
Modular Reifiable Matching
A List-of-Functors Approach to Two-Level Types

Bruno C. d. S. Oliveira
University of Hong Kong

bruno@cs.hku.hk

Shin-Cheng Mu
Academia Sinica

scm@iis.sinica.edu.tw

Shu-Hung You
National Taiwan University

suhorngcsie@gmail.com

Abstract
This paper presents Modular Reifiable Matching (MRM): a new
approach to two level types using a fixpoint of list-of-functors rep-
resentation. MRM allows the modular definition of datatypes and
functions by pattern matching, using a style similar to the widely
popular Datatypes à la Carte (DTC) approach. However, unlike
DTC, MRM uses a fixpoint of list-of-functors approach to two-
level types. This approach has advantages that help with various
aspects of extensibility, modularity and reuse. Firstly, modular pat-
tern matching definitions are collected using a list of matches that
is fully reifiable. This allows for extensible pattern matching def-
initions to be easily reused/inherited, and particular matches to be
overridden. Such flexibility is used, among other things, to imple-
ment extensible generic traversals. Secondly, the subtyping relation
between lists of functors is quite simple, does not require back-
tracking, and is easy to model in languages like Haskell. MRM is
implemented as a Haskell library, and its use and applicability are
illustrated through various examples in the paper.

Categories and Subject Descriptors D.3.3 [Language Constructs
and Features]: Data types and structures

Keywords Modular Datatypes, Subtyping

1. Introduction
Pattern matching and algebraic datatypes are defining features of
languages like Haskell or ML. Pattern matching is useful because
it allows for an easy way to do case analysis of complex structures.
Moreover definitions using pattern matching can often be reasoned
using techniques such as structural induction.

Unfortunately, definitions using pattern matching can be prone
to code duplication, lack of extensibility, or boilerplate code. To
counter some of these limitations approaches such as two-level
types [26] have been proposed in the past. The essential idea of two-
level types is to separate the definition of a datatype into two parts.
Firstly, there is a datatype that represents (part of) the structure
that the programmer is interested on. For example, if the goal is
to represent (simplified) arithmetic expressions, one could write:

data ArithF x = Lit Int | Add x x

In this case ArithF abstracts the recursive occurrences of the
datatype away, using a type parameter x. Note that, because all
occurrences of x are in positive (or argument) positions, ArithF is
trivially a functor. Secondly, a datatype Fix:

data Fix f = In {out :: f (Fix f)}

is applied to an arbitrary functor f to give a type-level fixpoint of
that functor. Therefore, the datatype of arithmetic expressions is
recovered by applying Fix to ArithF.

One big benefit of the two-level types approach is that it does
not require datatypes to be monolithically defined. As popularized
by the Datatypes à la Carte (DTC) [27] approach, it is possible to
define modular parts of a datatype and later compose them using
co-products (or sums) of functors:

data (⊕) f g x = Inl (f x) | Inr (g x)

For example, creating a datatype for abstract syntax of arithmetic
and boolean expressions could be done by combining two inde-
pendently defined functors: the ArithF functor above and another
LogicF functor with the boolean related expressions. The fixpoint
of the co-product of the two functors (Fix (ArithF ⊕ LogicF))
would then represent the abstract syntax datatype for a simple lan-
guage of arithmetic and boolean expressions.

A final ingredient in the two-level types approach is how to
modularly define pattern matching definitions themselves. The
common approach, used for example by DTC, is to use type
classes [28]. The basic idea is that for each functor there is a corre-
sponding type class instance that defines (part of) the operation for
the overall datatype.

Unfortunately there are some wrinkles with the existing two-
level types approach, which prevent wider applicability. A well-
known technical problem [3, 23] is that the natural subtyping rela-
tion on functors cannot be easily defined in languages like Haskell.
For example, both of the following should be valid instances of the
subtyping relation on functors:

g ≺ (f ⊕ g)⊕ h g ≺ f ⊕ (g ⊕ h)

However, due to the Haskell encoding of the subtyping relation and
limitations of type classes, approaches such as DTC only accept
the second instance. Another problem arises from the use of type
class instances to capture modular definitions. For certain modular
operations, it would be interesting to define the new operation by
simply reusing the code for another operation and overriding some
of the cases. A concrete example would be a substitution function
for expressions of a programming language. For most parts of the
abstract syntax, the substitution function behaves like an identity
traversal: a traversal that walks the structure but simply rebuilds
it in the output. The only cases where substitution differs from
the identity traversal is for binders and variables. So, instead of
defining substitution from scratch, an alternative approach would

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.

Haskell’15, September 3-4, 2015, Vancouver, BC, Canada
ACM. 978-1-4503-3808-0/15/09...$15.00
http://dx.doi.org/10.1145/2804302.2804315

82

be to have an identity traversal and simply override the cases for
binders and variables. However this kind of reuse is not easy to
achieve with typical type class approaches.

Contributions This paper presents Modular Reifiable Matching
(MRM), a new approach to two level types using a fixpoint of
list-of-functors representation. The list-of-functors representation
to two-level types has important advantages that help with various
aspects of extensibility, modularity and reuse. Importantly MRM
naturally addresses the wrinkles of the existing two-level types
approach described above.

In MRM functors are combined with a type-level list-of-
functors, instead of using co-products. This allows more precise
kinds when working with functors. In particular, unlike approaches
using co-products, it is possible to distinguish between membership
(∈) and subtyping (≺) of a list-of-functors. Moreover, the subtyp-
ing and membership relations can be encoded easily in languages
like Haskell as datatypes, which can be reified and traversed to
generate operations. This allows MRM to rely less on type classes.

In MRM it is easy to reuse and override parts of existing op-
erations. Instead of type class instances, MRM uses Matches: a
special list type that collects parts of definitions by pattern match-
ing. Similarly to the use of type class instances, Matches allows for
modularity, since new matches can be added to an existing list of
matches. However, unlike type class instances, matches in MRM
are also reifiable and first class: it is possible to define functions
that iterate over a list of matches, or pass a list of matches as ar-
guments to functions. Using this it is easy to inherit, reuse and
override matches of existing operations. In particular, it is possi-
ble to define highly generic extensible queries and transformations
(a generic identity traversal), and reuse those operations to define
traversals that only implement some cases differently.

The use and applicability of MRM is shown through several
examples and case studies. The paper illustrates different practical
scenarios which show how to: implement extensible and modular
definitions; encode subtyping of algebraic datatypes and pattern
matching definitions for reuse; model inheritance and overriding
of operations. Furthermore, two case studies show concrete uses
of MRM. The first shows how to use MRM to define a library of
language components. Besides various extensible functions such
as evaluation and pretty printing, the library of language compo-
nents includes two extensible generic traversals, substitution and
free variables, for dealing with binders. Moreover it shows how to
modularly implement constant function elimination. A second case
study shows a simple library of effect handlers modelled in MRM
as transformations, where the only interesting cases are the opera-
tions of the effects being handled.

In summary, the contributions of this paper are:

• A new Approach to Two-Level Types: We introduce a new
representation for two-level types based on a list-of-functors.

• An Encoding of Subtyping for Datatypes and Operations:
We show how to encode subtyping of closed algebraic datatypes,
and corresponding operations.

• Mechanisms for Inheritance and Overriding of Operations:
We show how to inherit and override matches. This is used,
among other things, to define extensible generic traversals.

• Implementation and Case Studies: The implementation of
MRM is available online1. Furthermore we have two larger
case studies: a library of language components; and a library
for effect handlers.

1 http://www.iis.sinica.edu.tw/~scm/2015/mrm

Fixpoint of a list of functors, injection and projection:

data Fix (fs :: [∗ → ∗]) where . . .

inn :: (Functor f, f ∈ fs)⇒ f (Fix fs)→ Fix fs
prj :: (fs ≺ fs, f ∈ fs) ⇒ Fix fs→ Maybe (f (Fix fs))

First-class Matches:

data Matches (fs :: [∗ → ∗]) (a :: ∗) (b :: ∗) where . . .

Void :: Matches ′[] a b
(:::) :: Functor f ⇒

(f a→ b)→ (Matches fs a b)→ Matches (f ′: fs) a b

Operations on Matches and Fix:

fold :: Matches fs a a→ Fix fs→ a

match :: Matches fs (Fix fs) b→ Fix fs→ b

Figure 1. Basic API for MRM.

2. An Overview of Modular Reifiable Matching
This section provides an overview of MRM. We first introduce the
key concepts of the new two-level types approach. Then MRM is
illustrated using three different application scenarios: datatype ex-
tensibility; datatype subtyping; and extensible generic traversals.
This section introduces MRM from a user point of view. Imple-
mentation details of MRM are introduced in later sections.

2.1 Two-Level Types in MRM
MRM follows an approach based on two-level types to represent
datatypes. Each functor represents part of the overall datatype. For
example, the following functor:

data ArithF x = Num Int | Add x x deriving Functor

describes the shape of a datatype representing arithmetic expres-
sions. The type parameter x abstracts over the recursive occurrences
of the datatype. As in the usual two-level types approach, the def-
inition of a datatype requires a second part: a type-level fixpoint
that replaces all the occurrences of x by a recursive datatype ref-
erence. However MRM uses a fixpoint of a list of functors instead
of the traditional fixpoint of a functor. For example, the datatype of
arithmetic expressions is obtained as follows:

type Arith = Fix ′[ArithF]

Here Fix is a type that takes a (type-level) list of functors. The list of
functors states all the functors (in this case just one) that contribute
constructors for the datatype. The kind of Fix, as well as the types
and kinds of other important datatypes and operations in MRM, are
shown in Figure 1. Note that the use of type-level lists is possible
due to datatype promotion [31]: a recent feature of GHC Haskell.
With datatype promotion it is possible (among other things) to use
the syntax for value-level lists at the type-level.
Folding One way to define functions in MRM is using a f-
algebra and a fold operation taking that algebra. For example, the
following code shows how to define a pretty printing operation for
arithmetic expressions:

ppArithAlg :: ArithF String→ String
ppArithAlg (Num x) = show x
ppArithAlg (Add e1 e2) = e1 ++ "+"++ e2

ppArith1 :: Arith→ String
ppArith1 = fold (ppArithAlg ::: Void)

The function ppArithAlg is an f-algebra (where f is ArithF). The
MRM library provides a fold operator that takes an fs-algebra

83

(encoded as a value of type Matches fs a a) and Fix fs arguments.
For each functor f ∈ fs there must be a corresponding f-algebra.
The operator ::: is used to add one algebra to a list-of-algebras; and
the data constructor Void denotes an empty list of algebras. In the
case of ppArith1 only one algebra (ppArithAlg) is needed.

Matching In MRM it is also possible to define functions using
general recursion. For example, here is an alternative version of
pretty printing using general recursion instead of a fold:

ppArithMatch :: ArithF Arith→ String
ppArithMatch (Num x) = show x
ppArithMatch (Add e1 e2) =

ppArith2 e1 ++ "+"++ ppArith2 e2

ppArith2 :: Arith→ String
ppArith2 = match (ppArithMatch ::: Void)

The match function, also part of MRM, allows defining a function
by pattern matching. In contrast to fold, match replaces all parame-
ter positions in the functor by values of type Arith. Thus a recursive
call has to be done explicitly on those arguments.

The pattern synonyms and view patterns extensions of GHC
Haskell further allows integrating MRM with Haskell’s built-in
pattern matching:

pattern NumP x ← (prj→ Just (Num x))
pattern AddP e1 e2 ← (prj→ Just (Add e1 e2))

ppArith3 :: Arith→ String
ppArith3 (NumP x) = show x
ppArith3 (AddP e1 e2) = ppArith3 e1 ++ "+"++ ppArith3 e2

For f ∈ fs, the function prj tries to project its input to f (Fix fs)
and returns Nothing if failed. Two new patterns NumP x and
AppP e1 e2 are introduced as pattern synonyms of the correspond-
ing projection.

Matches as a List of (Generalized) Algebras The Matches
datatype is inspired by f-algebras. In the traditional formulation
of f-algebras as a sum-of-products

f a→ a ∼= (f1 a + . . . + fn a)→ a

a functor f is built from smaller functors f1 . . . fn. Each smaller
functor is typically a product type. The functors are assembled
together using sums. An alternative way to represent f-algebras is to
use the type-theoretic isomorphism s + t→ a∼= (s→ a) × (t→
a), leading to the following isomorphic representation:

f a→ a ∼= (f1 a→ a) × . . . × (fn a→ a)

This alternative representation of f-algebras is already quite
close in spirit to Matches. However Matches is more general in
that it represents a function of type f a→ b, instead of f a→ a:

f a→ b ∼= (f1 a→ b) × . . . × (fn a→ b)

Such generalized f-algebra type turns out to support many of the
same operations as f-algebras. Moreover it allows expressing gen-
erally recursive operations quite easily. Therefore Matches is built
on top of generalized f-algebras instead of standard f-algebras:

Matches [f1, . . . , fn] a b ∼= (f1 a→ b) × . . . × (fn a→ b)

In other words Matches is just a list of generalized algebras with
corresponding functors f1 . . . fn. Each generalized algebra con-
tributes a partial match to the overall pattern matching definition.

2.2 Extensibility and Modularity
One scenario where MRM is useful is in the development of exten-
sible and modular datatypes and functions. Similarly to approaches
such as Datatypes à la Carte, MRM provides the mechanisms that

make such modular definitions possible. For example, suppose that
the task at hand is to develop modular components for interpreters.
Evaluation of Arithmetic Expressions Section 2.1 already pro-
vided the abstract syntax for arithmetic expressions (ArithF). To
interpret an expression, we first define a type of values:

data VF = N Int | B Bool | F

The three cases denote respectively a number, a boolean result, and
a failure. Note that here we are not trying to support extensible
values as well, to make the example easier to follow. Evaluation of
an arithmetic expression is defined as an ArithF-algebra:

evArith :: ArithF VF→ VF
evArith (Num n) = N n
evArith (Add (N x) (N y)) = N (x + y)
evArith = F

Boolean Expressions Modular abstract syntax and an interpreta-
tion function for boolean expressions is added similarly:

data LogicF x = Bol Bool | If x x x deriving Functor

evLogic :: LogicF VF→ VF
evLogic (Bol n) = B n
evLogic (If (B b) x y) = if b then x else y
evLogic = F

The datatype LogicF is a functor that represents the basic abstract
syntax for boolean expressions. The evLogic function is a LogicF-
algebra that describes the semantics of boolean expressions.
Generic Smart Constructors For convenience, we may define the
following smart constructors:

num :: ArithF ∈ fs⇒ Int→ Fix fs
num = inn ◦ Num

add :: ArithF ∈ fs⇒ Fix fs→ Fix fs→ Fix fs
add x y = inn (Add x y)

bol :: LogicF ∈ fs⇒ Bool→ Fix fs
bol = inn ◦ Bol

iif :: LogicF ∈ fs⇒ Fix fs→ Fix fs→ Fix fs→ Fix fs
iif x y z = inn (If x y z)

Here the function inn, a part of the basic API for MRM, is used to
lift constructors of the functor ArithF into the type Fix fs. Note that
the type of inn allows lifting an arbitrary functor f into a value of
type Fix fs as long as f is one of the functors in the list fs (f ∈ fs).
A Language with Arithmetic and Boolean Expressions A lan-
guage supporting arithmetic and boolean expression can be built
from the modular components. The first step is to define the type of
expressions in the language:

type Expr = Fix ′[ArithF, LogicF]

The type Expr denotes expressions that may have integer and
boolean literals, an addition operator, and if-conditionals.

The evaluation function for this language is defined as a fold
using the combined algebras:

eval :: Expr→ VF
eval = fold (evArith ::: evLogic ::: Void)

This function can be used with the smart constructors to evaluate a
concrete expression:

test = eval (iif (bol True) (add (num 3) (num 4)) (num 5))

Automatic Generation of Matches MRM also supports auto-
matic generation of Matches, similarly to how DTC automatically
generates algebras. Figure 2 shows a class Eval, which generates
an algebra where the carrier type is VF. There is a base instance for

84

class Eval fs where
evalAlg :: Matches fs VF VF

instance Eval (′[]) where
evalAlg = Void

instance Eval fs⇒ Eval (ArithF ′: fs) where
evalAlg = evArith ::: evalAlg

instance Eval fs⇒ Eval (LogicF ′: fs) where
evalAlg = evLogic ::: evalAlg

Figure 2. Automatic generation of Matches using type classes.

′[], which constructs an empty match using Void. For each functor
that supports evaluation, there is also a corresponding instance that
adds the algebra to the list of algebras.

A generic evaluation function geval is then defined using
evalAlg. This function works for any list of functors fs, where
for each functor there is a corresponding instance of Eval.

geval :: Eval fs⇒ Fix fs→ VF
geval = fold evalAlg

2.3 Subtyping and Reusability
A different scenario where MRM is useful is when the program-
ming task in hand involves a set of closed, but related datatypes. We
want to emphasize here that extensibility is not the important as-
pect: in such applications, there is usually no need for extensibility.
However it is still important to achieve reuse across the datatypes
and operations. As pointed out by several researchers the absence
of subtyping among algebraic datatypes can lead to significant code
duplication [1, 8]. For example, when developing a compiler for
a language it is often the case that there is a source language, as
well as multiple intermediate languages. Often these languages are
closely related and are subsets of each other. However many oper-
ations (such as pretty printing) have to be defined for each of these
languages, even though there is obviously a lot of repetition!

MRM comes with a set of functions that allow us to exploit
the natural subtyping relationships between datatypes. Two of these
functions are:

subFix :: fs ≺ gs⇒ Fix fs→ Fix gs

subOp :: fs ≺ gs⇒ (Fix gs→ c)→ Fix fs→ c

The function subFix converts between a datatype where the list of
functors fs is a subset of another list of functors gs. Conversely,
the function subOp converts an operation on a larger datatype into
an operation on a smaller datatype. These two functions allow for
significant reuse of code. For example, consider the datatypes Arith
and Expr. Note that Arith only supports arithmetic expressions,
whereas Expr also supports boolean expressions.
Reuse of Constructors and Values If conventional algebraic
datatypes are used to model abstract syntax, different construc-
tors are needed for numeric values and addition in the Arith and
Expr types. However, in the encoding of Arith and Expr, only a
single set of constructors is needed. Moreover expressions of type
Arith are compatible with expressions of type Expr:

e1 :: Arith
e1 = add (num 4) (num 5)

e2 :: Expr
e2 = subFix e1

In e2, subFix is used to coerce e1 into a value of type Expr.
Reuse of Operations Another form of reuse is that of opera-
tions. If Arith and Expr are modelled with conventional algebraic
datatypes, then two different evaluation functions are needed to

evaluate expressions of the two types. However, in MRM it suf-
fices to define evaluation for the larger type of expressions (in this
case Expr). Because of the subtyping relation on operations on
datatypes, it is possible to reuse the operation on smaller expres-
sions. For example, it suffices to define evaluation of Expr values:

evalExpr :: Expr→ VF
evalExpr = match ((λcase

Num n → N n
Add e1 e2 →

case (evalExpr e1, evalExpr e2) of
(N x,N y)→ N (x + y)

→ F) ::: (λcase
Bol b → B b
If e1 e2 e3 →

case evalExpr e1 of
B b→ if b then evalExpr e2 else evalExpr e3
→ F) ::: Void)

Evaluation on Arith values can be recovered by applying the sub-
typing coercion function subOp to evalExpr:

evalArith :: Arith→ VF
evalArith = subOp evalExpr

The definition of evalExpr deserves some additional explana-
tion. That definition uses general recursion and the match oper-
ator. Since the list-of-functors contains two functors (ArithF and
LogicF), a list of two matches (one for each functor) is needed. To
make the definition as close as possible to a definition using Haskell
pattern matching the matches are inlined and separated by the :::
operator. Additionally we use a simple lambda-case (λcase) syn-
tactic sugar, which allows us to do anonymous case analysis. The
lambda-case sugar was recently added to the GHC compiler. It is
possible to have the same definition without lambda-case, but the
definition is slightly more cumbersome. Lambda-case turns out
to be a handy form of syntactic sugar to program such kinds of
definitions.

Finally note that an advantage of not having to care about
extensibility is that definitions and corresponding types can be
significantly simpler. If extensibility is also a goal, then evalExpr
needs to be split into various modular parts, and each part requires
more complex types.

2.4 Extensible Generic Traversals
A final application of MRM is to do extensible generic traversals.
MRM supports two main kinds of generic traversals: queries and
transformations. Both of these traversals are extensible in the sense
that it is possible to create new traversals from existing ones. We
use extensible queries as an example of generic traversals here.
Both queries and transformations are discussed in detail in Sec-
tion 5. The simpler interface for generic queries is:

queryAlg :: (Traversables fs,Monoid a)⇒ Matches fs a a

The definition queryAlg produces a collection of matches of type
f a → a. This definition is generic in the sense that it is defined
for any list-of-functors fs, where all f ∈ fs are instances of the
Traversable class2. Using solely queryAlg results in a query that
merely returns the identity of the monoid:

emptyQuery :: (Monoid a,Traversables fs)⇒ Fix fs→ a
emptyQuery = fold queryAlg

2 Note that all the functors defined in this paper are also Traversable. We
omit routine Traversable instances from the paper.

85

Free Variables A more interesting example is a generic function
that, for any language that supports the binding constructs,

data Var x = Var String
data Let x = Let String x x

computes the list of free variables of the given term. When we
encounter a Var x, we simply return x in a singleton list. In the
case Let x vs ws, x has to be removed from the free variables of
the body (ws).

fVarsAlg :: (Traversables fs,Var ∈ fs, Let ∈ fs)⇒
Matches fs [String] [String]

fVarsAlg =
(λ(Var x) → [x]) >::
(λ(Let x vs ws)→ vs ‘union‘ (ws r x)) >:: queryAlg

xs r x = filter (not ◦ (x = =)) xs

For other cases we fall back to the default case specified by
queryAlg. Since lists are monoids, the free variables of the sub-
components are combined using (++). If there is no subcomponent,
the result is simply the identity [] of the monoid. Note that we use
an operator >:: to override an existing match in the structure:

(>::) :: f ∈ fs⇒ (f a→ b)→ Matches fs a b→ Matches fs a b

With this operator the two binding cases defined in fVarsAlg over-
ride the default cases provided by queryAlg. Finally, the list of free
variables may be collected by folding the algebra:

freeVars1 = fold fVarsAlg

Different Semantics and New Language Extensions A generic
free variables function, which accounts for extensible syntax, must
necessarily be extensible. For example, adding new language exten-
sions with binders requires extending free variables with new cases.
Moreover, sometimes a language may reuse the same abstract syn-
tax, but have a different interpretation for that syntax. In that case
the old interpretation must be overridden. In the following exam-
ple we illustrate both cases, and make the necessary adaptations by
extending fVarsAlg.

data Lam x = Lam String x

fVarsAlgExt :: (Traversables fs, Lam ∈ fs,Var ∈ fs,
Let ∈ fs)⇒ Matches fs [String] [String]

fVarsAlgExt =
(λ(Let x vs ws)→ (vs ‘union‘ ws)r x) >::
(λ(Lam x vs) → vs r x) >:: fVarsAlg

Here, the idea is that a lambda binder construct is included. Ad-
ditionally let expressions are interpreted differently: instead of a
simple let we now assume that let is interpreted as letrec (which
changes how free variables are computed). In order to account for
these changes we need two things: 1) the Let interpretation for free
variables must be overridden; and 2) we need a new case for the
lambda construct. However, the case for variables is still inherited
from fVarsAlg.

A concrete language that uses the new version of free variables
can be created as follows:

type Exp = Fix ′[Var, Let, Lam,ArithF, LogicF]

freeVars2 :: Exp→ [String]
freeVars2 = fold fVarsAlgExt

Note that we never had to define free variables for the cases in
ArithF and LogicF. Those cases were inherited from queryAlg.

3. Basic Infrastructure
In this section we introduce the basic infrastructure supporting
MRM, including fixpoints, match, fold, and paramorphism.

3.1 Fixpoint of List-of-Functors
Fixpoints in MRM are represented using the following datatype:

data Fix (fs :: [∗ → ∗]) where
In :: Functor f ⇒ Elem f fs→ f (Fix fs)→ Fix fs

In each node of a tree of type Fix fs we may use any f which is
a member of fs. The constructor of Fix thus takes evidence that f
is indeed a member of fs (Elem f fs) as an argument. The type
Elem f fs is defined as follows:

data Elem (f :: ∗ → ∗) (fs :: [∗ → ∗]) where
Here :: Elem f (f ′: fs)
There :: Elem f fs→ Elem f (g ′: fs)

The constructor Here witnesses that f occurs in f ′: fs. If xs is
evidence that f occurs in fs, There xs is evidence that f occurs
in g ′: fs. One can also see Elem f fs as an unary index into fs. For
example, There (There (There Here)) :: Elem f fs states that f
occurs at the third position of fs, counting from the zeroth position.

It is cumbersome having to provide the evidence each time.
Fortunately, the evidence can be generated by a type class with two
(overlapping) instances: f is certainly a member of f ′: fs, and if f
is in fs, it is in g ′: fs as well.

class f ∈ fs where
witness :: Elem f fs

instance f ∈ (f ′: fs) where
witness = Here

instance (f ∈ fs)⇒ f ∈ (g ′: fs) where
witness = There witness

The smart fixpoint constructor is then defined as:

inn :: (f ∈ fs,Functor f)⇒ f (Fix fs)→ Fix fs
inn = In witness

The Matches Datatype As explained in Section 2.1, Matches fs a b
is the type of a list of functions f a → b, for each f in fs, where
Void is the empty list, while (:::) attaches a function f a → b to
the left of a list:

data Matches (fs :: [∗ → ∗]) (a :: ∗) (b :: ∗) where
Void :: Matches ′[] a b
(:::) :: Functor f ⇒ (f a→ b)→ Matches fs a b

→ Matches (f ′: fs) a b

Using Elem f fs as an index, we can extract the corresponding
function f a→ b in Matches fs a b:

extractAt :: Elem f fs→ Matches fs a b→ (f a→ b)
extractAt Here (f :::) = f
extractAt (There pos) (::: fs) = extractAt pos fs

A list Matches fs (Fix fs) b can be applied to a fixpoint Fix fs by
the function match:

match :: Matches fs (Fix fs) b→ Fix fs→ b
match fs (In pos xs) = extractAt pos fs xs

3.2 Fold for List-of-Functors Datatypes
Many functions in this paper are folds. To fold over a value of type
Fix fs, we need a list of f-algebras, one for each f in fs, which is a
special case of matches:

86

type Algebras fs a = Matches fs a a

The fold for Fix fs can be defined as below:

fold :: Algebras fs a→ Fix fs→ a
fold ks (In pos xs) = extractAt pos ks (fmap (fold ks) xs)

In each step of the computation, fold extracts from ks the algebra
designated by the index pos. Note that fmap is also instantiated to
the functor f designated by pos.

Like ordinary folds, our fold possesses a universal property
(where, for clarity, we let fmapf denote the f instance of fmap):3

Theorem 3.1 (Universal Property). For all h ::Fix fs→ a we have
h = fold ks if and only if

(∀pos :: Elem f fs. h ◦ In pos = extract pos ks ◦ fmapf h)

from which a fusion law directly follows:

Theorem 3.2 (Fusion). Given ks :: Algebras fs a, h :: a→ b, and
gs :: Algebras fs b, we have h ◦ fold ks = fold gs if

(∀pos :: Elem f fs. h ◦ extract pos ks =
extract pos gs ◦ fmapf h)

3.3 Simple Operations on Matches, and Paramorphism
Matches are not arrows, since one cannot come up with a general
definition of arr. However, many other arrow operators do turn
out to be useful on matches. To begin with, pure functions can be
composed before and after matches:

(�∧) :: Matches fs b c→ (a→ b)→ Matches fs a c
Void�∧ g = Void
(h ::: hs)�∧ g = (h ◦ fmap g) ::: (hs�∧ g)

(∧�) :: (b→ c)→ Matches fs a b→ Matches fs a c
g ∧� Void = Void
g ∧� (h ::: hs) = (g ◦ h) ::: (g ∧� hs)

Having (∧�) actually makes Matches fs a a functor, if we let
fmap = (∧�). Given two list of matches having the same input
type, one can construct their “split”:

(&&&) :: Matches fs a b→ Matches fs a c
→ Matches fs a (b, c)

Void &&& Void = Void
(h ::: hs) &&& (k ::: ks) = (λx→ (h x, k x)) ::: (hs &&& ks)

Paramorphism Not all functions are folds. All primitive recur-
sive functions, however, can be implemented by a pattern called a
paramorphism [21]. A paramorphism differs from a fold in that, in
each step, we can use the recursively computed result as well as
the original subtrees. Paramorphisms can be implemented by a fold
that returns the desired result together with a copy of the input.

para :: Matches fs (a,Fix fs) a→ Fix fs→ a
para ks = fst ◦ fold (ks &&& (inns�∧ snd))

A step of the computation in a paramorphism can be modelled by
ks :: Matches fs (a,Fix fs) a: each subtree has been folded to
(a,Fix fs), a result and a copy of the input, from which we should
compute some result of type a. To re-assemble the original input,
we use inns�∧ snd. Here inns is the initial algebra for Fix fs:

inns :: Algebras fs (Fix fs)

The definition of inns is a special case of transAlg, which we
present in Section 4.2. The split ks &&& (inns�∧ snd) thus has
type Algebra fs (a,Fix fs), which we can use in a fold.

3 An Agda proof of the universal property for polynomial base functors is
included in the distributed code.

4. Subtyping in Matches and Fixpoints
The matches and fixpoints introduced in the previous section are
useful to encode modular and reusable function definitions and
datatypes. These constructions naturally lead to questions about the
relationship between matches or fixpoints which use related sets
of functors. When a match or fixpoint uses a subset of functors
of another match or fixpoint, we may expect that some subtyping
relation exists. This section discusses those subtyping relationships
and formalizes them as part of MRM.

4.1 Subtyping, Intuitively
Although many functional programming languages do not support
subtyping, it is interesting to consider what subtyping relationships
are expected to hold for algebraic datatypes. Consider the following
Haskell pseudo-code:

data Exp = Lit Int | Add Exp Exp

data ExpExt extends Exp = Mul Exp Exp

The first definition is just a standard Haskell datatype declaration.
The second definition is not valid Haskell, but expresses the inten-
tion of declaring the datatype ExpExt as an extension of Exp. In
other words ExpExt should have all the constructors of Exp and,
additionally, Mul.
Subtyping Between Datatypes Lets consider what happens with
values of the datatypes. If we have an expression:

e1 :: Exp
e1 = Add (Lit 4) (Lit 5)

then it should be clear that it is always safe to use this expression
as a value of ExtExp as well.

e2 :: ExpExt
e2 = e1

After all ExpExt contains all the constructors of Exp. This indi-
cates that Exp is a subtype of ExpExt. More generally datatype
extensions (i.e. with additional constructors) become supertypes of
the extended datatypes.
Subtyping Between Operations Now consider the following def-
inition, which performs evaluation ExpExt, respectively:

evalExpExt :: ExpExt→ Int
evalExpExt (Lit x) = x
evalExpExt (Add e1 e2) = evalExpExt e1 + evalExpExt e2
evalExpExt (Mul e1 e2) = evalExpExt e1 ∗ evalExpExt e2

ExpExt extends Exp, and evalExpExt deals with all the cases of
Exp already. Thus it should be clear that it is safe to also apply the
function to values of type Exp:

evalExp :: Exp→ Int
evalExp = evalExpExt

This hints for another subtyping relation between functions on re-
lated datatypes: functions of type ExpExt → A are subtypes of
functions with type Exp → A (for some type A). More generally
functions, whose input are of the type of the datatype extension,
become subtypes of functions where the input type is the extended
datatype. This is a consequence of the contravariant nature of func-
tions with respect to subtyping.
Subtyping Relations and Extension The subtyping relationships
can be summarized as follows, with respect to extension:

(extension) ExpExt extends Exp
(datatype subtyping) Exp ≺ ExpExt
(operation subtyping) ExpExt→ A ≺ Exp→ A

87

Note that the subtyping relation on datatypes follows the inverse
direction of the extension: ExpExt is an extension and a supertype
of Exp. This is unlike the subtyping relation between operations
or the usual subtyping relation between classes in mainstream OO
languages, which follow the same direction of the extension. Tech-
nically speaking, the subtyping relation on operations is said to be
covariant (it follows the same direction as extension); whereas the
subtyping relation on datatypes is contravariant (it follows the op-
posite direction of extension).

4.2 Modelling Subtyping
The intuitive notions of subtyping discussed in Section 4.1 can
be modelled precisely in MRM. Essentially an operation defined
by pattern matching corresponds to a set of matches, whereas a
datatype corresponds to a fixpoint of functors.
Subset of Lists of Functors The first step is to model a subset
relation between two lists of functors:

data Sub (fs :: [∗ → ∗]) (gs :: [∗ → ∗]) where
SNil :: Sub ′[] gs
SCons :: (Functor f)⇒

Elem f gs→ Sub fs′ gs→ Sub (f ′: fs′) gs

The basic idea is that a list fs represents a subset of another list gs
if every member of fs is also a member of gs. This is expressed
inductively with two cases: (SNil) if fs is empty, then it clearly is
a subset of any list gs; (SCons) for f ′: fs′ to represent a subset of
gs, f must be a member of gs and fs′ must represent a subset of gs.
Evidence for the subset relation can be built automatically using a
type class fs ≺ gs, if we can generate evidence Sub fs gs. The
two cases mentioned above are respectively taken care of by two
instance declarations.

class fs ≺ gs where
srep :: Sub fs gs

instance ′[] ≺ gs
where srep = SNil

instance (Functor f, f ∈ gs, fs ≺ gs)⇒ (f ′: fs) ≺ gs
where srep = SCons witness srep

Importantly note that the relation fs ≺ gs does not require back-
tracking and can be defined in a straightforward way using Haskell
type classes.
Fixpoint Subtyping The subtyping relation between datatypes
can be materialized as a coercion function:

subFix :: (fs ≺ gs)⇒ Fix fs→ Fix gs
subFix = fold transAlg

This function converts a value of type Fix fs to a less restrictive type
Fix gs, which can be done because every functor allowed by fs is
also allowed by gs. In terms of implementation, subFix, expressed
as a fold, takes an algebra transAlg (to be read transformation
algebra), defined in terms of the auxiliary transAlg′:

transAlg′ :: Sub fs gs→ Algebras fs (Fix gs)
transAlg′ SNil = Void
transAlg′ (SCons pos xs) = In pos ::: transAlg′ xs

Note that In pos has type f (Fix gs)→ Fix gs for some f. For In to
type check, we have to provide an evidence that f is a member of gs,
for which we have pos, extracted from the evidence of Sub fs gs.

transAlg :: (fs ≺ gs)⇒ Algebras fs (Fix gs)
transAlg = transAlg′ srep

The function transAlg basically generates a sequence of In, each
supplied an index. The function inns introduced in Section 3.3 is a
special case when fs = gs.

Operation Subtyping Using the subtyping relation of fixpoints, it
is easy to define subtyping of operations as a coercion function:

subOp :: (fs ≺ gs)⇒ (Fix gs→ c)→ Fix fs→ c
subOp f = f ◦ subFix

Matches Subtyping Finally, because in MRM matches are first-
class, we have an additional subtyping relation between matches.
With the subset relation Sub, the subtyping relation between
matches can be materialized as a coercion function:

subMatch′ :: Sub fs gs→ Matches gs r a→ Matches fs r a
subMatch′ SNil = Void
subMatch′ (SCons pos xs) as =

extractAt pos as ::: subMatch′ xs as

subMatch :: (fs ≺ gs)⇒ Matches gs r a→ Matches fs r a
subMatch = subMatch′ srep

The function subMatch′ expresses the fact that we can always
convert from a larger set of matches to a (smaller) subset of these
matches. The function subMatch provides a variant of subMatch′

which takes the evidence for the subset relationship implicitly.
Summary of Subtyping Relations The following table shows a
summary of subtyping relations with respect to the subset relation:

(subset relation) fs ≺ gs
(fixpoint subtyping) Fix fs ≺ Fix gs
(operation subtyping) Fix gs→ A ≺ Fix fs→ A
(matches subtyping) Matches gs a b ≺ Matches fs a b

Note that in this case, the subtyping relation on fixpoints is co-
variant with respect to the subset relation. In contrast, both oper-
ation and matches subtyping are contravariant with respect to the
subset relation.

5. Queries and Transformations
In this section we demonstrate how various operations on datatypes
can be implemented in our framework. Like previous work on
generic traversals [15] we start with two kinds of operations: a
transformation traverses its input and returns a result of the same
type, possibly altered, while a query yields a result of a fixed type.

In our running examples, we will use the following base func-
tors, intended to denote λ terms,

type VName = String

data Var x = Var VName data Lam x = Lam VName x
data App x = App x x data Let x = Let VName x x

with smart constructors

var :: Var ∈ fs ⇒ VName→ Fix fs
app :: App ∈ fs ⇒ Fix fs→ Fix fs→ Fix fs
lam :: Lam ∈ fs⇒ VName→ Fix fs→ Fix fs
lett :: Let ∈ fs ⇒ VName→ Fix fs→ Fix fs→ Fix fs

Routine instance derivations (Functor, etc) and definitions of the
smart constructors are omitted.

5.1 Generic Transformations: Reifying Subtyping
The function subFix, introduced in Section 4.2, can be seen as a
simple transformation. At the level of values, subFix merely copies
each constructor. The type, due to transAlg, states that the output
can be the fixpoint of some gs that is a superset of fs — gs must
accommodate at least all the functors in fs, and could allow more.

In fact, transAlg acts as the “default case” of transformations,
which keeps the input unchanged. More complex transformations
can be formed by extending transAlg, in a style similar to Lämmel

88

et al. [19]. For example, the following function rename′ traverses
through the input, renames each variable name s by s++"_", while
leaving other constructors untouched.

rename′ :: (fs ≺ gs,Var ∈ gs)⇒ Fix (Var ′: fs)→ Fix gs
rename′ = fold ((λ(Var s)→ var (s ++ "_")) ::: transAlg)

It is instructive examining the type of rename′. The constraint
Var ∈ gs comes from the use of var — the output could be the
fixpoint of any gs, as long as it allows Var and all functors in fs. The
input must be the fixpoint of Var ′: fs, because a match expecting
Var is appended the front of transAlg. The function can be applied
to any fs and gs meeting the constraints, leaving room for further
extension, until they are instantiated at the site of application.

It is more flexible if Var may appear in places other than the
head. The call overrideAt pos k ks replaces, by k, the match in ks
designated by pos:

overrideAt :: Elem f fs→ (f a→ b)→
Matches fs a b→ Matches fs a b

overrideAt Here g (::: fs) = g ::: fs
overrideAt (There pos) g (f ::: fs) = f ::: overrideAt pos g fs

We may then define an operator (>::) that overrides a match by
f a→ b, as long as f is provably in fs:

(>::) :: f ∈ fs⇒ (f a→ b)→
Matches fs a b→ Matches fs a b

(>::) = overrideAt witness

Using (>::) we can define a rename that accepts any Fix fs as long
as fs allows Var:

rename :: (fs ≺ gs,Var ∈ gs,Var ∈ fs)⇒ Fix fs→ Fix gs
rename = fold ((λ(Var s)→ var (s ++ "_")) >:: transAlg)

In most applications, a function like rename is not supposed to
change the type of its input. Indeed, we may let fs = gs, and will
do so for examples later.

The prj function introduced in Section 2.1 can also be imple-
mented by overriding a Just match in a list of constant matches
generated by constMatch.

prj :: (fs ≺ fs, f ∈ fs)⇒ Fix fs→ Maybe (f (Fix fs))
prj = match (Just >:: constMatch Nothing)

Narrowing Transformations So far, it appears that the output
of a transformation is in general less restrictive than its input. In
rename :: . . .Fix fs → Fix gs, we have fs ≺ gs. Indeed, we can
always cast Fix fs to a less restrictive Fix gs using subFix.

However, there are also ways to constraint the output to be more
restrictive than the input. Consider the task, which we call “desug-
aring”, of translating a language with λ-abstraction, application,
and Let-binding into a core language without Let. The only case
we need to explicitly handle is Let:

desugarAlg = (λ(Let x e1 e2)→ app (lam x e2) e1) :::
transAlg

The most general type we can give to desugarAlg is

desugarAlg :: (fs ≺ gs,App ∈ gs, Lam ∈ gs)⇒
Algebras (Let ′: fs) (Fix gs)

since Let is the first component of the matches, and the use of app
and lam demands that gs allows App and Lam.

We can, however, let gs = fs and give both desugarAlg and the
following desugar a more restrictive type:

desugar :: (fs ≺ fs,App ∈ fs, Lam ∈ fs)⇒
Fix (Let ′: fs)→ Fix fs

desugar = fold desugarAlg

It is clearer that the input type allows Let, while the functor is
removed from the head of the list in the output. The output is thus
“narrower” than the input. We will see more applications of such
narrowing transformations in Section 6.

Note that fs ≺ fs is not a redundant constraint. It cannot be
discharged not only because the type class mechanism of Haskell
is not expressive enough to determine that (≺) is reflexive, but
because fs ≺ fs also demands that each element in fs is a Functor.
Transformation in a Paramorphism We now look at a more
complex transformation: define subst such that subst v t e sub-
stitutes each free occurrence of variable v in term e for term t. The
occurrences of v in Lam w e, if v = w, are bound and must not be
substituted.4

The call subst v t explicitly handles two cases: Var and Lam,
and thus only requires its input to contain these two cases. In the
Var w case we perform substitution if v = w. In the Lam w e′ case
when v = w, however, e′ is already substituted in the recursive call.
We need a copy of the original, unsubstituted body. The function
subst v t is therefore a paramorphism.

The main work is performed in substMatch defined below, a list
of matches whose input type is (Fix fs,Fix fs), the first component
being the substituted term, while the second the original term.
Notice, in the Lam case, that the recursive part now contains a pair
(e′, e), where e′ is the substituted body while e is the original one.

substMatch :: (fs ≺ fs,Var ∈ fs, Lam ∈ fs)⇒
String→ Fix fs→ Matches fs (Fix fs,Fix fs) (Fix fs)

substMatch v t =
(λ(Var w)→ if (v = = w) then t else var w) >::
(λ(Lam w (e′, e))→

if (v = = w) then lam w e else lam w e′) >::
transAlg�∧ fst

The default cases in substMatch are constructed by transAlg�∧

fst, which extracts the first components computed from the sub-
trees, that is, the substituted terms, and assembles them. We can
use substMatch in para, introduced in Section 3.3:

subst :: (fs ≺ fs,Var ∈ fs, Lam ∈ fs)⇒
String→ Fix fs→ Fix fs→ Fix fs

subst v t = para (substMatch v t)

Thus subst is a substitution operator that works for any term that
contains Var and Lam, with other cases being default cases. Note
also that substMatch is extensible, just as the matches for free
variables presented in Section 2.4. In the case Lam w (e′, e), due
to lazy evaluation, the substituted body e′ is only evaluated when
necessary. Alternatively, one may use a “Mendler-style” paramor-
phism:

mpara :: (∀r.(r→ a, r→ Fix gs)→ Matches gs r a)
→ Fix gs→ a

mpara ks (In pos xs) = extractAt pos (ks (mpara ks, id)) xs

where ks may choose to makes recursive calls only when necessary.

5.2 Queries: Reifying Traversable Functors
Queries also traverse the input data. Unlike transformations, they
collect information of a fixed type during the traversal. One thus
has to specify how the information collected from the subtrees is
combined.

The Haskell type class Monoid models a monoid with an iden-
tity element ι and an associative binary operator (⊕). If a type con-
structor f is in class Traversable, we have the following method:5

4 Being only a short example, we do not deal with name capturing.
5 The method actually belongs to class Foldable, but all Traversable types
are Foldable.

89

foldMap :: Monoid m⇒ (a→ m)→ f a→ m

The function foldMap k traverses the input f-structure, converts
components of type a to m, and combines them using (⊕). To per-
form a query on Fix fs, we demand that the result type is a monoid,
and each f in fs is Traversable. We define a datatype TList fs, an
evidence that every member in fs is in the class Traversable, and
let the class Traversables generate such evidences:

data TList (fs :: [∗ → ∗]) where
TNil :: TList ′[]
TCons :: Traversable f ⇒ TList fs→ TList (f ′: fs)

class Traversables (fs :: [∗ → ∗]) where trep :: TList fs

instance Traversables ′[] where trep = TNil

instance (Traversable f,Traversables fs)⇒
Traversables (f ′: fs) where

trep = TCons trep

The function qMMatch generates a list of matches by applying
a function a → b to all the values, and combines them using
foldMap, if b is a monoid:

qMMatch :: Monoid b⇒
TList fs→ (a→ b)→ Matches fs a b

qMMatch TNil k = Void
qMMatch (TCons xs) k = foldMap k ::: qMMatch xs k

Like transformations, we start with a basic query algebra that does
nothing, to be extended for each application. The list of algebras
queryAlg assumes that the carrier a is a monoid and collects them
using (⊕).

queryAlg :: (Monoid a,Traversables fs)⇒ Algebras fs a
queryAlg = qMMatch trep id

More usage of queries has been demonstrated in Section 2.4.

5.3 Monadic Matchings
For more complex computation, we may need to carry a state,
produce output, or raise exception during the traversal. That is, we
need the transformation to yield monadic results.

MRM was designed from scratch to allow reification of the
matches in the Matches structure. We can lift pure matches
Matches fs a b to monadic matches of type Matches fs (m a) (m b).
It is important to note that monadification was previously presented
as a program transformation [11], whereas in MRM it is actually
definable as a function.

A functor f in the class Traversable provides a method

sequence :: Monad m⇒ f (m a)→ m (f a)

which we may use to combine monadic results of the substructures.
The function mlift′ goes through a list of pure matches and replaces
each k :: f a→ b by liftM k ◦ sequence, of type f (m a)→ m b:

mlift′ :: Monad m⇒ TList fs→ Matches fs a b
→ Matches fs (m a) (m b)

mlift′ TNil Void = Void
mlift′ (TCons ts) (k ::: ks) =

(liftM k ◦ sequence) ::: mlift′ ts ks

mlift :: (Monad m,Traversables fs)⇒
Matches fs a b→ Matches fs (m a) (m b)

mlift = mlift′ trep

The default transformation transAlg can be lifted to a list of
monadic matches that re-assembles its input, while performing
monadic actions:

transMAlg :: (Monad m,Traversables fs, fs ≺ gs)⇒
Algebras fs (m (Fix gs))

transMAlg = mlift transAlg

Lifting Pure Algebras Recall that in Section 2.2 we defined a
small language of expressions, with two evaluation algebras:

evArith :: ArithF VF→ VF
evLogic :: LogicF VF→ VF

Suppose now that we want to extend the language with variables
and let-binders. An environment is needed to keep track of vari-
ables and their values, and a reader monad comes in handy here to
help managing the environment:

type Env = [(VName,VF)]

evVar :: MonadReader Env m⇒ Var (m VF)→ m VF
evVar (Var x) =

do env← ask
return (maybe F id (lookup x env))

evLet :: MonadReader Env m⇒ Let (m VF)→ m VF
evLet (Let x e1 e2) =

do v1 ← e1
local ((x, v1):) e2

The evaluation algebra itself is unsurprising. Lookup errors are
handled using the failure value (F). In the evaluation of let binders
the environment is locally extended with the result of evaluating
e1. Existing algebras evArith and evLogic may then simply be
converted to work with the monadic algebras:

eval :: Fix ′[Var, Let,ArithF, LogicF]→ VF
eval e = runReader (fold alg e) [] where

alg = evVar ::: evLet ::: mlift (evArith ::: evLogic ::: Void)

Some final words, before we close this section, on the expressive-
ness of our queries/transformations library: the situation in MRM
is not different from that in other combinator-based libraries. The
provided combinators are fairly general and can deal with a lot of
cases, but there are programs that cannot be handled with the com-
binators. However users can also write their own combinators and
extend MRM and support additional applications.

6. Case Studies
In this section we look at two larger examples. The first uses
a mixture of transformation, query, folding, and matching. The
second is inspired by monadic effect handling.

6.1 Constant Function Elimination
We have developed a library of language components, some of
which (e.g. substitution and free variables) have been presented.
Here we discuss a more involved transformation adopted from
Lämmel et al. [19].

A term (λx→ e) is a constant function if x does not occur free
in e. In our simple language, occurrences of (λx → e1) e2, where
(λx → e1) is a constant function, can be replaced by e1 without
changing its semantics. Our task is to perform such replacements.

pattern LamP x body← (prj→ Just (Lam x body))
pattern AppP e1 e2 ← (prj→ Just (App e1 e2))

cfe1 (AppP (LamP x e1) e2)
| not (x ∈ freeVars e1) = e1

cfe1 (In pos xs) = In pos (fmap cfe1 xs)

Here we create two pattern synonyms as in Section 2.1. If x occurs
free in body in the AppP-LamP case (freeVars is freeVars2 with a

90

more general type), then lam x e1 is a constant function and we can
extract its body. Otherwise we recursively apply cfe1 to the input.

Let the input type be Fix fs. One can see that cfe1 demands
that fs allows App and Lam, while the call to freeVars further
demands that fs allows Var and Let. Indeed, cfe1 can be assigned
the following type:

cfe1 :: (Traversables fs,Var ∈ fs,App ∈ fs, Lam ∈ fs,
Let ∈ fs, fs ≺ fs)⇒ Fix fs→ Fix fs

Optimizing cfe The function cfe1 calls freeVars once in every
node, as was done by Lämmel et al. [19]. To avoid repeatedly
traversing the tree, we can cache the free variables in the tree.

We define a functor Anno a to annotate datatypes. The function
annoAlg converts every algebra ks :: Algebras fs a to an algebra
that returns the result of ks, together with an annotated tree, where
each subtree is ornamented with values computed from it. Function
annotate for trees is like scanr for lists:

data Anno a x = Anno a x

annoAlg :: ((Anno a) ∈ gs)⇒
Sub fs gs→ Algebras fs a→ Algebras fs (Fix gs, a)

annotate :: ((Anno a) ∈ gs, fs ≺ gs)⇒
Algebras fs a→ Fix fs→ Fix gs

annotate ks = fst ◦ fold (annoAlg srep ks)

Conversely, unannotate is a narrowing transformation that re-
moves the annotations:

unannotate :: (fs ≺ fs)⇒ Fix (Anno a ′: fs)→ Fix fs

A more efficient cfe2 may then be implemented in three stages:

cfe2 :: Fix ′[Var,App, Lam, Let]→ Fix ′[Var,App, Lam, Let]
cfe2 = unannotate ◦ cfe1′ ◦ annotate fVarsAlgExt

Firstly, annotate fVarsAlgExt annotates every subtree of the
input tree with its free variables (fVarsAlgExt is the algebra
used by freeVars2 in Section 5.2). Secondly, cfe1′ is like cfe1,
but uses stored information rather than calling freeVars. Finally,
unannotate removes the annotations.

6.2 Effect Handling
Various approaches to implement algebraic effects have recently
become a popular alternative to monad transformers. Aiming at
dealing with the shortcomings of the latter, algebraic effects allow
more flexible interaction among effects, and allow programs using
different subsets of effects to be composed more easily. Inspired
by the approach of Wu et al. [30], we present effect handling as
a collection of narrowing transformations. In this approach, an
effectful program is represented as an abstract syntax tree that can
be interpreted by layers of interpreters.
Free Monads Recall that the free monad of a functor f is given
by Free a = a + f (Free a). In MRM, we may define

data Pure a x = Pure a

such that the free monad of a list of functors fs is obtained by
Free fs a = Fix (Pure a ′: fs). We wrap it in a newtype
definition, with a deconstructor getFix and a smart constructor free:

newtype Free fs a = Free {getFix :: Fix (Pure a ′: fs)}
free :: (Functor f, f ∈ fs)⇒ f (Free fs a)→ Free fs a

An effectful program is represented by the free monad of fs,
the effects allowed in the program. The following are some of the
notable effects that can be represented this way:

data State s x = Get (s→ x) | Put s x
data Nondet x = Or x x
data Except e x = Throw e

A program allowing the effect State s, for example, is an abstract
syntax tree in which operators Get and Put may appear, while a
program with effect Except is allowed to use the operator Throw.
Monad Instance These effectful operators are combined using
return and (>>=). We have to show that they can be defined for any
fs, that is, Free fs is a monad. The method return is simply Pure
lifted to Free:

instance (fs ≺ fs)⇒ Monad (Free fs) where
return = Free ◦ inn ◦ Pure

To define (>>=), note that the only places where values of type a
appear in a syntax tree Free fs a are those leaves labelled by Pure.
Therefore, m >>= k should traverse m, find those leaves, and apply
k, which can be done in a fold:

(Free p)>>= f = fold ((λ(Pure x)→ f x) :::
transFree) p

where transFree :: (fs ≺ gs) ⇒ Algebras fs (Free gs a) is
transAlg lifted to Free fs.

Now that Free fs is a monad we can use the do-notation to
develop programs. The following program (which is an abstract
syntax tree) raises an exception if the state is negative, otherwise
decrements its state non-deterministically by one or two:

dec = do n :: Int← get
if n< 2 then throw "too small"

else do { i← choose 1 2; put (n − i)}
In this program get, put, choose, etc. are respectively smart con-
structors for Get, Put, Or. The syntax tree has the following type,
and can be freely combined with other syntax trees that allow these
effects.

dec :: ((State Int) ∈ fs,Nondet ∈ fs,
(Except String) ∈ fs, fs ≺ fs)⇒ Free fs ()

Effect Handling Having built the syntax trees, we have to define
how to evaluate them. Effects are discharged by layers of effect
handlers, each of them discharging one effect while changing the
result type of the program:

runNondet :: (fs ≺ fs)⇒ Free (Nondet ′: fs) a→ Free fs [a]
runExcept :: (fs ≺ fs)⇒ Free (Except e ′: fs) a→

Free fs (Either e a)
runState :: (fs ≺ fs)⇒ Free (State s ′: fs) a→

(s→ Free fs (a, s))

The handler runNondet, for example, removes Nondet from the
head of the list of effects, while returning a program whose result
type is [a]. Similarly, runState takes a program with the effect
State s, and returns a function from a state to a program that yields
type (a, s), with State s removed from the head position. After
all the effects are discharged, we are left with Free ′[] a: a tree
containing only one single node, whose value we can be extracted
by a single match.

runPure :: Free ′[] a→ a
runPure = match ((λ(Pure x)→ x) ::: Void) ◦ getFix

A program of type Fix ′[State Int,Nondet], for example, can be
executed by:

runPure ◦ runNondet ◦ flip runState 0

It is known that different order of effect handling induces dif-
ferent semantics. A program Fix ′[State Int,Nondet] reduces
to s → Free ′[] [(a, s)], each nondeterministic branch hav-
ing its own state. In contrast a program Fix ′[Nondet, State Int]
yields s→ Free ′[] ([a], s), where the states are threaded among

91

branches. The order of effects in the type, however, can be freely
altered by subFix before the program is executed.

Let us look at how effect handlers are defined. Each han-
dler deals with two cases: Pure, and its own effect. The hander
runNondet, for example, returns [x] in the Pure case. In the
Or case, both mx and my have type Free fs [a]. We thus use
liftM2 (++) to combine their results:

runNondet = fold ((λ(Pure x) → return [x]) :::
(λ(Or mx my)→ liftM2 (++) mx my) :::
transFree) ◦ getFix

The handler runState is slightly more complex. In cases for Get
and Put, g has type s → s → Free fs (a, s), while k has
type s → Free fs (a, s). The aim is to construct a function
s→ Free fs (a, s) while passing the states around:

runState =
fold ((λcase Pure x → (λs→ return (x, s))) :::

(λcase Get g → (λs→ g s s)
Put s′ k→ (λs→ k s′)) :::

algST) ◦ getFix

The default cases are handled by another combinator algST :: (fs ≺
fs) ⇒ Algebras fs (s → Free fs (a, s)), which can be defined by
generating matches calling fmap ($s). Details omitted. Except e
can also be handled in a similar manner, and the catch operator
can be implemented using (>::). It traverses the syntax tree, and
replaces each Throw e by a call to the exception handler hdlr.

catch :: (fs ≺ fs, (Except e) ∈ fs)⇒
Free fs a→ (e→ Free fs a)→ Free fs a

catch m hdlr = fold ((λ(Pure x) → return x) :::
(λ(Throw e)→ hdlr e) >::
transFree) ◦ getFix $ m

Plenty of tricky issues about effect handling are not covered here,
however. Section 7 discusses some of these issues.

7. Related Work
Throughout the paper we already discussed the relationship with
closely related work on two-level types and Datatypes à la Carte.
In this section we discuss additional related work.
Improving and Extending DTC Bahr and Hvitved [4] created an
extensive library of reusable components using DTC techniques.
Similarly to us they present a way to do desugaring (a particular
case of transformations) using DTC. However their approach is
different from ours: they do not define desugaring as an extension
of an identity traversal. Instead desugaring is defined from scratch
using type classes (in the usual DTC style). There is one generic
default instance that performs the default behaviour, and then there
are dedicated instances for the cases do actually do desugaring.
They also show how to do generic (non-extensible) queries and
transformations. In contrast to our approach, a key difference is
that once a query or transformation is defined, it cannot be later
extended or overridden with new cases. So their approach would be
unsuitable to define modular components for generic free variables
or substitution. Furthermore, they did not discuss how to encode
subtyping of closed datatypes and operations as we did, and their
approach still suffers from the functor subtyping limitations.

Later work by Bahr [3] addresses the limitation of DTC in
terms of subtyping. He proposed an alternative implementation of
the subtyping relationship using closed type families [10] and a
number of auxiliary type family relations. This approach retains the
use of co-products in the original DTC implementation. However
it requires significantly more machinery than the original DTC
infrastructure for functor subtyping. In contrast, our approach is to

change the way two-level types are represented, instead of trying to
stick to the original approach using co-products. As we have shown
this leads to easily definable subtyping and membership relations.
Morris and Jones [23] show that with instance chains, a proposal
for a Haskell language extension, it would be possible to properly
encode the subtyping relation on functors. Unfortunately instance
chains are not yet adopted by mainstream Haskell compilers such
as GHC. Using Coq type classes, which support backtracking, it is
possible to directly encode the subtyping relation on functors [9].

Two-Level Types Interestingly, in the thesis of Malcolm [20]
where he proved the existence of initial algebras for polynomial
functors, he actually started with using lists of functors before
switching to single functors of co-products. It appears that this rep-
resentation has since been forgotten in time, perhaps because it was
not directly representable on the languages of that time.

A different approach to two-level types was presented by Ax-
elsson [2], who showed that the so-called AST model and symbol
domains can replace, respectively, type-level fixpoints and func-
tors. Similarly to DTC it is possible to have a subtyping relation
on symbol domains using co-products. However this approach in-
herits the limitation of the subtyping relationship on co-products.
In contrast MRM still uses a type-level fixpoint, but moves away
from co-products and uses a list-of-functors representation instead.

First-Class Patterns The Matches datatype in MRM allows pat-
tern matching to be treated as first class and in a type-safe way.
Rhiger’s work on type-safe pattern combinators [25] illustrated
how to define first-class type-safe pattern matching combinators.
Rhiger’s goals were however quite different from ours. He intended
to show that it is possible to express pattern matching combina-
tors without relying on datatypes, while being reasonably efficient.
MRM is focused on extensibility and reification of patterns, which
was not explored in Rhiger’s work.

Traversals Much work has been spent on generic traversals,
whose use was popularized by the “Scrap your Boilerplate” ap-
proach [16–18]. In their last paper of the series [18], Lämmel
and Peyton Jones discuss the need for extensible generic traversals
(queries and transformations), on which significantly less work has
been done. However, the traversals of Lämmel and Peyton Jones
still lack one form of extensibility that MRM supports: the exten-
sibility of the datatypes themselves. In order to support modular
generic functions to deal with binding constructs (such as free vari-
ables and substitution), both forms of extensibility are needed: ex-
tensibility of algebraic datatypes is needed to allow new program-
ming language extensions, and extensibility of generic traversals is
needed to allow dealing with new binding constructs.

MRM’s approach to generic queries and transformations is
closely related to Lämmel et al.’s work on fold-algebras [19].
In their work they deal with so-called large bananas (big fold-
algebras). Among the operations they propose, idmap corre-
sponds to an (identity) transformation, and crush corresponds to
a query. Also closely related to MRM’s traversals is Bringert
and Ranta’s [6] compos family of traversals, which uses the
Traversable type class to unify and generalize queries and trans-
formations. MRM’s use of the Traversable class in generic queries
is partly inspired by the compos approach. However, in contrast to
MRM, the idmap, crush and compos functions are defined manu-
ally for each datatype, and the datatypes are not extensible.

Subtyping and Extensibility for Algebraic Datatypes Ahn and
Sheard [1] proposed a Haskell extension with shared subtypes.
This extension allows subtyping of algebraic datatypes, and avoids
code duplication for similar functions across the datatypes and their
subtypes. MRM provides similar functionality. Outside of Haskell
there have also been proposals for language extensions supporting
extensible datatypes. Extensible ML [22] is an extension to the ML

92

language that supports a combination of OO-style features with al-
gebraic datatypes. In Extensible ML it is possible to use datatype
variants to simulate classes, and function cases to simulate meth-
ods. Moreover, it is also possible to add new cases to existing
datatypes and functions, allowing Extensible ML to support an hy-
brid programming style in-between functional and object-oriented
programming. MRM supports extensibility of datatypes and func-
tions, but deep OO hierarchies are not supported. Polymorphic vari-
ants [12] are a well-known feature of OCaml that allows a form
of structural variants. The membership constraints in MRM are
somehow similar to types for polymorphic variants, since they al-
low expressions which (set of) variants are required by a function.
In contrast to all of such approaches, which rely on language ex-
tensions, MRM is just a library.

Effect Handlers and Algebraic Effects Since the series of papers
from Plotkin et al. showing that effects can be combined [13]
and handled [24], various approaches have been experimented to
implement the idea. Part of the inspiration for the list-of-functors
representation comes from various works on effect handlers [5, 14],
which use type-level lists (or encodings of lists) to keep track of the
effects used in a program. We generalize this idea and apply it to
the representation of two-level types. Of course, as our case study
illustrates, it is possible to use the more general representation
of two-level types to neatly implement a library for effects. Our
implementation of the effects library is most influenced by Wu
et al. [30]. One insight that we got from our work is that effect
handling closely related to the work on generic traversals: effect
handlers are just narrowing transformations in our work. As far
as we know this connection has not been made explicit before. It
could be that this connection brings further insights on how to deal
with challenges that effect handlers pose. This will be an interesting
avenue for future work.

8. Conclusion
We have presented Modular Reifiable Matching, an alternative ap-
proach to Two-Level Types. Instead of a single functor consisting
of sums, we collect the summands into a list of functors. To match
its fixpoint, we use a list of matches. This gives us two advantages.
Firstly, we can precisely model the subtyping relation, represent the
subtyping evidence as a datatype, and inspect the evidence to gener-
ate new matches. Secondly, unlike type class instances, matches are
first class and can be manipulated. We may easily override, reuse,
combine, extend, and monadify existing operations.

Extensible transformations and queries are therefore constructed
by extending or overriding a basic list of matches that deals with
default cases. A match for substitution, for example, is defined by
extending matches of the identity traversal. Only interesting cases
need to be explicitly mentioned, and the matches so constructed
remain extensible. The MRM framework is demonstrated with
various examples. For the future we will further develop our case
studies. We are planning to have a robust library of language com-
ponents, including components that deal with binder boilerplate.
It will be interesting to develop a library of binding components
that deals with sophisticated binders, which have been previously
targeted by dedicated libraries [7, 29]. We are also planning to
develop a more powerful library for effect handling.

References
[1] K. Y. Ahn and T. Sheard. Shared subtypes: subtyping recursive

parametrized algebraic data types. In Symposium on Haskell, pages
75–86, 2008.

[2] E. Axelsson. A generic abstract syntax model for embedded lan-
guages. In ICFP ’12, pages 323–334. ACM, 2012.

[3] P. Bahr. Composing and decomposing data types: a closed type
families implementation of data types à la carte. In WGP ’14, pages
71–82. ACM, 2014.

[4] P. Bahr and T. Hvitved. Compositional data types. In Workshop on
Generic Programming, WGP ’11, pages 83–94, 2011.

[5] E. Brady. Programming and reasoning with algebraic effects and
dependent types. In ICFP ’13, pages 133–144. ACM, 2013.

[6] B. Bringert and A. Ranta. A pattern for almost compositional func-
tions. In ICFP ’06, pages 216–226. ACM, 2006.

[7] J. Cheney. Scrap your nameplate. In ICFP ’05, 2005.
[8] B. C. d. S. Oliveira. Modular visitor components: A practical solution

to the expression families problem. In ECOOP ’09, July 2009.
[9] B. Delaware, B. C. d. S. Oliveira, and T. Schrijvers. Meta-theory à la

carte. In POPL ’13, 2013.
[10] R. A. Eisenberg, D. Vytiniotis, S. Peyton Jones, and S. Weirich.

Closed type families with overlapping equations. In POPL ’14, 2014.
[11] M. Erwig and D. Ren. Monadification of functional programs. Science

of Computer Programming, 52(1-3):101–129, 2004.
[12] J. Garrigue. Programming with polymorphic variants. ACM SIGPLAN

Workshop on ML, 1998.
[13] M. Hyland, G. Plotkin, and J. Power. Combining effects: sum and

tensor. Theoretical Computer Science, 357(1-3):70–99, 2006.
[14] O. Kiselyov, A. Sabry, and C. Swords. Extensible effects: an alterna-

tive to monad transformers. In Symposium on Haskell, pages 59–70.
ACM, 2013.

[15] R. Lämmel and S. Peyton Jones. Scrap your boilerplate: a practical
approach to generic programming. In TLDI ’03, pages 26–37. ACM,
2003.

[16] R. Lämmel and S. Peyton Jones. Scrap your boilerplate: A practical
design pattern for generic programming. In TLDI’03, 2003.

[17] R. Lämmel and S. Peyton Jones. Scrap more boilerplate: Reflection,
zips, and generalised casts. In ICFP ’04, 2004.

[18] R. Lämmel and S. Peyton Jones. Scrap your boilerplate with class:
Extensible generic functions. In ICFP ’05, pages 204–215. ACM,
2005.

[19] R. Lämmel, J. Visser, and J. Kort. Dealing with large bananas. In
WGP ’00, pages 46–59, 2000. Technical Report, Universiteit Utrecht.

[20] G. Malcolm. Algebraic Data Types and Program Transformation. PhD
thesis, Groningen University, The Netherlands, 1990.

[21] L. Meertens. Paramorphisms. Formal Aspects of Computing, 4:413–
424, 1992.

[22] T. Millstein, C. Bleckner, and C. Chambers. Modular typechecking
for hierarchically extensible datatypes and functions. ACM Trans.
Program. Lang. Syst., 26(5), Sept. 2004.

[23] J. G. Morris and M. P. Jones. Instance chains: Type class programming
without overlapping instances. In ICFP ’10, 2010.

[24] G. Plotkin and M. Pretnar. Handlers of algebraic effects. In ESOP ’09,
pages 80–94. Springer-Verlag, 2009.

[25] M. Rhiger. Type-safe pattern combinators. Journal of Functional
Programming, 19:145–156, 2009.

[26] T. Sheard and E. Pasalic. Two-level types and parameterized mod-
ules. Journal of Functional Programming, 14(5):547–587, September
2004.

[27] W. Swierstra. Data types à la carte. Journal of Functional Program-
ming, 18(4):423–436, July 2008.

[28] P. Wadler and S. Blott. How to make ad-hoc polymorphism less ad
hoc. In POPL ’89, pages 60–76. ACM, 1989.

[29] S. Weirich, B. A. Yorgey, and T. Sheard. Binders unbound. In ICFP
’11, 2011.

[30] N. Wu, T. Schrijvers, and R. Hinze. Effect handlers in scope. In
Symposium on Haskell, pages 1–12. ACM, 2014.

[31] B. A. Yorgey, S. Weirich, J. Cretin, S. Peyton Jones, D. Vytiniotis, and
J. P. Magalhães. Giving haskell a promotion. In Workshop on Types in
Language Design and Implementation, TLDI ’12, 2012.

93

