
1

Herbarium Racketensis: A Stroll through the Woods
(Functional Pearl)

VINCENT ST-AMOUR, DANIEL FELTEY, SPENCER P. FLORENCE, SHU-HUNG YOU,

and ROBERT BRUCE FINDLER, PLT @ Northwestern University, USA

Domain-specific languages are the ultimate abstraction, dixit Paul Hudak. But what abstraction should we use

to build such ultimate abstractions? What is sauce for the goose is sauce for the gander: a language, of course!

Racket is the ultimate abstraction-abstraction, a platform for quickly and easily building new ultimate

abstractions. This pearl demonstrates Racket’s power by taking a leisurely walk through the implementation

of a DSL for Lindenmayer systems, the computational model par excellence of theoretical botany.

CCS Concepts: · Software and its engineering→ Extensible languages; Domain specific languages;

Additional Key Words and Phrases: Racket, Lindenmayer systems

ACM Reference Format:

Vincent St-Amour, Daniel Feltey, Spencer P. Florence, Shu-Hung You, and Robert Bruce Findler. 2017. Herbar-

ium Racketensis: A Stroll through the Woods (Functional Pearl). Proc. ACM Program. Lang. 1, ICFP, Article 1

(September 2017), 15 pages.

https://doi.org/10.1145/3110245

1 LINDENMAYER SYSTEMS

## axiom ##

X

## rules ##

F -> FF

X -> F-[[X]+X]+F[+FX]-X

Fig. 1. A branch and its Lindenmayer sys-

tem [Prusinkiewicz and Lindenmayer 1990]

Lindenmayer systems [Lindenmayer 1968] (or L-

systems for short) are a domain-specific language in

the truest sense of the term. Aristid Lindenmayer

was a theoretical biologistÐthe archetypal domain

expertÐstudying plant growth. Lindenmayer rec-

ognized that he needed a language in which to ex-

press his models. Naturally, he developed one whose

model of computation mirrors plant growth.

A Lindenmayer system consists of an initial string

(or axiom), and a set of rewriting rules. The system

evolves by applying the rewriting rules to the axiom,

then applying them again to the result, and so on.

Whereas rewriting rules in an operational semantics

or a context-free grammar are applied one at a time,

rules in a Lindenmayer system are all applied in

parallel, at each step of the computation. This is as

befits the domain. After all, plants do not grow one

leaf at a time; many parts all grow at once.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2107 Copyright held by the owner/author(s).

2475-1421/2017/9-ART1

https://doi.org/10.1145/3110245

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: September 2017.

https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3110245
https://doi.org/10.1145/3110245


1:2 Vincent St-Amour, Daniel Feltey, Spencer P. Florence, Shu-Hung You, Robert Bruce Findler

Fig. 2. A fern and a tree generated by Lindenmayer

systems [Kurth 2007]

To make the computational model concrete,

consider a Lindenmayer system that models the

growth of algae. It has the axiom A and two rewrit-

ing rules: B Ñ A and A Ñ AB. The first rule

captures a juvenile alga becoming an adult and

the second represents an adult asexually reproduc-

ing. After one step, we get the string AB, rewriting

the axiom with the first rule. Next, we have two

opportunities to rewrite and we take them both,

using each rule once to produce the string ABA. In

the third step, we can apply the first rule to the

two As in the string and the second rule to B, and

this produces the string ABAAB.

By associating each character in the string’s

alphabet to a semantic action, we obtain Linden-

mayer systems that produce various kinds of out-

put. For example, we can obtain the picture of

a branch in figure 1 by adding LOGO-like turtle

graphics operations as semantic actions to one of

Lindenmayer’s plant growth models. As is stan-

dard in the L-systems world, we associate F with

an action that moves the turtle forward while

drawing a line, + and - with ones that rotate the

turtle in opposite directions, and [ and ] with ac-

tions that save and restore the turtle’s state.

From Botany to Language. From our canopy

flyby of L-systems, we can tell that any Linden-

mayer system DSL must be able to express axioms,

rules, and semantic actions. Furthermore, a truly

lush DSL must also provide a pleasant interface

for authors, informative error checking, safe es-

cape hatches to a general-purpose language, as

well as tooling to support software development

and evolution.

For the rest of this pearl, we set out on a walk

through the forest of Racket [Felleisen et al. 2015]

using the implementation of this Lindenmayer sys-

tem DSL as our guide. Along the way, we will stop

at various clearings with nice vistas on Racket’s

design and engineering, which makes possible

each of the above DSL aspects. As we stroll, take

a moment to admire the foliage in the figures, all

of which is generated by Lindenmayer systems

implemented in our DSL. The botanical wonders

we encounter on our hike will demonstrate that

Racket makes writing effective DSLs easy, andÐ

dare we sayÐbreathtaking.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: September 2017.



Herbarium Racketensis: A Stroll through the Woods (Functional Pearl) 1:3

2 TRAILHEAD: COMPUTING

LINDENMAYER STRINGS

We begin our journey with an overview of the

computational engine that underlies our Linden-

mayer system DSL. From a DSL technology per-

spective, there is not much to see yet. DSL imple-

mentations, however, are programs first of all, and

thus depend on a modern programming language,

with all the amenities. Before beginning our trek

into the heart of DSL technology, we must pick a

good starting point.

RacketÐand Typed Racket [Tobin-Hochstadt

et al. 2017] in particularÐprovides the seed we

need. It supports not only sophisticated constructs

that programmers have come to expect, such as

higher-order functions, mutable state, types, and

parametricity, but also newly sprouted ones like

occurrence typing [Tobin-Hochstadt and Felleisen

2010]. The rest of this section explains how our

Lindenmayer computational engine is nourished

by these roots.

2.1 The Lay of the Land

A straightforward approach to implementing a

Lindenmayer system is to explicitly keep the cur-

rent string in a linear, sequential data structure

and to scan it at each step, applying the rules in

turn. Unfortunately, this process takes time pro-

portional to the size of the current string, which

typically doubles in each step.

Instead, in keeping with our domain, think of

the state of the system as a tree, where we ap-

ply the rewriting rules at the leaves to generate a

larger tree. Figure 3 shows the first four steps of

this process for our example Lindenmayer system.

Simply keeping this tree at each step does not

improve on the linear data structure, but the tree

can be represented much more compactly, taking

advantage of sharing. More precisely, at each step

we can use the same new leaf for each new A.

Figure 4 shows the DAGs that correspond to the

trees in figure 3 for our Lindenmayer system. An

in-order traversal of the DAGs visits the same leaf

nodes in the same order as an in-order traversal

of the trees, but extending one DAG to the next

requires applying each of the rules only once.

A A B

A B A

A B A A B

Fig. 3. Trees, where successive generations each add

a new layer of leaves

A A B

A B A B

Fig. 4. DAGs, representing figure 3, but with sharing

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: September 2017.



1:4 Vincent St-Amour, Daniel Feltey, Spencer P. Florence, Shu-Hung You, Robert Bruce Findler

1 #lang typed/racket

2

3 (struct (α) cell ([item : (Exp α)])

4 #:mutable)

5 (define-type (Exp α)

6 (U (-> α α)

7 (Listof (cell α))))

8

9 (: run-lindenmayer

10 (@ (α)

11 (-> Natural (cell α)

12 (cell α) (cell α)

13 (-> (cell α) (cell α)

14 (Listof (cell α)))

15 (-> (cell α) (cell α)

16 (Listof (cell α)))

17 α

18 α)))

19 (define (run-lindenmayer iterations

20 axiom

21 nt1 nt2

22 r1 r2

23 init)

24 (for/fold ([nt1 nt1] [nt2 nt2])

25 ([i (in-range iterations)])

26 (define nt3 (cell (cell-item nt1)))

27 (define nt4 (cell (cell-item nt2)))

28 (set-cell-item! nt1 (r1 nt3 nt4))

29 (set-cell-item! nt2 (r2 nt3 nt4))

30 (values nt3 nt4))

31 (collect axiom init))

32

33 (: collect (@ (α) (-> (cell α) α α)))

34 (define (collect axiom init)

35 (define current init)

36 (let loop ([ele (cell-item axiom)])

37 (cond

38 [(list? ele)

39 (for ([ele (in-list ele)])

40 (loop (cell-item ele)))]

41 [else

42 (set! current (ele current))]))

43 current)

44

45 (provide run-lindenmayer)

Fig. 5. Runtime code

2.2 A Sapling

The code in figure 5 implements the essence of

this idea, and is a distilled version of the engine

behind our DSL, pruned to only accept exactly

two non-terminals (nt1 and nt2) and two rules (r1

and r2). How the precise Typed Racket constructs

in this code fit together is not essential, but let us

discuss the key parts.

The functions run-lindenmayer and collect cor-

respond to the two phases of the process, namely

building up the DAG and then traversing it. The

accumulators in the for/fold loop on line 24, nt1

and nt2, hold the current leaves. Lines 26ś27 build

the new leaves for the next iteration and lines 28ś

29 update the old leaves based on the given rules.

Line 30 returns the new leaves as the new accu-

mulators for the next loop iteration.

The collect function is similarly direct: the lo-

cal loop iterates over the DAG, ignoring the shar-

ing and uses functions stored in the leaves to col-

lect a result in the variable current.

The first argument to run-lindenmayer is the

desired number of iterations. The second is the

axiom, represented as a cell. The third and fourth

arguments specify the two non-terminals and the

fifth and sixth specify the right-hand sides of the

corresponding two rules.

The right-hand sides of the rules are given as

functions whose input is a complete set of non-

terminals (both of them, in this case) and whose

output is the particular non-terminals on the right-

hand side of the rule. That is, each function selects

from the available non-terminals, returning the

ones that the corresponding rule uses.

The last argument to run-lindenmayer is the

initial value of an accumulator which is passed

through the the leaf node functions in the or-

der in which they appear in the string; the result

of the final symbol in the string is the result of

run-lindenmayer.

3 1st CLEARING: A PLEASANT

INTERFACE

Calling into the computational engine directly is

fairly complex and subtle. For example, if we were

to encode our earlier algae growth system, we

would need these 11 lines:

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: September 2017.



Herbarium Racketensis: A Stroll through the Woods (Functional Pearl) 1:5

1 (let ([A (cell (λ ([x : (Listof Symbol)])

2 (cons 'A x)))]

3 [B (cell (λ ([x : (Listof Symbol)])

4 (cons 'B x)))])

5 ((inst run-lindenmayer (Listof Symbol))

6 4 ; iterations

7 (cell (list A)) ; axiom

8 A B ; non-terminals

9 (λ (A B) (list A B)) ; rule 1 (A)

10 (λ (A B) (list A)) ; rule 2 (B)

11 '())) ; initial value for result

DSLs, as the ultimate abstractions, really ought

to isolate their users from the complexity of their

computational underbrush. Racket allows the pro-

grammer to extend the language with a new con-

struct, lindenmayer, that is translated to a call to

run-lindenmayer. In Racket parlance, lindenmayer

is a syntax transformer [Dybvig et al. 1992] that

compiles this expression

1 (lindenmayer 4

2 (A)

3 (A -> A B)

4 (B -> A))

into the complex call to run-lindenmayer above.

The transformer is mostly straightforward. It is

written using a pattern language [Culpepper and

Felleisen 2010] that treats ellipses specially:

1 #lang racket

2 (require (for-syntax syntax/parse)

3 "run-lindenmayer.rkt")

4

5 (define-syntax (lindenmayer stx)

6 (syntax-parse stx

7 [(_ iterations

8 (X:id ...)

9 (Y:id -> Z:id ...) ...)

10 #'(let ([Y (cell

11 (λ (l) (cons 'Y l)))]

12 ...)

13 (run-lindenmayer

14 iterations

15 (cell (list X ...))

16 Y ...

17 (λ (Y ...) (list Z ...)) ...

18 '()))]))

19

20 (provide lindenmayer)

Fig. 6. Two Lindenmayer systems that share

rewrites for leaves and branching, but generate the

overall plant structure differently [Prusinkiewicz

1986a]

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: September 2017.



1:6 Vincent St-Amour, Daniel Feltey, Spencer P. Florence, Shu-Hung You, Robert Bruce Findler

Fig. 7. Three trees generated by the same Linden-

mayer system from Aono and Kunii [1984], with

different parameters

In this case, the left-hand side of the syntax pat-

tern rewrite is (_ iterations (X:id ...) (Y:id

-> Z:id ...) ...) and it is used to match against

the concrete syntax in our use of lindenmayer. The

annotation :id rejects the match unless X, Y, and

Z are identifiers. Accordingly, the pattern variable

X binds to a sequence of one identifier containing

only the concrete variable A. The two layers of

ellipses around Z indicate that it is bound to a se-

quence of sequences, namely the right-hand sides

of each of the rules.

The rewrite produces exactly the same code as

we wrote in the example call to run-lindenmayer.

The transformer, however, guarantees that the

result is well-formed. In particular, no inputs to

the transformer can result in a ill-typed call to

run-lindenmayer and there is also no way to gen-

erate a call that supplies functions that misbehave,

e.g. use continuations or signal errors.

Note that the use of ellipses ensures that the

non-terminal arguments and the rule arguments

to run-lindenmayer line up by construction; the

first rule argument will necessarily be the one cor-

responding to the first non-terminal, the second

rule to the second non-terminal, and so on.

From here it is a simple step to write a parser

that accepts non-parenthesized concrete syntax

and inserts parentheses in the right places, turn-

ing the following program into the one above (n

as the number of iterations is common in the Lin-

denmayer system literature):

1 #lang lindenmayer

2

3 ## axiom ##

4 A

5

6 ## rules ##

7 A -> AB

8 B -> A

9

10 ## variables ##

11 n=4

The first line declares the language that the

rest of the file uses. The part which follows the

#lang delimiter must refer to a Racket module that

defines (or re-exports) the three components of

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: September 2017.



Herbarium Racketensis: A Stroll through the Woods (Functional Pearl) 1:7

a Racket language: a reader, a set of transform-

ers, and runtime support functions. A reader is

a function from input streams to S-expressions,

which possibly relies on a lexer and parser. A lan-

guage’s transformers are responsible for compiling

the language’s syntactic forms to existing, more

primitive forms, which can be handled either by

another language or by the Racket compiler itself.

Finally, runtime support functions provide func-

tionality that programs in the language can use

when executing. The Racket runtime system sim-

ply looks up the module referred to by the #lang

line, then leaves1 the rest to the language’s im-

plementation, which makes sense of the rest of

the file and produces a module from its contents.

Languages are therefore free to branch out from

the default Racket language as far as they want.

Our earlier example starts with #lang linden-

mayer, which causes the Racket runtime system

to look for the reader, transformers, and runtime

support of the lindenmayer language. Its reader

calls out to a parser for the above syntax, whose

details are quite thorny and un-pearl like, and thus

omitted here. The lindenmayer transformer above

is the principal transformer provided by the lan-

guage. Finally, section 5 elaborates on the runtime

support portion of the language. As expected, run-

ning this file iterates the Lindenmayer system four

times, which produces the output ABAABABA.

4 2nd CLEARING: BETTER ERROR

CHECKING

As languagesÐDSLs includedÐbecome richer, the

potential for errors in programs in those languages

increases. As such, it is absolutely vital that lan-

guages provide their users with early and accurate

error detection. Thankfully, Racket’s syntax sys-

tem [Flatt 2002] provides considerable support for

error checking.

Therefore, as we enrich our DSL to support

more powerful modelsÐparameterized models,

stochastic models, conditional models, etc.Ðwe

also introduce novel classes of errors program-

mers can make. For example, parameterized Lin-

denmayer systems bring in the notion of argu-

ments, and with them that of arity errors.

1I walnut allow puns to proleaferate. They arboring. śRobby

xprogramy ::= #lang xidentifiery xanythingy˚

Fig. 8. The grammar for valid Racket programs

1 ## axiom ##

2 !(r) F(l) A(r,l)

3

4 ## rules ##

5 A(r,l) -> ^F(l) B(r,l)

6 >(θ*3) B(r,l)

7 >(θ*4) B(r,l)

8 B(r,l) -> [!(r) ^F(l) >(θ*2) A(r*s,l*v)]

1 ## axiom ##

2 !(r) F(l) A(r)

3

4 ## rules ##

5 A(r) -> ^F(l) B(r+s)

6 >(δ*3) B(r+s)

7 >(δ*5) B(r+s)

8 B(w) -> [!(w) ^^F(l) >(δ*6) A(w)]

Fig. 9. Trees based on the Lindenmayer systems at

http://www.geekyblogger.com/2008/04/tree-and-

l-system.html

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: September 2017.

http://www.geekyblogger.com/2008/04/tree-and-l-system.html
http://www.geekyblogger.com/2008/04/tree-and-l-system.html


1:8 Vincent St-Amour, Daniel Feltey, Spencer P. Florence, Shu-Hung You, Robert Bruce Findler

1 ## axiom ##

2 A(1,0.1)

3 ## rules ##

4 A(l,w) -> !(w)F(l)[&(a)B(l*s,w*y)]

5 /(d)A(l*r,w*y)

6 B(l,w) -> !(w)F(l)[-(b)$C(l*s,w*y)]

7 C(l*r,w*y)

8 C(l,w) -> !(w)F(l)[+(b)$B(l*s,w*y)]

9 B(l*r,w*y)

Fig. 10. A parameterized Lindenmayer system and

outputs corresponding to different values of r, a,

and b [Aono and Kunii 1984; Prusinkiewicz and

Lindenmayer 1990]

In a parameterized Lindenmayer system, the

symbols carry values (typically numbers) that can

change as the system evolves. Syntactically, pa-

rameter lists are surrounded with parentheses and

their elements are separated by commas, much

like the mathematical notation for function appli-

cation. Parameter lists are written in a separate

arithmetic language meaning, e.g., that the con-

text determines if a + is rotating the turtle (when

it appears outside of a parameter list) or addition

(when it appears inside a parameter list).

Figure 10 contains an example. In that system,

the symbols A, B, and C each carry two values; the

F, +, -, !, &, and / symbols each carry one value;

and ], [, and $ carry zero.

The A, B, and C symbols are non-terminals, so

their definitions accept two arguments, which can

be used when computing the parameter values on

the right-hand sides of the rules.

The others are terminals, so they accept an ap-

propriate number of arguments and the values

are recorded alongside the symbol for use by the

semantic actions.

The runtime support for our parameterized Lin-

denmayer system implementation consists of func-

tions, one for each symbol, whose arity is deter-

mined by the arity of the corresponding symbol.

Accordingly, that runtime support signals confus-

ing errors about its internal state if the arities are

not used consistently.

To avoid those internal errors, we can design a

syntax transformer that behaves just like Racket’s

function definition form behaves, except that it

also statically checks the arity of all uses of the

function and disallows uses that are not directly

in the function position of an application. The

implementation of this transformer illustrates an

interesting technique, showing how Racket’s syn-

tax transformation system relies deeply on lexical

scope [Flatt 2016].

We call our new syntactic form define/arity

and an example use is:

1 (define/arity (f x y)

2 (sqrt (+ (* x x)

3 (* y y))))

In this example, define/arity transforms itself

into these two definitions:

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: September 2017.



Herbarium Racketensis: A Stroll through the Woods (Functional Pearl) 1:9

1 (define-syntax (f stx)

2 (syntax-parse stx

3 [(use-site-f x y)

4 #'(f-proc x y)]

5 [(use-site-f actual ...)

6 (signal-length-error

7 #'(actual ...)

8 #'(x y)

9 #'f #'use-site-f)]))

10 (define (f-proc x y)

11 (sqrt (+ (* x x) (* y y))))

The first case of the syntax-parse pattern match-

ing form (lines 3ś4) matches when there are two

arguments and it transforms directly into a call to

f-proc. The other case (lines 5ś9) is a fall-through

case which does not produce any result syntax;

instead it calls signal-length-error which raises

a syntax error.

Because fmust do compile-time checking of its

arity, it must be able to inspect its call sites. As

functions are incapable of doing so, f must be a

transformer. This means that define/arity must

itself be a transformer-defining transformer [Dyb-

vig et al. 1992].

The implementation of define/arity in figure

12 makes its transformer-defining nature readily

apparent. On line 9, a new transformer is defined

within the generated code and given the name that

was passed in to define/arity, e.g., def-f. The

generated transformer is responsible for calling a

function (line 12) whose body does the actual com-

putation (lines 18ś19) if the arity at the use site

is correct, and throwing an arity error otherwise

(lines 13ś17).

Two particular aspects of this code are espe-

cially interesting. First, the identifier f-proc is the

same for all uses of define/arity and yet it has

the desired scope. The transformerworks properly

because each use of f-proc comes from a different

use of define/arity and thus the scope of f-proc

is tied to the particular newly introduced trans-

former. The syntax system keeps each f-proc pri-

vate, even if define/arity is used multiple times

in the same scope.

Second, because the definition of define/arity

operates at two levels of transformers simultane-

ously, it is crucial to distinguish what belongs to

Fig. 11. Rendering of A. Tenuissimum, generated by

a Lindenmayer system [Corbit and Garbary 1993]

1 #lang racket

2 (require (for-syntax syntax/parse))

3 (provide define/arity)

4

5 (define-syntax (define/arity stx)

6 (syntax-parse stx

7 [(_ (def-f formal:id ...) e)

8 #`(begin

9 (define-syntax (def-f stx)

10 (syntax-parse stx

11 [(use-f formal ...)

12 #'(f-proc formal ...)]

13 [(use-f actual (... ...))

14 (signal-length-error

15 #'(actual (... ...))

16 #'(formal ...)

17 #'def-f #'use-f)]))

18 (define (f-proc formal ...)

19 e))]))

Fig. 12. The implementation of the define-arity

transformer-defining transformer

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: September 2017.



1:10 Vincent St-Amour, Daniel Feltey, Spencer P. Florence, Shu-Hung You, Robert Bruce Findler

Fig. 13. Plant-like Structures from Lindenmayer sys-

tems in Prusinkiewicz [1986b] and Prusinkiewicz

and Lindenmayer [1990]

each level. In particular, when using the ... syn-

tax to express repetition, it is important to specify

at which level the repetition is happening. Repeti-

tion at the define/arity level is expressed using

the usual ... syntax, whereas repetition inside

the template of the generated transformer must

escape the repetition notation and use the (...

...) notation for its own repetitions. Thus, in the

first step of transformation, we replace formal ...

with the precise arguments x and y in the example,

but we leave actual as it is instead of expanding

it into a concrete set of variables, so that the inner

define-syntax can match any number of actual

arguments and properly signal an error.

5 3rd CLEARING: ESCAPE HATCH TO

RACKET

With what we have seen so far, our DSL can ex-

press most of the components of a Lindenmayer

system, namely axioms, rules, and variables, but

semantic actions are missing. Semantic actions are

necessary to producemeaningful outputs from the

strings generated by the engine. Because the na-

ture of these outputs varies based on the domain

of each systemÐflora [Prusinkiewicz and Linden-

mayer 1990], street maps [Parish andMüller 2001],

musical compositions [Manousakis 2006], build-

ings [Müller et al. 2006], etc.Ðthere is no hope in

having our DSL itself provide support for all of

them directly.

What is needed is a way to fall back to a general-

purpose programming language, to handle each

different kind of output. As such, our DSL provides

a way to access the greater Racket ecosystem. And

because Racket is Racket, this really is a multi-

plexed escape hatch to any of the languages in

the Racket ecosystem: Racket itself, Typed Racket,

Lazy Racket [Barzilay and Clements 2005], Dat-

alog, Scribble [Flatt et al. 2009], or even POP-

PL [Florence et al. 2015].

Racket’s basic unit of interoperability is a mod-

ule. Unlike SML’smodule system, a Racket module

is a compilation unit (and layers like functors are

built on top of Racket modules [Flatt and Felleisen

1998]). Each file that starts with #lang compiles to

a module and each module in Racket may export

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: September 2017.



Herbarium Racketensis: A Stroll through the Woods (Functional Pearl) 1:11

a set of names. A module may bring another mod-

ule’s exported identifiers into scope via require.

In general, different languages export different

classes of values. Nevertheless, languages can in-

teroperate by exporting common classes of values

and then document how such exports work in

terms of lower-level languages.

Most languages in the Racket ecosystem cooper-

ate with a well-known set of low-level values, but

the precise details vary from language to language.

For example, in #lang typed/racket, a function

compiles into a Racket function [Tobin-Hochstadt

et al. 2011] that is wrapped with a contract. In

#lang lazy, functions are also compiled into the

primitive notion of a function, but the arguments

and results may have to be promises.

For our Lindenmayer language, we expect that

the language we interoperate with uses Racket’s

primitive notion of functions and that we can call

them using #lang racket/base (a basic, stripped

down Lisp-like language)’s notion of application.

Concretely, figure 14 shows this interoperability

in action. The first line specifies that the program

is in the lindenmayer language, but now there is

also a second language specified. That language is

used for any text following the separator formed

by equal signs (lines 14 and after).

As described in section 3, every #lang language

must provide a reader function that consumes a

stream of input and returns a raw S-expression,

which is then transformed into a module. The

implementation of #lang lindenmayer uses this

mechanism, of course, but also piggybacks on

Racket’s definitions to find the appropriate func-

tion to construct the S-expression corresponding

to the content after the separator, transforming it

into a module. It then places the module whose

body follows the separator as a submodule [Flatt

2013] of the #lang module and uses require to

extract bindings for all the symbols in the Lin-

denmayer system (in this case A and B), as well as

start and finish. The variables for the symbols

and finish are expected to be functions that are

each called with two arguments. The first argu-

ment is the current state of traversal of the Linden-

mayer string and the second one is a key-value

data structure that contains the information from

the ## variables ## section. The start function

1 #lang lindenmayer typed/racket

2

3 ## axiom ##

4 A

5

6 ## rules ##

7 A -> AB

8 B -> A

9

10 ## variables ##

11 n=20

12

13 =====================================

14

15 (provide (all-defined-out))

16

17 (: start (-> (HashTable Symbol Real)

18 (Pair Natural Natural)))

19 (define (start variables)

20 (cons 0 0))

21

22 (: finish (-> (Pair Natural Natural)

23 (HashTable Symbol Real)

24 Real))

25 (define (finish pr variables)

26 (/ (car pr) (cdr pr)))

27

28 (: A (-> (Pair Natural Natural)

29 (HashTable Symbol Real)

30 (Pair Natural Natural)))

31 (define (A pr variables)

32 (cons (+ (car pr) 1)

33 (cdr pr)))

34

35 (: B (-> (Pair Natural Natural)

36 (HashTable Symbol Real)

37 (Pair Natural Natural)))

38 (define (B pr variables)

39 (cons (car pr)

40 (+ (cdr pr) 1)))

Fig. 14. Lindenmayer system that computes the

golden mean using the algae system from section 1

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: September 2017.



1:12 Vincent St-Amour, Daniel Feltey, Spencer P. Florence, Shu-Hung You, Robert Bruce Findler

1 #lang lindenmayer racket

2

3 ## axiom ##

4 F

5

6 ## rules ##

7 F -> FF-

8 [-F+F+F]+

9 [+F-F-F]

10

11 ## variables ##

12 n=4

13 θ=22.5

14

15 ===================================

16 (require lindenmayer/turtle)

17 (provide

18 (all-from-out lindenmayer/turtle))

Fig. 15. Example tree from Prusinkiewicz [1986b]

accepts only the key-value data structure and it

returns the init argument of run-lindenmayer.

Returning to figure 14, the Lindenmayer system

has two non-terminals, A and B. The typed/racket

program must therefore export functions named

A and B, as well as start and finish. First start is

called, which produces a pair of zeros. Then A and

B are called some number of times depending on

the string. These functions increment the natural

number in their corresponding component and

then finish computes their ratio.

Replacing this code with code that calls into

Racket’s turtle graphics library provides access

to the standard drawing toolkit for Lindenmayer

systems. For example the plant in figure 15 was

produced by running the code in that figure. Be-

cause the symbols used in that Lindenmayer sys-

tem are F, +, and -, as well as the square brackets,

the code below the separator must export iden-

tifiers with those names. In this case, these are

standard names used by many Lindenmayer sys-

tems to control the turtle in a LOGO-like manner,

so our library contains a simple adapter layer on

top of a LOGO graphics library that is part of the

standard Racket distribution.

The astute reader will notice that the language

with which the lindenmayer language interoper-

ates must support identifiers whose names are

open and close square brackets, which may seem

gnarly. Luckily Racket’s identifier syntax is flex-

ible enough to accommodate. And if it were not,

we could design a new language that was a slight

change to Racket that did (or use a different sym-

bol in the Lindenmayer system).

6 4th CLEARING: TOOLING

DSLs are first and foremost Ls, that is languages.

As easy as it may be to forget as programming lan-

guage researchers, languages are much more than

semantics and type systems, or even interpreters

and compilers. Programming tools are but one of

the other necessary pieces that make languages

truly usable and useful.

Therefore, for our Lindenmayer system DSL

to truly live up to programmer expectations, it

should support the kinds of tools programmers

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: September 2017.



Herbarium Racketensis: A Stroll through the Woods (Functional Pearl) 1:13

rely on when authoring and evolving programs:

code intelligence, renaming, refactoring, etc.

Racket, as the ultimate abstraction-abstraction,

makes it almost effortless to add tooling support

to DSLs. By virtue of compiling to Racket, and at

the modest cost of additional meta-information,

Racket-based DSLs get to reuse the considerable

tooling support that already exists for Racket.

Consider figure 16, which shows the program

for the tree in figure 15 inside DrRacket. Because

the symbols in the Lindenmayer program compile

into Racket variables in run-lindenmayer expres-

sions, DrRacket [Findler et al. 2002] sees them as

bound and binding occurrences and is able to cor-

relate them with the original source locations in

the program. These arrows also informDrRacket’s

renaming functionality, allowing the user to re-

name all of the Fs to some other symbol.

Renaming comes for free, simply because of

the compilation process, and because of the sup-

port already built into DrRacket. DrRacket also

provides a platform for other tools that require

only a little bit of work. For example, the coloring

of the text in the window required us to imple-

ment a function that accepts an input stream and

returns the first token in the stream and its col-

oring information. DrRacket can then use that

function to support an efficient, incremental syn-

tax colorer. The concurrency required to support

interactivity is implemented only once as a part

of DrRacket, and each language can (optionally)

plug in language-specific lexeme information to

enable the coloring.

DrRacket also supports the ability to add ar-

bitrary other tools, using a more complex inter-

face. We used this interface to add a refactoring

tool for Lindenmayer systems. A user can select

a range of text in the right-hand side of a rule

and DrRacket will create a new non-terminal that

expands into the selected text, replacing it with a

reference to the new non-terminal. This change is

not semantics-preserving, but can sometimes be a

useful device to delay specific parts of the system

relative to others.

For example, the refactoring tool can introduce

the Y non-terminal into the Lindenmayer system

from figure 1 to rewrite the top portion of fig-

ure 18 to the bottom portion, which generates the

Fig. 16. DrRacket editing the program in figure 15

Fig. 17. Fern leaf from Kurth [2007]

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: September 2017.



1:14 Vincent St-Amour, Daniel Feltey, Spencer P. Florence, Shu-Hung You, Robert Bruce Findler

1 ## axiom ##

2 X

3

4 ## rules ##

5 F -> FF

6 X -> F-[[X]+X]+F[+FX]-X

1 ## axiom ##

2 X

3

4 ## rules ##

5 Y -> [X]+X

6 F -> FF

7 X -> F-[Y]+F[+FX]-X

Fig. 18. Before and after refactoring

Fig. 19. A refactored version of the tree in figure 1

P.S. One of the Lindenmayer system

pictures shows a plant that is not

found in a forest. Did you spot it?

tree in figure 19 (running for two more iterations

than the original). The structure of the refactored

tree shows how the region of the system that cor-

responds to Y affected the overall drawing. That

portion is now delayed, relative to the rest.

The tool cooperates with the implementation of

#lang lindenmayer. The latter’s compilation pro-

cess adds metadata for each symbol in each rule

that records its name and its source location. Then,

when the user selects a region inside a rule, the

tool can map backwards to ensure that the selec-

tion is indeed in the right-hand side of the rule.

Each of these tools requires more programming

effort than the one before, but even the most com-

plex took only two days of programmer effort,

considerably less than would be required to im-

plement similar support in another editor or on

another platform, because they leverage Racket’s

language-building support.

7 EMERGING FROM THE FOREST

Our woodland stroll following the implementa-

tion of our Lindenmayer system DSL has taken

us through a series of clearings, from which we

could admire the power, beauty, and majesty of

Racket’s language-building facilities.

Most of this beauty comes not from any par-

ticular design choiceÐfrom any particular grove,

thicket, or coppiceÐbut rather from how all the

pieces fit togetherÐevery leaf, branch, and tree.

Racket’s entire gestalt aligns to make it a root and

branch abstraction-abstraction.

Return for a self-guided tour. To explore on your

own, our implementation is available online (in-

cluding the source code for all of the Lindenmayer

systems in the paper, and more) at:

https://github.com/rfindler/lindenmayer/

ACKNOWLEDGEMENTS

We would like to thank the anonymous reviewers

for helping us prune overgrown prose and water

wilted explanations, as well as providing us with

a flowering bouquet of additional botanical puns.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: September 2017.

https://github.com/rfindler/lindenmayer/


Herbarium Racketensis: A Stroll through the Woods (Functional Pearl) 1:15

REFERENCES

Masaki Aono and Tosiyasu L. Kunii. Botanical tree image generation. IEEE Computer Graphics and Applications

4(5), 1984.

Eli Barzilay and John Clements. Laziness without all the hard work: combining lazy and strict languages for

teaching. In Proc. Functional and Declarative Programming in Education (@ICFP), 2005.

John D. Corbit and David J. Garbary. Computer simulation of the morphology and development of several

species of seaweed using Lindenmayer systems. Computers & Graphics 17(1), 1993.

Ryan Culpepper and Matthias Felleisen. Fortifying macros. In Proc. ICFP, pp. 235ś246, 2010.

R. Kent Dybvig, Robert Hieb, and Carl Bruggeman. Syntactic abstraction in Scheme. Lisp and Symbolic

Computation 5(4), pp. 295ś326, 1992.

Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, Shriram Krishnamurthi, Eli Barzilay, Jay McCarthy,

and Sam Tobin-Hochstadt. The Racket manifesto. In Proc. SNAPL, 2015.

Robert Bruce Findler, John Clements, Cormac Flanagan, Matthew Flatt, Shriram Krishnamurthi, Paul Steckler,

and Matthias Felleisen. DrScheme: a programming environment for Scheme. JFP 12(2), pp. 159ś182, 2002.

Matthew Flatt. Composable and compilable macros: you want it when? In Proc. ICFP, pp. 72ś83, 2002.

Matthew Flatt. Submodules in Racket: you want it when, again? In Proc. GPCE, pp. 13ś22, 2013.

Matthew Flatt. Bindings as sets of scopes. In Proc. POPL, pp. 705ś717, 2016.

Matthew Flatt, Eli Barzilay, and Robert Bruce Findler. Scribble: closing the book on ad-hoc documentation

tools. In Proc. ICFP, pp. 109ś120, 2009.

Matthew Flatt and Matthias Felleisen. Units: Cool modules for HOT languages. In Proc. PLDI, pp. 236ś248,

1998.

Spencer Florence, Burke Fetscher, Matthew Flatt, Tina Kiguradze, Dennis P. West, Charlotte Niznik, Paul

R. Yarnold, Robert Bruce Findler, and Steven M. Belknap. POP-PL: A patient-oriented prescription

programming language. In Proc. GPCE, pp. 131ś140, 2015.

Winfried Kurth. Specification of morphological models with L-systems and relational growth grammars.

Journal of Interdisciplinary Image Science 5, 2007.

Aristid Lindenmayer. Mathematical models for cellular interactions in development. Journal of Theoretical

Biology 18, pp. 280ś315, 1968.

Stelios Manousakis. Musical L-Systems. MS dissertation, The Royal Conservatory, The Hague, 2006.

Pascal Müller, Peter Wonka, Simon Haegler, Andreas Ulmer, and Luc Van Gool. Procedural modeling of

buildings. In Proc. Conference on Computer Graphics and Interactive Techniques, pp. 614ś623, 2006.

Yoav I H Parish and Pascal Müller. Procedural generation of cities. In Proc. Conference on Computer Graphics

and Interactive Techniques, pp. 301ś308, 2001.

Przemyslaw Prusinkiewicz. Applications of L-systems to computer imagery. In Proc. International Workshop

on Graph Grammars and Their Application to Computer Science, 1986a.

Przemyslaw Prusinkiewicz. Graphical applications of L-systems. In Proc. Proceedings of Graphics Interface /

Vision Interface, 1986b.

Przemyslaw Prusinkiewicz and Aristid Lindenmayer. The Algorithmic Beauty of Plants. Springer Verlag, 1990.

Sam Tobin-Hochstadt and Matthias Felleisen. Logical types for untyped languages. In Proc. ICFP, pp. 117ś128,

2010.

Sam Tobin-Hochstadt, Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, Ben Greenman, Andrew Kent,

Vincent St-Amour, T. Stephen Strickland, and Asumu Takikawa. Migratory typing: Ten years later. In

Proc. SNAPL, 2017.

Sam Tobin-Hochstadt, Vincent St-Amour, Ryan Culpepper, Matthew Flatt, and Matthias Felleisen. Languages

as libraries. In Proc. PLDI, pp. 132ś141, 2011.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: September 2017.


	Abstract
	1 Lindenmayer Systems
	2 Trailhead: Computing Lindenmayer Strings
	2.1 The Lay of the Land
	2.2 A Sapling

	3 1st Clearing: A Pleasant Interface
	4 2nd Clearing: Better Error Checking
	5 3rd Clearing: Escape Hatch to Racket
	6 4th Clearing: Tooling
	7 Emerging from the Forest
	Acknowledgements
	References
	

