

1991; Benveniste et al. 2002), each instant is isolated from interference by the outside environment

once the reaction begins. In addition, instants exhibit deterministic concurrency; each reaction may

contain concurrent threads without execution order affecting the result of the computation.

This combination of synchronous reactions with deterministic concurrency makes formulating

the semantics a challenging problem. Existing semantics tend to take two forms. The first, and
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most widely used, are semantics that give meaning to programs through a translation to circuits.

These semantics are excellent for compilation and optimization. However they are not ideal for

programmers, who would rather reason in terms of the source program, not its compiled form.

The second form are operational semantics that eschew term rewriting in favor of decorating

termswith various flavors of code pointers and state annotations to track execution. These semantics

are easier for programmers to reason with but give meaning only to whole programs. They do not

lend themselves to compositional reasoning about program fragments, which programmers need.

To obtain the best of both of these approaches, we build on Plotkin (1975) and Felleisen and

Hieb (1992)’s work on equational theories of programming languages. These theories model

languages with a set of axioms that specify when source-level terms are equivalent. As a result,

they provide a single framework for both reasoning about how a program will run (e.g. reduce to

an answer) using only the source text of the program, and for justifying program transformations

in host of applications: compiler transformations, refactorings, program derivations, etc.

This paper reports on the first equational theory of Kernel Esterel (Berry 2002). Developing

such a theory is tricky because of the highly non-local nature of evaluation in Esterel. To maintain

determinism and synchrony, evaluation in one thread of execution may affect code arbitrarily

far away away in the program, even if that evaluation does not directly modify shared state. For

instance, the selection of a particular branch of execution in one thread may immediately unblock

a different thread of execution. The selection of the other branch may render the entire program

invalid. These non-local execution and correctness issues are at the heart of Esterel’s notions of

Logical Correctness and Constructiveness, and have informed the choice of techniques used for

previous semantics. The circuit semantics match both notions well because they are intimately tied

to whether or not a given cyclic circuit settles. The operational semantics handle these properties by

performing full program passes on each evaluation step to both propagate execution information to

the entire program, and determine which locations in the program are safe to evaluate. A calculus,

however, cannot use either of those techniques. To this end our calculus borrows from Felleisen

and Hieb (1992)’s equational theory of state and Potop-Butucaru (2002)’s Constructive Operational

Semantics to give the first calculus for Esterel.

The remainder of this paper consists of seven sections. Section 2 provides an introduction to

Esterel and to the specific syntax we use for Kernel Esterel. Section 3 explains the semantics and our

central results, which have all been checked in Agda. With the semantics defined, the paper moves

on to discuss implications of specific aspects of our semantics. Section 4 discusses constructiveness

and how it interacts with our semantics. Section 5 gives some example equivalences that our

calculus supports and discusses others that it does not. Our semantics is executable and section 6

discusses how we test that our semantics is faithful to preexisting semantics and implementations.

In short, we designed and implemented an executable version of our semantics and used it to find

bugs in Esterel implementations. We also automatically typeset the figures in the paper from the

semantics and use it to test all of the examples in the paper. Section 7 discusses a standard reduction

that we designed to aid in testing but have not proven, and we conclude with a discussion of related

work in section 8.

2 A SENSE OF ESTEREL
This section provides some background on Esterel both to introduce the language to those not

familiar with it and to orient Esterel experts with the particular notation we have chosen for Kernel

Esterel. Figure 1 shows the syntax we use for our Esterel calculus.

Evaluation of an Esterel program is unlike conventional programming languages in that it

proceeds in a series of instants. Each instant happens in, essentially, no time and appears atomic

from the outside. An instant is triggered by a change in the state of the outside world. The external
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p, q ::= (signal S p) | (seq p q) | (emit S) | (present S p q) | (par p q)
 | nothing | pause | (loop p) | (suspend p S) | (trap p) | (exit n)
 | (shared s := e p) | (+= s e) | (var x := e p) | (:= x e) | (if x p q)

S ∈ signal variables
s ∈ shared variables

x ∈ sequential variables
e ∈ host expressions

Fig. 1. Esterel Syntax

state changes of the world are communicated to Esterel via signals. Within each instant, each signal

can either be present (set), absent (not set), or in an indeterminate state, where it is not yet known

if it will be present or absent. Once a signal’s value becomes known in a specific instant, it cannot

change. Accordingly, the outside world may, in between instants, set a signal to present or it may

not, indicating that its value is as yet undetermined (as the program itself may set it).
1
Once the

instant begins these signal values cannot be modified by outside world, preventing interference

with the computation. Once an instant completes, the Esterel program will have decided the value of

all of its signals. The outside world can then observe these values, and respond by setting different

signals for the next instant. The value of signals does not carry over between instants.

Esterel is typically used as an embedded language, where the outside world is some other program-

ming language, e.g., C for reactive, real-time systems (Potop-Butucaru et al. 2007), Bigloo (Serrano

andWeis 1995) and JavaScript for GUIs (Berry et al. 2011), or Racket (Flatt and PLT 2010) for medical

prescriptions (Florence et al. 2015). The external language controls when instants take place and

sets up the signal environment for each instant. From the perspective of the host language, the

atomicity of instants gives Esterel a notion of discrete, logical time. Each instant represents one

tick of the clock, and the host language controls the “clock speed” by explicitly starting instants.

2.1 Conditioning on Signals: present

(signal SL
(seq (emit SL)

(present SL
(emit SO1)
(emit SO2))))

Fig. 2: A First Example

Esterel programs can also have local signals that they use

to communicate internally. Let us consider a few example

programs that use internal signals to get a sense of how

Esterel programs evaluate. Figure 2 shows a first example.

This program has two external signals, SO1 and SO2,2

through which it will communicate its output. The signal
form is a binding form that introduces a local signal (here

named SL) available in its body. Signals that are free in the

entire program are the ones that support communication with the host language, external to Esterel.

At the beginning of the instant the values of SL, SO1, and SO2 are not known.

(signal SL
(par (emit SL)

(present SL
(emit SO1)
(emit SO2))))

Fig. 3: This time with par

The seq form is sequential composition, so this pro-

gram first emits SL, which means the signal SL is known

to be present for this entire instant. Next, the program

evaluates a signal conditional, written using the present
keyword in Esterel. When a signal is known to be present,

a present form is equivalent to its first sub-expression, in

this case (emit SO1). So this program emits SO1 and then

terminates, ending the instant with SO1 present and with SO2 absent.

1
For those familiar with Esterel: free signals in programs in our calculus correspond to input-output signals in Esterel.

2
We prefix all signal names with an S.
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Esterel also supports a deterministic form of parallelism and indeed if we replace the sequential

composition in figure 2 with parallel composition, as shown in figure 3, the program is guaranteed

to behave identically. Specifically, the present form in the second arm of the par (conceptually)

blocks until the signal SL is emitted or we learn it cannot be emitted in this instant. So the first arm

of the par is the only part of the program that can progress, and once it performs the (emit SL),
that unblocks present form, enabling (emit SO1) to happen.

(signal SL
(present SL

(emit SO1)
(emit SO2)))

Fig. 4: A signal never emitted

In order for a present expression to become unblocked

and evaluate the second sub-expression, the Esterel pro-

gram must determine that given signal cannot be emitted

in this instant. One way this can happen is that there are no

occurrences of (emit SL). So, if we remove the (emit SL)
from our running example, as shown in figure 4, then the

program will emit the signal SO2.

(signal SL1
(signal SL2

(par (present SL1 (emit SL2) nothing)
(present SL2 (emit SL1) nothing))))

Fig. 5: Cyclic signal dependencies

The way that present works helps guar-

antee Esterel’s form of deterministic concur-

rency. Until a particular signal’s value be-

comes known, the program simply refuses to

make a choice about which branch to run. This

style of conditional raises many interesting

questions about how apparent cyclic references interact with each other, however. For example,

what should the program in figure 5 do? (nothing is the Esterel equivalent of unit or void in

other languages.) How such programs behave is well-studied in the Esterel community and touches

on the notions of logical correctness and constructiveness, which we return to in section 2.4.

2.2 Running for Multiple Instants: pause

(signal SL
(par (seq pause

(emit SL))
(present SL

(emit SO1)
(emit SO2))))

Fig. 6: Multiple instants

So far, all of the example programs have terminated in a

single instant but, in general, an Esterel program might

run to some intermediate state and then pause. When all

of the parallel branches of some program have paused or

terminated, then the instant terminates. During the next

instant, however, evaluation picks up right where it left

off, with whatever remains of the program.

The pause expression brings the host language’s notion

of logical time into Esterel. From the Esterel programmer’s perspective, every instruction in the

language is instantaneous—taking zero logical time—with the exception of pause, which takes one

unit of time. This effectively stops a thread of execution when it reaches pause, until the host
language starts the next time step. At the start of the next instant, one unit of time has passed, so

the pauses will have had enough “time” to complete and the program will resume from that point.

As an example, consider the program in figure 6. As it starts, the second arm of the par blocks,

as with the example in figure 3. The first arm of the par first evaluates pause, which means that

that arm of the par has terminated for the instant, and cannot reach the (emit SL) until the next
instant. Accordingly the present takes the else branch, safe in the knowledge that no (emit SL)
can happen this instant. In the next instant, the program resumes from each pause it hit the

previous instant. Therefore only SL is emitted in the second instant.

2.3 Determining That a Signal Cannot be Emitted: Can
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Determining whether or not a signal can be emitted is not simply a matter of eliminating untaken

branches in present expressions that have executed and then checking the remaining emit
expressions. Sometimes, a present may be blocked on some as-yet indeterminate signal, but

portions of its branches are already known to be unreachable because other signal values are

known, enabling us to declare that some signal is absent.

(signal SL1
(signal SL2

(signal SL3
(par (present SL1

(present SL2
(emit SO1)
(emit SL3))

(present SL2
(emit SO2)
(emit SL3)))

(seq
(emit SL2)
(seq
(present SL3 pause nothing)
(emit SL1)))))))

Fig. 7: Can

For example, consider the program in fig-

ure 7. The par’s first sub-expression is a

present and its second is a seq. The present
expression is blocked on SL1. Of course, the
last expression in the seq expression emits

SL1 but beware: it is preceded by another

present expression that may or may not

pause. If it does pause, then the (emit SL1)
happens in a future instant (so we take the

“else” branch of the present on SL1). If it does
not pause, then the (emit SL1) happens in

the current instant (and so we take the “then”

branch of the present on SL1). Let’s work
through how Esterel evaluates this complex

interplay of signals and branches of par ex-

pressions.

First SL2 is emitted. Once it is, it is clear

which branch the inner present expressions will take, even though they cannot yet run be-

cause we do not yet know about SL1. In particular, neither one can take their “else” branch

and thus none of the (emit SL3) expressions can be evaluated. Accordingly we can now reduce

the (present SL3 pause nothing) to nothing. From there we can evaluate (emit SL1), which
unblocks the present on SL1, which emits the output signal SO1.

The most important step in this sequence was when Esterel decided that SL3 cannot be emitted.

The decision procedure for determining when a signal cannot be emitted in the current instant is

called Can. It follows the same reasoning we have here, but accounts for other details of the core

language of Esterel. For example, if the first sub-expression of a seq cannot terminate in a given

instant, Can will rule out any emissions in the second sub-expression.

The full definition is given in figures 15 and 16, and is explained in section 3.2.

2.4 Getting Stuck: Logical Correctness and Constructivity

(signal S1
(present S1 nothing (emit S1)))

Fig. 8: No possible value for S1

The style of instantaneous decision making in Esterel, fa-

cilitated via Can, leads to programs with no meaning, even

though a traditional programming language would given

them meaning. Such programs are called logically incorrect.
Logical correctness can be thought of as a consequence of the instantaneous nature of decision

making in Esterel: if non-pause expressions take no logical time, then decisions about the value of

a signal are communicated instantly and that value cannot change. Therefore, the program should

behave as if that value was determined at the start of the instant. Therefore, there should be exactly

one value for each signal. Some programs, however, have zero or multiple possible assignments.

Consider the program in figure 8. No matter the definition of Can, S1 cannot be set to either present
or absent. If S1 were present, the program would take the first branch of the condition, and the

program would terminate without having emitted S1. If S1 were set to absent, the program would

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 61. Publication date: January 2019.



61:6 Spencer P. Florence, Shu-Hung You, Jesse A. Tov, and Robert Bruce Findler

chose the second branch and emitting the signal. Both executions lead to a contradiction, therefore

there are no valid assignments of signals in this program. This program is logically incorrect.

The opposite is true of the signals in the program in figure 9. Here, if S1 is chosen to be present,

the conditional will take the first branch and S1 will be emitted, justifying the choice of signal

value. However, if the signal is chosen to be absent, the signal will not be emitted and the choice of

absence is also justified. Thus there are two possible assignments to the signals in this program,

and this program is also logically incorrect.

(signal S1
(present S1 (emit S1) nothing))

Fig. 9: Too many values for S1

A related notion, constructiveness, arises from an order

of execution imposed by seq and present. All decisions
in the first part of a seq must be made before decisions in

the second part and the value of a signal being conditioned

on by present must be determined before decisions within either of its branches can be made.

Decisions that may affect sibling branches in a par, however, may happen in any order.

To ensure these ordering constraints, Esterel imposes an order on information propagation:

decisions about the presence of a signal can only be used by the portion of the program that is

after (in the sense of the ordering imposed by seq and present) it is emitted. Thus, programs that

are logically correct may still be rejected because there is no order in which to run the program

that will arrive at the single, valid assignment. Such programs are called non-constructive.
3
Not all

logically correct programs are constructive, but the converse is true: all constructive programs are

logically correct. Put another way, making a guess about the value of a signal and backtracking if

the guess turns out to be wrong would admit logically correct, but non-constructive, programs.

(signal S1
(present S1 (emit S1) (emit S1)))

(signal S1
(seq (present S1

nothing
nothing)

(emit S1)))
Fig. 10: Constructiveness examples

Succinctly, a program is constructive if it is logically cor-

rect, and the values of signals can be determined without

any speculation: a signal is present only after it has been

emitted, and a signal is absent only after Can determines

it cannot be emitted.

Example non-constructive programs are shown in fig-

ure 10. The first program has only one possible assignment

for S1, as it is emitted by both branches of the conditional.

Because present requires that the value of S1 be known

before executing a sub-expression, however, there is no

valid order in which to execute the code, and the program is rejected as non-constructive. A similar

phenomena can be seen in the second program in figure 10, but with seq.
The two ordering constraints can interact. In the example in figure 11, the (emit SL1) is in a seq

that may or may not pause, which prevents us from determining if SL2 is emitted.

(signal SL1
(signal SL2

(par (present SL1 (emit SL2) nothing)
(seq (present SL2 pause nothing)

(emit SL1)))))
Fig. 11: Getting stuck

Non-constructive programs are handled

two different ways by Esterel implementa-

tions. Some approximate constructiveness

with a conservative static analysis and re-

ject programs they cannot prove construc-

tive on all inputs. This is the default behavior

of Esterel v5 (Berry 2000). Others treat non-

constructivity as as runtime error, raising an error if, during an instant, the program cannot

determine a value for all signals. This is the behavior of Hiphop.js (Berry et al. 2011), and Esterel v5

when used with the -I flag.

3
The use of the name “constructive” arises from connections to constructive logic (Mendler et al. 2012).
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In the circuit semantics for Esterel, a non-constructive programs is one that, when compiled

to a circuit, will cause the circuit to misbehave, never settling because of instantaneous cyclic

dependencies between inputs and outputs of some of the gates. That is, a program is constructive

if and only if its circuit stabilizes within some fixed delay (Berry 2002; Mendler et al. 2012).

Non-constructive programs usually get stuck in our calculus, but they do not always. The issues

here are subtle and revisited in section 4.

2.5 Loops, suspend, Non-local Exits, Variables, and the Host Language
Our calculus also covers the rest of Kernel Esterel. The (trap p) and (exit n) forms allow non-

local control. Roughly speaking, (exit n) will abort execution up the the n+1th enclosing (trap p),
reducing it to nothing. These can be used for exception handling, but also for non-exceptional

control flow. For example, it may be simpler to express some repeating task on the assumption it

never terminates and then, in parallel, use exit to abort the task when necessary. Kernel Esterel’s

trap is a simplified form of Esterel’s trap where traps are named and exits refer to those names.

The loop form is an infinite loop, running its body, p, over and over, but with a constraint that

the loop’s body can be started at most once in any instant. This means that the body of a loop

must either pause or exit at least once in every iteration, thereby ensuring that instants always

terminate. One subtle ramification of this point is that two separate iterations of a loop may run

within a single instant, but only in the situation where we finish an iteration that was started in a

previous instant and then start a new one in the current instant (which must then pause or exit).

We return to this point in section 3.3.

Loops that fail this condition are called instantaneous and programs with such loops are not

constructive. In our calculus, we handle this by reducing a loop in such a way that the program

gets stuck if the loop were to be instantaneous.

The suspend form has a subtle semantics. If we are starting a suspend for the first time, it

simply runs the body. But, if we are picking up from a previous instant where we paused in the

body of a suspend, then we test the signal. If it is present, the entire suspend is paused until the

next instant. If it is not present, evaluation continues within the suspend, picking up at the pause.
The suspend form is used to implement many useful, high-level behaviors. One straight-forward

use is to implement a form of multiplexing, where some portion of the input signals are used

directly by several different sub-pieces of the computation at once, and another portion of the

input determines which of those computation is the desired output. For example, an ALU might,

in parallel, both add and multiply its inputs and store the output in the same place. The suspend
form can be used to control whether the addition or multiplication computation happens.

Another use of suspend is in task management. As a workflow is progressing there may be a

task that runs at an interval that varies over time. This repeating task is important, but there may

be an occasional situation where some more important task takes precedence. suspend can be

used to pause the subcomputation corresponding to the repeating task, and resume it later without

losing its current state.

And finally, Esterel has two forms of variables: sequential variables (x) and shared variables

(lowercase s). Both of these variables refer to values and expressions in a host language, into which

Esterel is embedded. For example, in Esterel v5 (Berry 2000) the host language is a subset of C,

whereas in Hiphop.js (Berry et al. 2011) the host language is JavaScript.

Sequential variables are conventional mutable variables. To ensure deterministic concurrency,

they may be used only sequentially (any given variable may not appear free in both branches of

any specific par expression).
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Shared variables, on the other hand, may be modified or looked at in multiple branches of a par
expression. However, restrictions apply to ensure that the order of modifications is not observable.

In particular, the program’s execution cannot be influenced by the value of the variable until after

all modifications have been performed (in a manner reminiscent of, but simpler than, Kuper and

Newton (2013)’s LVars).

Shared variables start each instant with their old values, carried over from the previous instant.

Multiple writes to a shared variable within an instant are collected with an associative and commu-

tative operation, which throws away the value from the previous instant. After all possible writes

are collected, the shared variable’s value is available. Tracking if a shared variable is writable uses

the same mechanism as tracking whether or not a signal is set, and shared variables are subject to

the same logical correctness and constructiveness constraints as signals.

For simplicity, our calculus restricts shared and sequential variables to be natural numbers. Shared

variables use + as the only combining operation. Sequential variables also support a conventional

conditional expression, if, that tests if the value is 0 or not.
For a fuller explanation of these features and how they behave, start with Potop-Butucaru et

al. (2007)’s book Compiling Esterel, especially the first two chapers. The semantic rules in figure 14

also provide more details on how these constructs work.

3 THE ESTEREL CALCULUS
The core of our calculus is a reduction relation on program expressions that corresponds to a

single-step of computation within one instant. This relation captures a notion of simplification,

where each computational step brings us closer to a final answer. Thus, the reduction induces

an evaluator for the language. Furthermore, the reflexive, symmetric, and transitive closure of

the relation together with its closure over arbitrary contexts gives rise to an equivalence relation

between programs terms, which is our calculus.

The remainder of this section explores the definitions that comprise the calculus, specifically the

definitions shown in figure 12. Section 3.1 shows the basic notion of reduction that our calculus

supports and section 3.2 describes our our Can function. The judgment form ⊢CB captures how

signals are to be used in Esterel programs, and is described in section 3.3. Finally section 3.4 gives

the definitions of Eval and ↬, and the central result of this work, namely that Eval is a function.

Before diving into the rules, however, we need a to extend the p non-terminal to track information

about the term as it reduces. Figure 13 shows the two extensions. First, the (loop p q) expression
form is similar to a (seq p (loop q)) and is used by the loop reduction rule (discussed in section 3.1).

The other extension is the (ϱ θ. p) expression form. It pairs an environment (θ) with an Esterel

expression. The environment records what we have learned about the signals and variables in

this instant for the contained subexpression, and various rules either add information to the θ or

exploit information recorded as the program reduces. We keep the environments local to specific

expressions in order to facilitate local reasoning.

3.1 Reduction Rules
The rules given in figure 14 govern how computation takes place within a single instant.

The first rule, [signal], reduces a signal expression to a ϱ expression by introducing a singleton

θ that binds the signal to unknown.

Once a signal has an entry in a relevant θ, the [emit] rule records that a signal is present (using
the composition operator← from figure 13) and eliminates the emit expression. The side-condition

ensures that the environment θ does not already indicate that the signal is absent.
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p ⇀ q
Our notion of reduction; the primitive
computational steps of our calculus

Can : p θ → { S: (Setof S), K: (Setof κ), sh: (Setof s) }
Determines the signals an expression can emit

⊢CB  p
A well-formedness condition on programs
ensuring that signals and variables are
well-behaved

p ≡e  q
Te refexive, transitive, symmetric,
context closure of  ⇀

Eval : p θ → (Setof S)
Runs the program for a single instant
and returns the emited signals
↬ : complete → p

Prepares a fully-reduced program for
the next instant

Fig. 12. An overview of the main definitions

p, q ::= ....
 | (ϱ θ. p)
 | (loop p q)

status ::= present
 | absent
 | unknown

shared-status ::= ready | old | new
complete ::= done | (ϱ θc. done)

done ::= stopped | paused
stopped ::= nothing | (exit n)
paused ::= pause

 | (seq paused q)
 | (loop paused q)
 | (par paused paused)
 | (suspend paused S)
 | (trap paused)

E ::= (seq E q)
 | (loop E q)
 | (par E q)
 | (par p E)
 | (suspend E S)
 | (trap E)
 | []

Metafunctions:

↓p  : stopped → stopped
↓p nothing  = nothing
↓p (exit 0)  = nothing
↓p (exit n)  = (exit n-1)

Empty Environment: {}

Singleton Environments: { « var » ↦ « val » }
{ S ↦ status }
{ s ↦ ⟨n , shared-status⟩ }
{ x ↦ n }

Environment Composition: θ ← θ
(θ1 ← θ2)(S) = θ2(S) if S ∈ dom(θ2)
(θ1 ← θ2)(S) = θ1(S) if S ∉ dom(θ2)
. dito for s and x

Complete Environments: θc

A complete environment is one
where no signals are unknown
 and all shared variables are ready

Resetting Environments: ⌊θc⌋
Reseting a complete environment
updates all signals to unknown
and all shared variables to old

Restricting the Domain: (θ \ {S})
Restricting the domain of an
environment removes the
binding for S

Embedded host language expressions
e: host expressions
FV(e): all x and s that appear free in e
Eval ⟦e , θ⟧: evaluation; produces n

Fig. 13. Supplemental Structures
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si

gn
al

s

(signal S p) ⇀ (ϱ { S ↦ unknown }. p) [signal]

(ϱ θ. E[(emit S)]) ⇀ (ϱ (θ ← { S ↦ present }). E[nothing])
 where θ(S) ∈ { present , unknown }

[emit]

(ϱ θ. p) ⇀ (ϱ (θ ← { S ↦ absent }). p)
 where S ∈ dom(θ), S ∉ Canϱ⟦(ϱ θ. p), {}⟧.S, θ(S) = unknown

[absence]

(ϱ θ. E[(present S p q)]) ⇀ (ϱ θ. E[p])  where θ(S) = present [is-present]

(ϱ θ. E[(present S p q)]) ⇀ (ϱ θ. E[q])  where θ(S) = absent [is-absent]

sh
ar

ed
 v

ar
ia

bl
es

(ϱ θ. E[(shared s := e p)]) ⇀ (ϱ θ. E[(ϱ { s ↦ ⟨n , old⟩ }. p)])
 where FV(e) ⊂ dom(θ), ∀ s ∈ FV(e). θ(s) = ⟨_ , ready⟩, n = Eval ⟦e , θ⟧

[shared]

(ϱ θ. E[(+= s e)]) ⇀ (ϱ (θ ← { s ↦ ⟨Eval ⟦e , θ⟧ , new⟩ }). E[nothing])
 where θ(s) = ⟨_ , old⟩, FV(e) ⊂ dom(θ), ∀ s ∈ FV(e). θ(s) = ⟨_ , ready⟩

[set-old]

(ϱ θ. E[(+= s e)]) ⇀ (ϱ (θ ← { s ↦ ⟨n + Eval ⟦e , θ⟧ , new⟩ }). E[nothing])
 where θ(s) = ⟨n , new⟩, FV(e) ⊂ dom(θ), ∀ s ∈ FV(e). θ(s) = ⟨_ , ready⟩

[set-new]

(ϱ θ. p) ⇀ (ϱ (θ ← { s ↦ ⟨n , ready⟩ }). p)
 where s ∈ dom(θ), s ∉ Canϱ⟦(ϱ θ. p), {}⟧.sh, θ(s) = ⟨n , shared-status⟩, 

shared-status ∈ { old , new }

[readyness]

se
qu

en
ti

al
 v

ar
ia

bl
es (ϱ θ. E[(var x := e p)]) ⇀ (ϱ θ. E[(ϱ { x ↦ Eval ⟦e , θ⟧ }. p)])

 where FV(e) ⊂ dom(θ), ∀ s ∈ FV(e). θ(s) = ⟨_ , ready⟩
[var]

(ϱ θ. E[(:= x e)]) ⇀ (ϱ (θ ← { x ↦ Eval ⟦e , θ⟧ }). E[nothing])
 where x ∈ dom(θ), FV(e) ⊂ dom(θ), ∀ s ∈ FV(e). θ(s) = ⟨_ , ready⟩

[set-var]

(ϱ θ. E[(if x p q)]) ⇀ (ϱ θ. E[p])  where x ∈ dom(θ), θ(x) ≠ 0 [if-true]

(ϱ θ. E[(if x p q)]) ⇀ (ϱ θ. E[q])  where θ(x) = 0 [if-false]

ϱ (ϱ θ1. E[(ϱ θ2. p)]) ⇀ (ϱ (θ1 ← θ2). E[p]) [merge]

se
q (seq nothing q) ⇀ q [seq-done]

(seq (exit n) q) ⇀ (exit n) [seq-exit]

tr
ap (trap stopped) ⇀ ↓p stopped [trap]

pa
r

(par nothing done) ⇀ done [par-nothing]

(par (exit n) paused) ⇀ (exit n) [par-1exit]

(par (exit n1) (exit n2)) ⇀ (exit max(n1 , n2)) [par-2exit]

(par p q) ⇀ (par q p) [par-swap]

(suspend stopped S) ⇀ stopped [suspend]

lo
op

(loop p) ⇀ (loop p p) [loop]

(loop (exit n) q) ⇀ (exit n) [loop^stop-exit]

Fig. 14. Reduction Rules

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 61. Publication date: January 2019.



A Calculus for Esterel 61:11

In order for an emit to fire, it must be in the body of a ϱ in only a specific set of positions, as

captured by the E contexts, shown in figure 13. They include the first sub-expression of a seq

expression, the first sub-expression of a (loop p q) expression, either branch of a par, the body of

a suspend or a trap. Notably this rule does not allow an expression like (ϱ θ. (seq p (emit S))) to
reduce its emit expression because the p could be pause, delaying the (emit S) to the next instant.
More generally, the expressions captured by E are guaranteed to happen in the current instant.

As we saw in section 2.3, Can determines if a signal cannot be emitted. The rule [absence] uses
Canϱ (a variation of Can that is explained in section 3.2) to determine that a signal cannot be emitted

and records that information in a θ expression, if that information is not yet recorded.

Once the status of a signal is recorded as either present or absent, the [is-present] and [is-absent]
rules can reduce present expressions.

The rules [shared], [set-old], [set-new], and [readyness] handle shared variables in a manner

similar to how the previous set of rules handle signals. The [shared] rule introduces a new en-

vironment that binds the shared variable using the e in the shared expression to determine the

default value of the variable using the host language’s evaluation function. The rules [set-old]
and [set-new] modify a shared variable depending on whether it has been modified in the current

instant or not. If the status of a shared variable in the environment is old, it is being modified for

the first time in the current instant and the rule [set-old] replaces the old value in the environment

with the new value. If the status of a shared variable is new, it has already been modified in the

current instant and the rule [set-new] adds the current value and the new value in the += expression

and stores the result in the environment. One subtlety of note here: the [shared] rule creates an
environment which marks the shared variable as old, not new. This is because the value initially
given to a shared variable represents its default value rather than its initial value, and so acts as if

this value was set in the previous instant. Finally, the [readyness] rule makes a variable change

from writable to readable. This occurs if Canϱ’s result does not contain the shared variable s, which
means it will not be modified in this instant and thus we can update the environment to mark

the variable as ready. Furthermore, the side-conditions on the [shared], [set-new], and [set-old]
rules (as well as the corresponding rules for sequential variables) ensure that these rules can fire

only if, for every shared variable used in the host language expression, that variable safe to be read,

e.g. is marked as ready in θ.
The rules [var], [set-var], [if-true], and [if-false] cover sequential variables. Unlike the rules

for signals or shared variables, these rules do not refer to Can. These variables are not allowed to

be free in two different arms of any par expression, so they can be freely read and written.

The final rule that handles ϱ expressions is [merge]. It combines two environments, lifting an

inner environment out to an outer one and composing them into a single environment.

There are two rules for sequential composition. If the first sub-expression is nothing, then
we replace the entire expression with the second branch. If the first sub-expression is an exit
expression, however, then the entire sequence exits, discarding the second part of the seq expression.

The next rule handles trap. Once the body of a trap has finished evaluating, it will either be an

exit expression or nothing, which the ↓p (figure 13) function handles.

The par rules are a little more interesting. The first three refer to to the definitions of stopped
and done in figure 13 and handle the situations when both branches are finished for the instant.

If one side has reduced to nothing, the [par-nothing] rule reduces to the other one. If one side

has exited and the other is paused, the [par-1exit] rule preempts the other branch of the par

by bubbling the exit up. If both sides have exited the [par-2exit] rule reduces the expression

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 61. Publication date: January 2019.



61:12 Spencer P. Florence, Shu-Hung You, Jesse A. Tov, and Robert Bruce Findler

to whichever exit will reach the farthest up trap. The [par-swap] rule switches the branches,
allowing [par-nothing] and [par-1exit] to match regardless of which branch is exit or nothing.

The [suspend] rule reduces to its body when its body has either exited or reduced to nothing.
This leaves us with one last pair of rules: [loop] and [loop^stop-exit]. Intuitively, we would like

an expression like (loop p) to reduce simply to just (seq p (loop p)), duplicating the body p into

a seq expression which becomes the current iteration of the loop.

Such a rule could give rise to infinite loops within a single instant, however, which is forbidden in

Esterel. We capture this constraint in our calculus with the loop expression form. It is introduced

only by the reduction rule for loop, and is meant to capture a single unrolling of the loop; the first

sub-expression is the part of the loop that runs in the current instant and the second sub-expression

is the body of the loop, saved to be used in the next instant. There is no rule that eliminates a loop
when the first sub-expression is nothing (unlike seq, which has the [seq-done] rule). As such,
programs get stuck when they contain instantaneous loops.

One thing to note about these rules: with the exception of [par-swap], they are strongly normal-

izing. The proof is given as noetherian in Agda code in the supplementary material.

3.2 The Can Function
This section describes the function Can, a conservative analysis of the state of an Esterel program

that determines its behavior. Our definition is inspired by Berry (2002)’s definition, generalized

to support ϱ expressions and modified to handle a reduction semantics rather than one based on

annotating the program with program counters.

This function computes a conservative approximation to the behavior of some given Esterel

expression with respect to some knowledge about signals and shared variables that is encapsulated

in an environment, θ. In particular, it computes a set of signals (S), a set of exit codes (κ), and a set

of shared variables (s). Any S that is not in the result is guaranteed not to be emitted in the current

instant (although if some S is in the result, it may or may not be emitted in the current instant).

The same holds for any shared variable in the result: if an s is not the result, then it is guaranteed

that s cannot be updated again in the current instant. If the s is in the result, then it may or may

not be written to. The exit codes capture whether or not the given expression pauses, reduces to

nothing, or exits. If the expression may reduce to nothing, then the code nothin will be in the

result. If the expression may pause, then the code paus will be in the result. If the expression may

exit with the code n, then the code n will be in the result. Thus, if any of those specific codes are

not in the result, then we know the expression does not have the corresponding behavior.

The notation we use for the records in the definition of Can is similar to many record notations,

but we use the precise one in Pierce (2002)’s book Types and Programming Languages. We write

Can’s result as a record with three fields, where curly braces construct records, e.g., the emit case

of Can returns a record with a singleton set of signals (containing S), a singleton set of exit codes

(containing nothin) and the empty set of shared variables. Selecting a field from a record uses dot

notation. For example, Can⟦p, θ⟧.S selects the “S” field from a call to Can.
The three results from Can interact with each other in order to determine the overall result.

Consider the two seq cases. In the first one, the side-condition says that nothin is not in the

K field for the first sub-expression of the seq, p. Accordingly, we know that p does not reduce

to nothing, thus it must either exit or pause. Since it exits or pauses, we know that none of the

behavior of q is relevant as it will not be evaluated in this instant and so the result of Can for the

entire seq expression is just its result for the p expression. This means that

Can⟦(seq pause (emit S)), θ⟧.S
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κ ::= nothin | paus | n

Can : p θ → { S: (Setof S), K: (Setof κ), sh: (Setof s) }
Can⟦(ϱ θ1. p), θ2⟧  = { S = Canϱ⟦(ϱ θ1. p), θ2⟧.S \ dom(θ1),

K = Canϱ⟦(ϱ θ1. p), θ2⟧.K,
sh = Canϱ⟦(ϱ θ1. p), θ2⟧.sh \ dom(θ1) }

Can⟦nothing, θ⟧  = { S = ∅, K = { nothin }, sh = ∅ }
Can⟦pause, θ⟧  = { S = ∅, K = { paus }, sh = ∅ }
Can⟦(exit n), θ⟧  = { S = ∅, K = { n }, sh = ∅ }
Can⟦(emit S), θ⟧  = { S = { S }, K = { nothin }, sh = ∅ }
Can⟦(present S p q), θ⟧  = Can⟦p, θ⟧
 where θ(S) = present
Can⟦(present S p q), θ⟧  = Can⟦q, θ⟧
 where θ(S) = absent
Can⟦(present S p q), θ⟧  = { S = Can⟦p, θ⟧.S ∪ Can⟦q, θ⟧.S,

K = Can⟦p, θ⟧.K ∪ Can⟦q, θ⟧.K,
sh = Can⟦p, θ⟧.sh ∪ Can⟦q, θ⟧.sh }

Can⟦(suspend p S), θ⟧  = Can⟦p, θ⟧
Can⟦(seq p q), θ⟧  = Can⟦p, θ⟧
 where nothin ∉ Can⟦p, θ⟧.K
Can⟦(seq p q), θ⟧  = { S = Can⟦p, θ⟧.S ∪ Can⟦q, θ⟧.S,

K = Can⟦p, θ⟧.K \ { nothin } ∪ Can⟦q, θ⟧.K,
sh = Can⟦p, θ⟧.sh ∪ Can⟦q, θ⟧.sh }

Can⟦(loop p), θ⟧  = Can⟦p, θ⟧
Can⟦(loop p q), θ⟧  = Can⟦p, θ⟧
Can⟦(par p q), θ⟧  = { S = Can⟦p, θ⟧.S ∪ Can⟦q, θ⟧.S,

K = { max(κ1 , κ2) | κ1 ∈ Can⟦p, θ⟧.K , κ2 ∈ Can⟦q, θ⟧.K },
sh = Can⟦p, θ⟧.sh ∪ Can⟦q, θ⟧.sh }

Can⟦(trap p), θ⟧  = { S = Can⟦p, θ⟧.S, K = {↓κ x | x ∈ Can⟦p, θ⟧.K }, sh = Can⟦p, θ⟧.sh }
Can⟦(signal S p), θ⟧  = { S = Can⟦p, θ ← { S ↦ absent }⟧.S \ { S },

K = Can⟦p, θ ← { S ↦ absent }⟧.K,
sh = Can⟦p, θ ← { S ↦ absent }⟧.sh }

 where S ∉ Can⟦p, θ ← { S ↦ unknown }⟧.S
Can⟦(signal S p), θ⟧  = { S = Can⟦p, θ2⟧.S \ { S }, K = Can⟦p, θ2⟧.K, sh = Can⟦p, θ2⟧.sh }
 where θ2 = θ ← { S ↦ unknown }
Can⟦(shared s := e p), θ⟧  = { S = Can⟦p, θ⟧.S, K = Can⟦p, θ⟧.K, sh = Can⟦p, θ⟧.sh \ { s } }
Can⟦(+= s e), θ⟧  = { S = ∅, K = { nothin }, sh = { s } }
Can⟦(var x := e p), θ⟧  = Can⟦p, θ⟧
Can⟦(:= x e), θ⟧  = { S = ∅, K = { nothin }, sh = ∅ }
Can⟦(if x p q), θ⟧  = { S = Can⟦p, θ⟧.S ∪ Can⟦q, θ⟧.S,

K = Can⟦p, θ⟧.K ∪ Can⟦q, θ⟧.K,
sh = Can⟦p, θ⟧.sh ∪ Can⟦q, θ⟧.sh }

↓κ  : κ → κ
↓κ nothin  = nothin
↓κ paus  = paus
↓κ 0  = nothin
↓κ n  = n-1
if n > 0

max : κ κ → κ
max(κ1 , κ2) computes
the maximum of κ1 and
κ2 where we defne 
nothin < paus < 0 < 1 < .

Fig. 15. Can Function

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 61. Publication date: January 2019.



61:14 Spencer P. Florence, Shu-Hung You, Jesse A. Tov, and Robert Bruce Findler

Canϱ : (ϱ θ. p) θ → { S: (Setof S), K: (Setof κ), sh: (Setof s) }
Canϱ⟦(ϱ θ. p), θ2⟧  = Canϱ⟦(ϱ (θ \ {S}). p), θ2 ← { S ↦ absent }⟧
 where S ∈ dom(θ), 

θ(S) = unknown, 
S ∉ Canϱ⟦(ϱ (θ \ {S}). p), θ2 ← { S ↦ unknown }⟧.S

Canϱ⟦(ϱ θ. p), θ2⟧  = Canϱ⟦(ϱ (θ \ {S}). p), θ2 ← { S ↦ θ(S) }⟧
 where S ∈ dom(θ)
Canϱ⟦(ϱ θ1. p), θ2⟧  = Can⟦p, θ2⟧

Fig. 16. The Can Function for ϱ Expressions (cases are checked in order)

is the empty set, since the emit must happen in the next instant.

In the second seq case, we know that nothin is a possible result code, and thus p might reduce

to nothing so we have to combine the result of the p and q recursive calls. Mostly this amounts to

taking the union, but note that the K case removes nothin from the codes in the result of p before

performing the union. This removal accounts for the fact that, even if p reduces to nothing, q
must also reduce to nothing for the seq expression to reduce to nothing. For example,

Can⟦(seq nothing pause), θ⟧.K

correctly contains only the exit code paus.
The loop expression form, in contrast, always ignores the second sub-expression, because we

know that the second sub-expression can affect only future instants.

Various other cases in the definition of Can reflect the semantics of the different constructs in

similar ways. The cases handling present consult the given θ to see if the status of the signal is

known and look only at the corresponding branch of the present expression if so. The rule for

par takes into account the same behavior that the four par rules in the reduction relation do when

computing the codes for the entire expression out of the codes of the subexpressions. The trap case
uses the metafunction ↓κ to adjust the exit codes in a manner that mimics how trap expressions

reduce. Since the shared form introduces a new variable, its case in Can removes that variable

from the results, as it is lexically scoped. In each of these cases, Can ignores the e expressions, as it

does not reason about the behavior of the host language.

This leaves the signal and ϱ cases. Consider how Can handles signal expressions. The second

signal case is the more straightforward one. It says that the result for the entire signal form is

the same as the result for the body of a signal form when it is analyzed with no knowledge about

the signal. But there would be a problem with the Can function if that were the only case.

To motivate the first signal case in Can, consider this call:

Can⟦(signal S2 (present S2  (emit S1) nothing)), {}⟧.S

If we took the second signal case in Can, then this would return a set containing S1. It actually
returns the empty set. The first signal case calls Canwith S2 set to unknown and checks to see if S2
is not present in the “S” portion of the result. It is not (because there are no (emit S2) expressions),
so Can then sets S2 to absent and reprocesses its body. This time, because S2 is known to be

absent, Can considers only the last sub-expression of the present, thereby ignoring the (emit S1)
and returning the empty set of signals.
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In isolation, analyzing the body twice seems like overkill, especially because it triggers exponen-

tial behavior in the number of nested signal forms.
4
But consider this call to Can:

Can⟦(signal S1
(seq (present S1 pause nothing)

(signal S2 (present S2
(emit S1)
nothing)))), {}⟧.S

This example input is a bit complex, but first notice that the inner signal expression is the same

as the previous example (and there are no other (emit S1) expressions), so we know that S1 is

not going to be emitted. If Can did not have that first signal case, then it could not learn that S1
cannot be emitted and thus we would not be able to use the [absence] rule on this expression, and

the program would remain stuck, unable to reduce the first present.
Finally, for the ϱ case, the Can function dispatches to Canϱ (figure 16). The Canϱ function looks

complex, but it is essentially the same as the two signal cases. It is broken out into its own function
because ϱ binds multiple signals at once; so Canϱ recurs though the structure of the environment,

considering each of the signals that are bound. The first case of Canϱ corresponds to the first signal
case in Can; the second case in Canϱ corresponds to the second signal case, and the last case

in Canϱ corresponds to the situation where there are no more signals bound in θ (and θ1 can be

dropped as it contains only information about s and x variables, which Can does not need).

3.3 Reincarnation, Schizophrenia, and Correct Binding
The signal form seems to be something close to a variable binding form, familiar from conventional

_-calculus based programming languages. It is, however, not the same and a significant source of

subtlety in Esterel. The Esterel community has explored these issues in great detail and in this

section, we try to bring across the basic points and then explain how our calculus handles them.

(loop
(signal SZ

(seq pause
(emit SZ))))

Fig. 17: A Schizophrenic Loop

The two central issues are the phenomena of

schizophrenic and reincarnated signals. To understand

them, first recall the central tenant of Esterel signals: every

signal must have exactly one value in a given instant. Now,

consider the example program in figure 17. During the first

instant of execution the signal SZ will be absent, as the

program pauses before emitting it. In the next instant we pick up where we left off. The first thing

that happens is that we emit SZ. Then the loop body restarts. Because we have re-entered the loop

body and encountered the signal expression afresh, the SZ should now be absent. But this means

that the signal SZ has two different values in a single instant!

In the literature, signals which are duplicated by a loop body in within one instant are called

reincarnated. If a reincarnated signal obtains different values in each of its incarnations, it is called

schizophrenic. Schizophrenic signals, however, merely appear to violate the single-value-per-instant

rule. Because instantaneous loops are banned, the number of times a loop body can be entered is

bounded. This means that the number of reincarnations of any signal is also bounded. Therefore

we consider each incarnation to, in fact, be a separate signal, removing the apparent violation.

This resolution shows up directly in Esterel compilers and circuit semantics. Naive treatment of

schizophrenic signals can cause unstable loops in the corresponding circuit, breaking the guarantee

that all constructive programs translate to stable circuits. Therefore, many Esterel compilers

4
This exponential behavior affected the testing of our semantics against existing Esterel semantics and implementations;

see section 6 and section 7 for more.
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duplicate parts of loop bodies with schizophrenic signals to remove the apparent violation of the

single-value-per-instant rule, avoiding cross-loop cycles (Berry 2002; Potop-Butucaru et al. 2007;

Schneider and Wenz 2001). In short, each incarnation of a signal gets a separate wire.

Esterel semantics such as the Constructive Operational Semantics (Potop-Butucaru 2002) and the

Constructive Behavioral Semantics (Berry 2002) take a different approach, handling such signals by

carefully arranging to “forget” a schizophrenic signal’s first value when the second one is needed.

Our semantics takes an approach inspired by the circuit perspective, meaning we do not treat

signals in a conventional way. More precisely, we do not assume the variable convention (Barendregt

1984), nor do we include an 𝛼 rule. Indeed, we think of signals as if they name wires.

This perspective means that schizophrenic and reincarnated signals are, at first glance, handled

very simply. We just duplicate the bodies of loops in the [loop] rule, so each signal will end up in a

different ϱ, potentially bound to a different value—akin to the strategy that circuit semantics employ.

This approach, however, does raise a significant concern: what happens if the [merge] rule moves

ϱ expressions in such a way that the environment captures variables it did not bind before? Our

calculus avoids this problem by working only with programs that have correct binding, as captured
by the ⊢CB judgment form in figure 18. (The ⊢CB judgment also ensures that sequential variables

are used in at most one branch of any par, which is not related to the concerns of schizophrenia,

but does ensure determinism and is convenient to include here.)

To understand the correct binding judgment, first look at the seq rule. It says that the bound

signals of the first sub-expression must be distinct from the free signals of the second. Since the

[merge] rule moves binders based on the definition of E (in figure 13), it can move a ϱ out from the

first sub-expression only. Thus, in order to preserve the binding structure of the expression as we

reduce, we need only make sure that a ϱ that moves out of the first sub-expression of a seq does

not capture a signal in the second sub-expression, which is precisely what the premise avoids.

The other rules all generally follow this reasoning process for their premises. The suspend rule’s
premise follows exactly that reasoning, as binder may be lifted out past the S. The par rule’s second
and third premises also follow exactly the same reasoning. The first premise of par is necessary to

avoid the situation where the same signal is bound in both branches and then is lifted out from

both. The fourth premise ensures that sequential variables are used properly.

The loop rule must ensure that the bound and free signals of its subexpression do not overlap,

as it reduces by duplicating its first subexpression into a loop, which acts like a seq expression (so

the intuition for seq applies, but with both subexpressions being the same one). Similarly, because

(loop p q) behaves like (seq p (loop q)), the premises of its rule are just the premises of the seq
and loop rules, combined.

Theorem 3.1.

∀ p , q , C. ⊢CB  C[p] ⇒ p ⇀ q ⇒ ⊢CB  C[q]

This theorem states that, no matter which context an expression reduces in (with C as given

in figure 19), if the expression had correct binding before reduction, it does afterwards, too. The

proof is given as ⟶₁-preserve-CB in the Agda code in the supplementary material. From this we

conclude that programs with correct binding cannot exhibit incorrect variable capture.

It should also be noted that any Esterel program that uses its sequential variables correctly either

already has correct binding or can be renamed into one that has correct binding (introducing new

wires, of course) before reducing the program. Thus, the restriction that our calculus handles only

programs with correct binding is not severe, as any already correct program can be transformed

into one which is well behaved in our calculus.
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⊢CB  p

BV : p → (Setof «var»)
FV : p → (Setof «var»)

Computes the bound and
free variables, respectively.
Te variables include signals,
shared variables and
sequential variables.

⊢CB  nothing ⊢CB  pause ⊢CB  (emit S)

⊢CB  p

⊢CB  (signal S p)

⊢CB  p ⊢CB  q

⊢CB  (present S p q)

⊢CB  p

⊢CB  (shared s := e p) ⊢CB  (+= s e)

BV⟦p⟧ ∩ FV⟦q⟧ = ∅ ⊢CB  p ⊢CB  q

⊢CB  (seq p q)

{ S } ∩ BV⟦p⟧ = ∅ ⊢CB  p

⊢CB  (suspend p S)

⊢CB  p

⊢CB  (ϱ θ. p)

BV⟦p⟧ ∩ BV⟦q⟧ = ∅ FV⟦p⟧ ∩ BV⟦q⟧ = ∅ BV⟦p⟧ ∩ FV⟦q⟧ = ∅ 

{ x | x ∈ FV⟦p⟧ } ∩ { x | x ∈ FV⟦q⟧ } = ∅ ⊢CB  p ⊢CB  q

⊢CB  (par p q) ⊢CB  (:= x e)

BV⟦p⟧ ∩ FV⟦q⟧ = ∅ BV⟦q⟧ ∩ FV⟦q⟧ = ∅ ⊢CB  p ⊢CB  q

⊢CB  (loop p q)

⊢CB  p

⊢CB  (var x := e p)

BV⟦p⟧ ∩ FV⟦p⟧ = ∅ ⊢CB  p

⊢CB  (loop p)

⊢CB  p

⊢CB  (trap p) ⊢CB  (exit n)

⊢CB  p ⊢CB  q

⊢CB  (if x p q)

Fig. 18. Correct Binding

3.4 Evaluating Programs
Now that we have established the correct binding invariant and defined the primitive notions of

reduction, we can turn to the definition of the evaluator. It is shown on the top-left of figure 19. It

accepts a program and an initial environment (that captures what the host language sets the input

signals to), and it returns the signals that were emitted at the end of the instant. The output of the

evaluator ignores shared variables. However, values of shared variables can be indirectly returned

by introducing new signals whose presence depends on the values of shared variables.

The ≡e relation is the symmetric, transitive, reflexive closure of the → relation, which is the

compatible closure of the ⇀ reduction relation. The symmetric case has an additional premise

⊢CB  p to ensure that all of the intermediate terms used in ≡e have correct binding.

The definition of Eval is written using a notation that assumes the central result of this paper,

namely that Eval is a (partial) function:
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(ϱ θ. p) ≡e  (ϱ θc. done)

Eval(p , θ) = { S ∈ dom(θc ) | θc(S) = present }

p → q

p ≡e  q

p ≡e  q ⊢CB  p

q ≡e  p

p ≡e  p

p1 ≡e  p2 p2 ≡e  p3

p1 ≡e  p3

p ⇀ q

C[p] → C[q]

p1 → p2 p2 →* p3

p1 →* p3 p →* p

C ::= (signal S C)
 | (seq C q)
 | (seq p C)
 | (loop C q)
 | (loop p C)
 | (present S C q)
 | (present S p C)
 | (par C q)
 | (par p C)
 | (loop C)
 | (suspend C S)
 | (trap C)
 | (shared s := e C)
 | (var x := e C)
 | (if x C q)
 | (if x p C)
 | (ϱ θ. C)
 | []

Fig. 19. Eval

↬ : complete → p

↬(ϱ θc. p)  = (ϱ ⌊θc⌋. ↬p)
↬pause  = nothing
↬nothing  = nothing
↬(loop p q)  = (seq ↬p (loop q))
↬(seq p q)  = (seq ↬p q)
↬(par p q)  = (par ↬p ↬q)
↬(suspend p S)  = (suspend (seq (present S pause nothing) ↬p) S)
↬(trap p)  = (trap ↬p)
↬(exit n)  = (exit n)

Fig. 20. Next Instant

Theorem 3.2.

∀ 𝕊1 , 𝕊2 , θ , p.
⊢CB  (ϱ θ. p) ⇒
Eval(p , θ) = 𝕊1 ⇒
Eval(p , θ) = 𝕊2 ⇒
𝕊1 = 𝕊2

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 61. Publication date: January 2019.



A Calculus for Esterel 61:19

The above theorem states that if 𝕊1 and 𝕊2 are both sets of signals satisfying the Eval judgment in

figure 19, then 𝕊1 and 𝕊2 must be equal. The proof is given as eval≡𝑒-consistent in the Agda

code in the supplementary material.

This theorem is a corollary of the consistency of ≡e, which states that if two expressions are

≡e, then there is an expression that both reduce to, under the transitive reflexive closure of the

compatible closure of the reduction relation:

Theorem 3.3.

∀ p , q. ⊢CB  p ⇒ p ≡e  q ⇒
∃ r. p →* r ∧ q →* r

The proof is given as ≡𝑒-consistent, and it follows from the confluence of reduction.

Our semantics supportsmultiple instants via a transformation that prepares a complete expression

for the next instant, ↬, shown in figure 20. It makes four modifications to the expression. First, it

resets all signals to unknown and all shared variables to old via ⌊θc⌋ (defined in figure 13). Second,

it replaces the pause expressions where the program stopped with nothing. Third, it replaces
each loop expression with a loop and seq. Finally, it adds a present expression to suspend
expressions that have paused. The present serves to conditionally pause the body of the suspend
in the next instant. The result is an expression suitable for use with Eval in the next instant.

4 ON CONSTRUCTIVENESS

(signal S1
(present S1

(signal S2
(seq (emit S2)

(present S2
nothing
(emit S1))))

nothing))
Fig. 21: A Non-constructive Program

Logical correctness and constructiveness are

key for any correct semantics of Esterel. For ex-

amples of these properties see section 2.4. We

follow the definition of constructiveness given

by the constructive operational semantics

(COS) evaluator as referenced by Berry (2002)

and described by Potop-Butucaru (2002): non-

constructive programs reduce to stuck terms

(that are not complete).
In our semantics, for many expressions, this

is also the case. But, it is not the case for all of them because reductions that occur in arbitrary

program contexts sometimes give Can more information than it “should” have (more precisely,

more information that it would get by running the program directly). This extra information means

that reductions in our calculus can transform some non-constructive programs into constructive

ones that can still reduce.

For an example, consider the expression in figure 21. If we restrict our attention to the outside

part of the term (the way that the COS semantics does), it reduces only by replacing the outer

signal form with a ϱ expression. At that point, the expression appears to be stuck because Can
is unable to prove that S1 is not emitted (and thus the [absence] rule does not apply) and the

present expression does not reduce (because S1 is unknown).
There are reductions that can occur, however, at the inner signal expression, revealing infor-

mation to Can, and enabling it to determine that S1 is absent.
Specifically, the calculus can reduce in this context:

(ϱ { S1 ↦ unknown }.
(present S1

[]
nothing))
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(ϱ { S1 ↦ unknown }.
(present
S1
(ϱ { S2 ↦ present }.

(seq nothing
(present S2

nothing
(emit S1))))

nothing))
Fig. 22: An expression equivalent to

the expression in figure 21

and thus it can turn the inner signal form into a ϱ and

perform the emit, resulting in the expression in figure 22.

Being able to reduce in that context is effectively “peeking”

ahead into the future non-constructively.

Once those reductions happen, Can is able to determine

that S1 cannot be emitted and now the [absence] rule can
fire, eventually reducing the original expression to

(ϱ { S1 ↦ absent }. nothing)

.

In sum, our calculus equates some non-constructive pro-

grams to constructive programs with the same logical be-

havior. Although we are not satisfied with this aspect of our calculus and believe that it deserves

further study, such a relaxation of constructiveness is not unprecedented (Tardieu 2007).

5 WHAT THE CALCULUS CAN AND CANNOT PROVE
Our semantics lends itself to establishing equivalences between program fragments because any

two expressions that are ≡e to each other always produce the same result in the evaluator:

Theorem 5.1.

∀ p , θ1 , 𝕊1 , q , θ2 , 𝕊2.
⊢CB  (ϱ θ1. p) ⇒
(ϱ θ1. p) ≡e  (ϱ θ2. q) ⇒
Eval(p , θ1) = 𝕊1 ⇒
Eval(q , θ2) = 𝕊2 ⇒
𝕊1 = 𝕊2

This theorem is a straightforward consequence of ≡e being consistent; the proof is given as

≡𝑒=>eval in the Agda code in the supplementary material.

The remainder of this section explores various equivalences (shown in figure 23) as well as

some limitations of the calculus. The proofs of the equivalences are all given in agda/calculus-
examples.agda in the supplementary material.

The first example, theorem 5.2, shows that we can rearrange signal forms. This example works

well in our calculus. It requires only that the body expression has correct binding, allowing us to

rearrange adjacent signal forms arbitrarily.

Next, theorem 5.3 shows that if an emit is followed by a present, the present can always be

replaced by the taken branch. This example exposes a first limitation of the calculus. Although it is

still true, our calculus cannot prove this equivalence without the signal form being visible in an

evaluation context surrounding the seq form.

In a dual to theorem 5.3, theorem 5.4 shows that if we know that neither branch of the present
expression can emit S, we can replace the present form with its second subexpression.

Theorem 5.5 lets us lift a seq expression that starts with an emit out of a par branch. Intuitively,

this equivalence is a consequence of Esterel’s deterministic parallelism. Because emit is instanta-

neous and does not depend on the status of any signal, we can do it in parallel to q or before q
starts, whichever is more convenient.

5

5
This fact is crucial for many Esterel compilers, which attempt to generate static schedules for concurrent code (Potop-

Butucaru et al. 2007).
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Theorem 5.2.

∀ S1 , S2 , p.
⊢CB  p ⇒
(signal S1

(signal S2

p)) ≡e 
(signal S2

(signal S1

p))

Theorem 5.3.

∀ S , p , q.
⊢CB  p ⇒
(signal S

(seq (emit S)
(present
S
p
q))) ≡e 

(signal S
(seq (emit S)

p))

Theorem 5.4.

∀ S , p , q. ⊢CB  q ⇒
(∀ status.

S ∉ (Can p { S ↦ status }).S) ⇒
(∀ status.

S ∉ (Can q { S ↦ status }).S) ⇒
(signal S

(present S
p
q)) ≡e 

(signal S
q)

Theorem 5.5.

∀ S , p , q.
⊢CB  (par p q) ⇒
(signal S

(par (seq
(emit S)
p)
q)) ≡e 

(signal S
(seq (emit S)

(par p
q)))

Theorem 5.6.

∀ n , p , q.
⊢CB  p ⇒
q ∈ done ⇒
p ≡e  q ⇒
(trap
(par (exit n+1)

p)) ≡e 
(par (exit n)

(trap p))

Theorem 5.7.

∀ p , q , S.
⊢CB  (seq (signal S p)

q) ⇒
(ϱ {}. (seq (signal S p)

q)) ≡e 
(ϱ {}. (signal S

(seq p q)))

Fig. 23. Equivalences Provable in our Calculus

When a trap is outside a par, our calculus allows us to push the trap inside, in some situations.

Theorem 5.6 is one such. This calculation requires p to be equivalent to some done expression

q, but that is a weakness of our calculus. In fact, the two expressions are observably equivalent

without any assumptions.

Theorem 5.7 further generalizes Theorem 5.2 to rearrange binding forms across other expres-

sions. In this example, the signal form is pulled out of the seq expression. In general, these two

expressions are observably equivalent even without the ϱ expression outside. Our calculus cannot

prove it, however, because the calculus needs an outer ϱ expression in order to perform a [merge]
in the middle of the proof.

We explored a calculus that includes a “lifting” rule that allows us to move a ϱ term up and down

in an evaluation context. This rule makes it difficult to establish confluence of the calculus, however,

as the would-be lifting rule and the [merge] rule interact with each other in complex ways. In

particular, our evaluation contexts do not have unique decomposition, due to par. Accordingly, a
use of the lifting rule from one side of a par expression can block a use of the [merge] rule from
the other side. We conjecture that a lifting rule would be confluent, but have not proven it. If we

did have such a rule, then we believe we would be able to prove theorem 5.7 without the need for

an enclosing empty ϱ expression and even be able to relax one of the assumptions of theorem 5.6,

assuming only that q is complete.
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Our calculus also cannot reason effectively with expressions that span multiple instants. For

example, the expression (seq (loop pause) q) is equivalent to (loop pause), but our calculus
cannot prove it. Similarly, a common pattern is to emit a signal and pause in a loop, and also to

run that loop in parallel with some code that looks at the signal. Our calculus would not be able to

propagate the signal’s presence because of the pause.
Another deep lack in our calculus is the ability to reason about input signals. In order for

our calculus to work with a signal, it must be bound by signal so knowledge about it can be

manipulated via the rules for ϱ expressions. Input signals, in contrast, might or might not be set by

the environment and our calculus cannot perform the required conditional reasoning.

6 TESTING
As we are developing a new semantics for Esterel and Esterel is a well-established language, a

natural concern is whether our semantics captures Esterel or some other, subtly different language.

In order to mitigate this concern, we tested our semantics against two Esterel implementations:

Esterel v5 (Berry 2000) and Hiphop.js (Berry et al. 2011), as well as an executable version of Potop-

Butucaru et al. (2007)’s COS semantics. Perhaps unsurprisingly, we also discovered bugs in both of

the implementations during this process (as random testing can be extremely effective (Yang et al.

2011)). The remainder of this section describes the testing process and the bugs discovered.

6.1 Testing for Conformance
In order to test our model against the existing semantics and implementations, we had to build

some software libraries:

• Redex COS model We built a model of the COS semantics in Redex (Felleisen et al. 2009).

The semantics is a faithful model of the COS semantics because it is a rule-for-rule translation

of the COS semantics; aside from a few syntactic differences (notably more parentheses), it

mirrors Potop-Butucaru et al. (2007)’s model exactly, enabling us to simulate the behavior of

the semantics on any example program.

• Redex calculus model Our calculus is implemented in Redex; the rules shown in all of

the figures are generated automatically from the Redex source code, and the Redex model

also enables us to explore the reduction of any example program.

• Agda/Redexbridge Webuilt a library that can translate the reduction sequences generated

by Redex into proofs in Agda, ensuring that the specific, concrete terms which reduce in

Redex also reduce the same way in Agda. This process accepts a specific term and a reduction

sequence. It produces a proof, which then is submitted to the Agda compiler for verification.

• Redex/Hiphop.js bridge We built a library that can translate Redex expressions into

Hiphop.js programs and then evaluate them.We also built a translator for a subset of Hiphop.js

programs that can translate them into Redex so they can be checked against the calculus and

the COS model. This translator does not accept all Hiphop.js programs, because Hiphop.js

programs embed JavaScript code and our model cannot evaluate the JavaScript.

• Redex/Esterel v5 bridge We also built a translator that produces Esterel v5 programs

from Redex terms in the COS model and in our calculus.

Using these libraries we can test all four implementations of Esterel (the COS semantics, the

Esterel v5 compiler, Hiphop.js, and our calculus) against each other.

There is one subtle point about testing our calculus. Because it is a calculus, we need an algorithm

that can determine which of themany possible reductions we should take in order to find an effective

path to a complete state (if one exists). To do this, we identified a subset of the possible reductions
in a way that acts like an standard reduction, guaranteeing that we find a complete state if the
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program is constructive, and that reduction gets stuck if it is not. This reduction relation is given

in figure 27 with some supplementary definitions given in figure 28; it is explained briefly in

section 7. We use this reduction relation to guide the calculus, verifying that each step in the

standard reduction is also possible in the calculus. There are no proofs about our standard reduction

but we use it only to test our calculus against other implementations, as described in this section.

These libraries give us the ability to, given an Esterel program, determine if it produces the same

signals across multiple instants. But we also need a source of Esterel programs to test. For that

purpose, we used two approaches.

First, we took the Hiphop.js test suite, which consists of 130 Hiphop.js programs. Of those, four

use pre, a construct that is not in Kernel Esterel, and were excluded from our tests. An additional

84 use JavaScript in some non-trivial way, and therefore could also not be run in our model. Our

calculus produces the same results on the remaining 42 program as Hiphop.js.

The translation of the Hiphop.js tests into our model produces programs that have a large number

of signals, which causes problems for the process that finds reductions in the calculus. In short, the

problem is that the exponential behavior in Can triggers significant performance problems in the

calculus, enough so that running these tests appears not to be feasible. To mitigate this issue these

tests are run only against the standard reduction, which updates signal values in bulk in a single

step, and does not preform the exponential analysis on the top most environment, greatly reducing

evaluation time.

Second, we used Redex’s capability to generate random Esterel expressions and run them in all

of the implementations to see if they agree. We have discovered (and fixed) errors in our calculus

using this method, and we currently have no known bugs. We have run over 1,800,000 random

tests and they still do periodically find counterexamples, but they find only known bugs in the

implementations.

This random testing process proved invaluable in debugging the calculus, catching several

errors that cannot be found via the proofs in Agda. For example, late in the development process,

the random tester found that an old version of the [shared] rule was incorrect. The old version

initialized the shared variables status to new, but the COS specifies that the initial status is old.
This bug does not invalidate any of the theorems in Agda, but it does violate the property that our

calculus and the other implementations agree. That is, the properties we can effectively check via

random testing are stronger than those we can check via proof (in practice).

6.2 Bugs Discovered

(shared s-outer := e0

(seq (shared s-inner := eouter

nothing)
(+= s-outer e1)))

Fig. 24: A Bug Found in the Esterel v5

Compiler

During the process of validating our calculus, we discov-

ered four bugs in Hiphop.js and one bug in the Esterel v5

compiler. All of the bugs have been confirmed by the au-

thors of the systems. All but one of the Hiphop.js bugs

have been fixed.

The bug in Esterel v5 is exhibited by a translation of the

program in figure 24, where e0 evaluates to 0, e1 evaluates

to 1, and eouter refers to s-outer.
This program is non-constructive and it gets stuck in our both our calculus and the COS semantics;

it cannot reduce the inner shared because the initialization of the signal depends on s-outer,
but s-outer cannot be read because there is a write pending. The Esterel v5 compiler runs the

program, incorrectly setting s-inner to 0.
This program also demonstrates one of the bugs we found in Hiphop.js. Of the other three bugs,

one of themwas an internal error, crashingHiphop.js on the program (trap (suspend (exit 0) S1)).
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set-absent : θ (Setof S) → θ
set-absent(θ , 𝕊) = 
set-absent(θ ← { S ↦ absent } , 𝕊 \ { S })
 where S ∈ 𝕊
set-absent(θ , 𝕊) = 
θ

set-ready : θ (Setof s) → θ
set-ready(θ , 𝕊) = 
set-ready(θ ← { s ↦ ⟨n , ready⟩ } , 𝕊 \ { s })
 where s ∈ 𝕊, θ(s) = ⟨n , shared-status⟩
set-ready(θ , 𝕊) = 
θ

⊓∥ : done done ↛ done

nothing ⊓∥ done  = done

done ⊓∥ nothing  = done

(exit n1) ⊓∥ (exit n2)  = (exit max(n1 , n2))

(exit n) ⊓∥ paused  = (exit n)

paused ⊓∥ (exit n)  = (exit n)

Fig. 26. Standard Reduction Auxiliary Metafunctions

The next bug was triggered by the expression (suspend nothing S1), and produced an error in

terms of the undefined value from Hiphop.js’s host language, JavaScript.

(signal S-outer
(signal S-inner

(seq
(present S-outer nothing nothing)
(present S-inner

(emit S-outer)
nothing))))

Fig. 25: A Bug Found in Hiphop.js

The final bug is exhibited by the program

in figure 25. Both in our calculus and in the

COS semantics, the Can function can deter-

mine that S-inner cannot be emitted, and

that therefore S-outer cannot be emitted.

Therefore the program is constructive, both

signals are absent, and the program reduces

to nothing. However this program appeared

to be non-constructive to Hiphop.js.

7 STANDARD REDUCTION
Our standard reduction exists only in Redex (not in Agda, unlike the rest of the semantics). We use

it to help with our testing process, as described in section 6.

Figure 27 shows the reduction rules. There are four differences between the rules of the calculus

and the rules of the standard reduction. First, expressions reduce only if they have an outer ϱ.
Second, the [absence] and [readyness] rules set as many signals or variables as they can in a

single step. Third, the [absence] and [readyness] rules use Canϱ in the calculus and Can in the

standard reduction. In the standard reduction, the extra analysis that Canϱ performs is not necessary.

Finally, the rules are oriented so that at most one applies at each step. There are two pieces to this

orientation: restricting the context in which the rules may apply and restricting the [absence] and
[readyness] rules so they apply only when no other rule applies.

To understand how the rules are oriented, consider the [absence] and [readyness] rules. They
require the body to be either done or blocked, where blocked is given in figure 28. It captures when

an expression cannot reduce because it needs the value of a signal or shared variable that is not

known or ready.
The context restriction is captured by the θ ⊢ E det judgment. The judgment is designed to

restrict the choice of sub-expression in par terms so only one side is considered for reduction.
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si
gn

al
s

(ϱ θ. E[(signal S p)]) ⇁ (ϱ θ. E[(ϱ { S ↦ unknown }. p)])  where θ ⊢ E det [signal]

(ϱ θ. E[(emit S)]) ⇁ (ϱ (θ ← { S ↦ present }). E[nothing])
 where θ ⊢ E det, θ(S) ∈ { present , unknown }

[emit]

(ϱ θ. p) ⇁ (ϱ set-absent(θ , 𝕊). p)
 where (θ ⊢ p blocked or p ∈ done), 

𝕊 = { S ∈ dom(θ ) | θc(S) = unknown } \ Can⟦p, θ⟧.S, 𝕊 ≠ ∅

[absence]

(ϱ θ. E[(present S p q)]) ⇁ (ϱ θ. E[p])  where θ ⊢ E det, θ(S) = present [is-present]

(ϱ θ. E[(present S p q)]) ⇁ (ϱ θ. E[q])  where θ ⊢ E det, θ(S) = absent [is-absent]

sh
ar

ed
 v

ar
ia

bl
es

(ϱ θ. E[(shared s := e p)]) ⇁ (ϱ θ. E[(ϱ { s ↦ ⟨n , old⟩ }. p)])
 where θ ⊢ E det, FV(e) ⊂ dom(θ), ∀ s ∈ FV(e). θ(s) = ⟨_ , ready⟩, n = Eval ⟦e , θ⟧

[shared]

(ϱ θ. E[(+= s e)]) ⇁ (ϱ (θ ← { s ↦ ⟨n + Eval ⟦e , θ⟧ , new⟩ }). E[nothing])
 where θ ⊢ E det, θ(s) = ⟨n , new⟩, FV(e) ⊂ dom(θ), ∀ s ∈ FV(e). θ(s) = ⟨_ , ready⟩

[set-new]

(ϱ θ. E[(+= s e)]) ⇁ (ϱ (θ ← { s ↦ ⟨Eval ⟦e , θ⟧ , new⟩ }). E[nothing])
 where θ ⊢ E det, θ(s) = ⟨_ , old⟩, FV(e) ⊂ dom(θ), ∀ s ∈ FV(e). θ(s) = ⟨_ , ready⟩

[set-old]

(ϱ θ. p) ⇁ (ϱ set-ready(θ , 𝕊2). p)
 where (θ ⊢ p blocked or p ∈ done), 

{ S ∈ dom(θ ) | θc(S) = unknown } \ Can⟦p, θ⟧.S = ∅, 

𝕊1 = { s ∈ dom(θ ) | θc(s) = ⟨ev , shared-status⟩ }, shared-status ∈ {new , old}, 
𝕊2 = 𝕊1 \ Can⟦p, θ⟧.sh, 𝕊2 ≠ ∅

[readyness]

se
qu

en
ti

al
 v

ar
ia

bl
es (ϱ θ. E[(var x := e p)]) ⇁ (ϱ θ. E[(ϱ { x ↦ Eval ⟦e , θ⟧ }. p)])

 where θ ⊢ E det, FV(e) ⊂ dom(θ), ∀ s ∈ FV(e). θ(s) = ⟨_ , ready⟩
[var]

(ϱ θ. E[(:= x e)]) ⇁ (ϱ (θ ← { x ↦ Eval ⟦e , θ⟧ }). E[nothing])
 where θ ⊢ E det, x ∈ dom(θ), FV(e) ⊂ dom(θ), ∀ s ∈ FV(e). θ(s) = ⟨_ , ready⟩

[set-var]

(ϱ θ. E[(if x p q)]) ⇁ (ϱ θ. E[p])  where θ ⊢ E det, x ∈ dom(θ), θ(x) ≠ 0 [if-true]

(ϱ θ. E[(if x p q)]) ⇁ (ϱ θ. E[q])  where θ ⊢ E det, θ(x) = 0 [if-false]

ϱ (ϱ θ1. E[(ϱ θ2. p)]) ⇁ (ϱ (θ1 ← θ2). E[p])  where θ1 ⊢ E det [merge]

se
q (ϱ θ. E[(seq nothing q)]) ⇁ (ϱ θ. E[q])  where θ ⊢ E det [seq-done]

(ϱ θ. E[(seq (exit n) q)]) ⇁ (ϱ θ. E[(exit n)])  where θ ⊢ E det [seq-exit]

tr
ap (ϱ θ. E[(trap stopped)]) ⇁ (ϱ θ. E[↓p stopped])  where θ ⊢ E det [trap]

pa
r (ϱ θ. E[(par stopped done)]) ⇁ (ϱ θ. E[stopped ⊓∥ done])  where θ ⊢ E det [parr]

(ϱ θ. E[(par paused stopped)]) ⇁ (ϱ θ. E[paused ⊓∥ stopped])  where θ ⊢ E det [parl]

(ϱ θ. E[(suspend stopped S)]) ⇁ (ϱ θ. E[stopped])  where θ ⊢ E det [suspend]

(ϱ θ. E[(loop p)]) ⇁ (ϱ θ. E[(loop p p)])  where θ ⊢ E det [loop]

(ϱ θ. E[(loop (exit n) q)]) ⇁ (ϱ θ. E[(exit n)])  where θ ⊢ E det [loop^stop-exit]

Fig. 27. Standard Reduction Rules
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θ ⊢ e blocked

θ ⊢ (var x := e p) blocked

θ ⊢ e blocked

θ ⊢ (:= x e) blocked

θ(S) = unknown

θ ⊢ (present S p q) blocked

θ ⊢ p blocked

θ ⊢ (suspend p S) blocked

θ ⊢ p blocked

θ ⊢ (trap p) blocked

θ ⊢ p blocked θ ⊢ q blocked

θ ⊢ (par p q) blocked

θ ⊢ p blocked

θ ⊢ (par p done) blocked

θ ⊢ q blocked

θ ⊢ (par done q) blocked

θ ⊢ p blocked

θ ⊢ (seq p q) blocked

θ ⊢ p blocked

θ ⊢ (loop p q) blocked

θ ⊢ e blocked

θ ⊢ (shared s := e p) blocked

θ ⊢ e blocked

θ ⊢ (+= s e) blocked

s ∈ FV(e) θ(s) = ⟨n , old⟩

θ ⊢ e blocked

s ∈ FV(e) θ(s) = ⟨n , new⟩

θ ⊢ e blocked

θ ⊢ E det

θ ⊢ (seq E q) det

θ ⊢ E det

θ ⊢ (loop E q) det θ ⊢ [] det

θ ⊢ E det

θ ⊢ (suspend E S) det

θ ⊢ E det

θ ⊢ (trap E) det

θ ⊢ E det

θ ⊢ (par E q) det

θ ⊢ E det

θ ⊢ (par done E) det

θ ⊢ E det θ ⊢ p blocked

θ ⊢ (par p E) det

θ ⊢ E det

θ ⊢ e blocked

θ ⊢ p blocked

Fig. 28. Standard Reduction Auxiliary Judgments

There are three par rules: one that always allows reductions in the left-hand side, and two others

that allow reduction on the right, but only when the left is either done or blocked.

Otherwise, the reduction rules in the standard reduction parallel those in calculus. Of course, we

do not take the compatible closure; instead we just reduce in evaluation contexts.

There is one subtle point of this standard reduction: it is not the standard reduction relation

for our calculus, but rather the one for a slightly smaller calculus. In particular, it does not bypass

constructiveness, unlike the calculus (as discussed in section 4). It reaches a stuck state instead.
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8 RELATEDWORK
Three decades of work on Esterel have resulted in a diversity of semantic models. A fundamental

difference of our semantics is that ours is a calculus rather than merely a reduction system—it

has an equational theory. In general, the nature of our semantics makes it better for discussing

transformations to Esterel programs and, more specifically, it lets us prove equivalences in arbitrary

contexts, like those discussed in section 5. By the same token, our semantics is not particularly

well-suited to implementing Esterel.

Prior semantics of Esterel can be broadly categorized as follows:

• Macrostep operational semantics compute the result of an instant in big-step style, where

evaluation relates the state of a program at the beginning of an instant to the state at the end.

• Microstep operational semantics compute the result of an instant as a series of small-step

style transitions until the instant is considered terminated. Our semantics is in this style.

• Circuit semantics gives meaning to Esterel programs by translation to Boolean circuits.

Semantics of Esterel are also classified as logical or constructive. Logical semantics are simpler, but

give meaning to programs that are logically correct but non-constructive. Constructive semantics

use constructive information propagation to enforce both (Berry 2002).

Finally, semantics of Esterel are distinguished by how much of the language they cover. Some

cover all of Kernel Esterel, while others cover only Pure Esterel, which omits shared and sequential

variables.

Berry andGonthier (1992) give two operational semantics of Esterel, a macrostep logical semantics

called the behavioral semantics and a microstep logical semantics called the execution semantics.

They have proved these equivalent and, for the latter, proved a confluence theorem.

Berry (2002) gives an update to the logical behavioral (macrostep) semantics to make it construc-

tive. The logical behavioral semantics requires existence and uniqueness of a behavior, without

explaining how it could be computed, while the constructive behavioral semantics introduces Can
to do it in an effective but restricted way. Berry (2002) also gives the state behavioral semantics,

another macrostep semantics.

The constructive operational semantics (COS) first appears in Potop-Butucaru (2002)’s thesis.

It is a microstep semantics that uses program decorations track control flow and avoid rewriting

the program. The COS model, like the constructive behavioral semantics, avoids giving meaning

to non-constructive programs, but unlike the behavioral semantics, it provides a guide toward

efficient implementation.

Like some of those semantics, our semantics handles the larger language (Kernel Esterel) and

accounts for constructiveness. Unlike all of those semantics, our semantics works by term rewriting,

substituting equals for equals and simplifying programs, which makes it a good basis for proving

program fragment equivalences.

Circuit semantics, such at those that appear in Berry (2002) and Potop-Butucaru et al. (2007),

are the semantics generally used by Esterel implementations like Hiphop.js and Esterel v5. These

implementations use circuits as an intermediate representation during compilation.

These semantics can be used for program optimization (as ours can too), but in a different way

than ours. Because the translation to circuits is complex, it is difficult to connect transformations

done at the circuit level back to the source level, so these semantics would not form a good basis

for, say, refactoring tools, or other more human-centered tasks. Another contrast is that these

semantics are much better suited to whole-program optimizations (e.g., using existing CAD tools

to simplify the circuit) whereas our semantics is better suited to local transformations.

Additional semantics include Tardieu (2007)’s, who uses a different technique than constructive-

ness to eliminate logically incorrect programs. It handles only Pure Esterel.
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Our semantics of Esterel closely follows the work of Felleisen and Hieb (1992) on semantics for

programs with state. In particular, we borrow the idea of internalizing state into terms using a ϱ
term that binds a partial store embedded at any level in a term. However, unlike Felleisen and Hieb,

because of Esterel’s par construct, we do not have unique decomposition into an evaluation context

and redex. This means that the [merge] rule can merge from both sides of a par into the same

position, which complicates our proofs. Our semantics also has to handle many Esterel-specific

notions, which are not a concern in Felleisen and Hieb (1992)’s work.
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