NORTHWESTERN
UNIVERSITY

Computer Science Department

Technical Report
NWU-CS-05-09
June 14, 2005

Components of a Scalable Distributed Relational Information Service
Dong Lu

Abstract

An information service stores information about the resources and services within a
distributed computing environment and answers queries about it. This dissertation
presents the design of several important components of the Relational Grid Information
System (RGIS).

The query rewriting component handles the challenges originating from the powerful
features of relational algebra - some complex queries may be too expensive for RGIS.
We have developed several query rewriting techniques to trade off the query time with
the number of results returned. These techniques make it feasible to provide the
flexibility and power of a relational data model in a GIS system while controlling the
costs.

The topology generation and annotation component helps to evaluate the performance of
such information servers. GridG is a synthetic grid generator that can generate annotated
Internet topologies including routers, IP links, and end systems. GridG is the first
synthetic grid generator that follows the power laws of Internet topology while
maintaining a clear hierarchical network structure. We also discovered interesting
relationships among the power laws.

The scheduling component helps to enhance system performance by minimizing mean
response time. We studied the performance of size-based scheduling policies as a
function of correlation between job sizes and their estimations, and explored several
estimators. We have learned that it is feasible to deploy size-based scheduling on RGIS
servers.

A centralized relational information RGIS server can not scale with the distributed
computing environment. A distributed RGIS can potentially scale by forming an overlay

network and sharing load among the servers. Weak consistency needs to be maintained
among the RGIS replicas with a content delivery network propagating updates. For
efficiency and scalability, we designed a novel overlay multicast protocol that emulates
the fat-tree architecture on the WAN (This work was done in collaboration with Stefan
Birrer and Fabian Bustamante).

The transfer prediction component is responsible for predicting the update transfer time
accurately in a real time manner on the overlay network. We developed a novel TCP flow
rate monitoring and prediction framework that can predict serial as well as parallel TCP
flow rates accurately with low overhead.

Our next step is to integrate these components into RGIS.

Keywords: Grid Computing, Information Service, Synthetic Grid Generator, Topology,
Query Rewriting, Size-Based Scheduling, TCP Throughput Prediction, Parallel TCP,
End-System Multicast

Effort sponsored by the National Science Foundation under Grants ANI-0093221, ACI-0112891,
ANI-0301108, EIA-0130869, and EIA-0224449. Any opinions, findings and conclusions or
recommendations expressed in this material are those of the author and do not necessarily reflect
the views of the National Science Foundation (NSF).

NORTHWESTERN UNIVERSITY

Components of a Scalable Distributed Relational Information Service

A DISSERTATION

SUBMITTED TO THE GRADUATE SCHOOL
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

for the degree
DOCTOR OF PHILOSOPHY

Field of Computer Science

By
Dong Lu
EVANSTON, ILLINOIS
December 2005

Thesis Committee
Peter A. Dinda, Northwestern University, Committee Chair
Fabian E. Bustamante, Northwestern University
Yan Chen, Northwestern University
Ian Foster, Argonne National Laboratory and the University of Chicago

(©copyright by Dong Lu 2005
All Rights Reserved

ii

ABSTRACT

Components of a Scalable Distributed Relational Information Service

Dong Lu

An information service stores information about the resources and services within
a distributed computing environment and answers queries about it. This dissertation
presents the design of several important components of the Relational Grid Informa-
tion System (RGIS).

The query rewriting component handles the challenges originating from the pow-
erful features of relational algebra - some complex queries may be too expensive
for RGIS. We have developed several query rewriting techniques to trade off the
query time with the number of results returned. These techniques make it feasible
to provide the flexibility and power of a relational data model in a GIS system while
controlling the costs.

The topology generation and annotation component helps to evaluate the per-
formance of such information servers. GridG is a synthetic grid generator that can
generate annotated Internet topologies including routers, IP links, and end systems.
GridG is the first synthetic grid generator that follows the power laws of Internet
topology while maintaining a clear hierarchical network structure. We also discov-
ered interesting relationships among the power laws.

The scheduling component helps to enhance system performance by minimizing

mean response time. We studied the performance of size-based scheduling policies

iii

as a function of correlation between job sizes and their estimations, and explored
several estimators. We have learned that it is feasible to deploy size-based scheduling
on RGIS servers.

A centralized relational information RGIS server can not scale with the distributed
computing environment. A distributed RGIS can potentially scale by forming an
overlay network and sharing load among the servers. Weak consistency needs to be
maintained among the RGIS replicas with a content delivery network propagating
updates. For efficiency and scalability, we designed a novel overlay multicast protocol
that emulates the fat-tree architecture on the WAN !,

The transfer prediction component is responsible for predicting the update trans-
fer time accurately in a real time manner on the overlay network. We developed a
novel TCP flow rate monitoring and prediction framework that can predict serial as
well as parallel TCP flow rates accurately with low overhead.

Our next step is to integrate these components into RGIS.

1This work was done in collaboration with Stefan Birrer and Fabian Bustamante

v

Acknowledgments

I am deeply grateful to my advisor Dr. Peter A. Dinda. First, he believed in my
potential and gave me the chance to start my career in Computer Science. Second, he
taught me how to become a good graduate student and later a good scholar. Third,
he has been so open-minded to support and advise me on almost every research topic
that I am interested in. Finally, his endless encouragement and guidance throughout
the past several years makes my Ph.D. study so exciting and fruitful.

I am also thankful to my thesis committee members— Dr. Fabian E. Bustamante,
Dr. Yan Chen and Dr. Ian Foster for their kind help and guidance in developing my
research agenda and completing this dissertation.

My thesis work was significantly benefited from the various collaborations with
other faculty members and my fellow students. In particular, I would like to thank Dr.
Fabian Bustamante, Dr. Yan Chen, Yi Qiao, Stefan Birrer, Huanyuan Sheng, Bin
Lin and Jason Skicewicz. In addition, I would like to acknowledge other members of
the Northwestern system research group for various discussions and communications.
Also, T want to thank my officemate Kevin Livingston, for numerous interesting
conversions on research topics outside system area.

I would like to express my earnest gratitude to my great parents Bing Lu and
Jihong Liu, my lovely wife Yanping Xu for their love and support. I can’t achieve
anything without them.

Last but not the least, I would like to thank Andrew Weinreich, who took the
lead in developing the RGIS web interfaces, and Jack Lange, who implemented much

of the inter-RGIS server protocol.

Contents

List of Figures xii
List of Tables xxii
1 Introduction 1
1.1 Background L Lo 1
1.2 Relatedwork 7
1.3 Outline and contributions 12
1.3.1 Chapter 2: Architecture of the RGIS system 12

1.3.2 Chapter 3: Generating Synthetic Grids 12

1.3.3 Chapter 4: Query Rewriting Techniques 13

1.3.4 Chapter 5: Scheduling With Inaccurate Job Size Information . 14
1.3.5 Chapter 6: Characterizing and Predicting TCP Throughput . 14

1.3.6 Chapter 7: Modeling and Taming Parallel TCP 15
1.3.7 Chapter 8: FatTree Based End-System Multicast 16
1.3.8 Chapter 9: Conclusions and Future Work 16
1.3.9 Appendix A: Domain-based scheduling on web servers. 16
1.3.10 Appendix B: Scheduling the server side of P2P systems 17
2 Architecture of the RGIS system 18

vi

3 Generating Synthetic Grids 27

3.1 Imtroduction 27
3.2 Architecture of GridGo o oo Lo 31
3.3 Topology e 32
3.3.1 Power laws of Internet topology 33
3.3.2 Current graph generators 34
3.3.3 Algorithms in topology generation. 35
3.34 Evaluationo oo 36

3.4 Relationships among power laws 39
3.4.1 Rank law = outdegree law 41
3.4.2 Outdegree law <= new rank law 42

3.5 Annotations 44
3.5.1 Annotation algorithm 46
3.5.2 OS concentration rule 54

3.6 Conclusions L 55
4 Query Rewriting Techniques 57
4.1 Introductiono o7
4.2 Addressing the query problem 0. 58
4.2.1 Deficiencies of limited deterministic queries 60
4.2.2 Nondeterministic queries 61
4.2.3 Scoped querieso 63
4.2.4 Approximate queries 64
4.2.5 Combining query techniques 65

4.3 Evaluation Lo 67
4.3.1 Experimental setup oL 67

vii

4.3.2 Nondeterministic queries

4.3.3 Scoped, approximate, and scoped approximate queries

4.34 Queriesunderload
4.4 Time-bounded queries

4.5 Conclusions o

Scheduling With Inaccurate Information
5.1 Introductiono
5.2 Related worko
5.3 Simulationsetup oL
5.3.1 Performance metrics 0oL
5.3.2 Simulator L
5.3.3 Controlling R in synthetic traces
5.4 Simulation results on mean response time
5.5 Simulation results on slowdown o000
5.6 New applications Lo L
5.6.1 Domain-based scheduling on web servers
5.6.2 P2P server side scheduling
5.6.3 Network backup system scheduling

5.7 Conclusions and future work L.

Predicting TCP Throughput

6.1 Introduction

6.2 Experimental Setup L L

6.3 Exploiting size / throughput correlation
6.3.1 Phenomenon L oL

6.3.2 Further explanations

74
7
79
82

83
83
86
88
89
90
91
92
95
97
100
101
101
103

6.3.3 Why simple TCP benchmarking fails 117

6.3.4 A new TCP throughput benchmark mechanism 118
6.4 Statistical stability of the Internet 122
6.4.1 Routing stability00 122
6.4.2 Locality of TCP throughput 122
6.4.3 End-to-end TCP throughput distribution 125
6.5 TCP throughput in real time 128
6.5.1 System architecture o000 128
6.5.2 Dynamic sampling rate adjustment algorithm 130
6.5.3 Ewvaluationo Lo oL 131
6.6 Conclusions and future worko 138
Modeling and Taming Parallel TCP 139
7.1 Imtroduction L 139
7.2 Related worko 141
7.3 Analyzing parallel TCP throughput 145
7.3.1 Simulation Setup oL 146
7.3.2 Simulationresultso oL 147
7.3.3 Observations o0 151
7.4 Modeling and predicting throughput 152
741 Algorithm 152
742 Evaluation Lo 158
7.5 Taming parallel TCP 163
7.5.1 Algorithmo 163
7.5.2 Evaluation oo o oo 166
753 Outcome 170

1X

7.6 Conclusions and future work 170

8 FatTree Based End-System Multicast 172
8.1 Imtroduction 172
8.2 Related Worko 175
8.3 Fat-Trees and the Overlay 178
84 Background Lo 181
8.5 FatNemo Design 184
8.6 Evaluation 187

8.6.1 Experimental Setup o0 188
8.7 Experimental Results, 189
8.8 Protocol modifications required, 193
8.9 Conclusions and Further Work 194

9 Conclusions and Future Work 195
9.1 Summary 195
9.2 Integration of the RGIS system 197
9.3 Futurework 197

Bibliography 198

Appendices 217

A Domain-Based Scheduling on Web Servers 218
A.1 Introduction 218
A.2 s file size a good indicator of service time? 223

A.2.1 Measurement on a typical web server 224

A.3 How is the performance affected by the weak correlation?

A.4 Domain-based scheduling L 0oL
A.4.1 Statistical stability of the Internet
A42 Algorithm L
A.4.3 Performance evaluation

A.5 Conclusions and future work

P2P server side scheduling

B.1 Introduction L

B.2 Trace Collectiono

B.3 Server Workload Characterization
B.3.1 Job Arrivals Form a Poisson Process
B.3.2 Job Sizes are Pareto
B.3.3 Job Service Times Are Pareto
B.3.4 Server Resource Utilization

B.4 Evaluation of Scheduling Policies
B.4.1 Scheduling Policies 000
B.4.2 SRPT Scheduling in P2P Systems
B.4.3 Performance Analysis
B.4.4 Fairness Concerns

B.5 Conclusions and Future Work

xi

List of Figures

2.1 RGIS Structure. 19
2.2 Overview of the RGIS Schema. Highlighted are the minimum tables
used to represent a host. A host may also be represented in the leases

table if it may leave the system, the virtuals table if it is a virtual

machine, and the futures table, if it is not yet instantiated. 21
2.3 Specific SQL representation of a host. Definitions of indices elided. . 22
2.4 RGIS web interface.o o oo 23
2.5 Insert, update, and delete rates. 25
3.1 GridG Architecture.o o 31
3.2 Power laws of Internet topology. 32
3.3 Symbols used in this chapter. 000 32
3.4 GridG topology generator evaluation. 36
3.5 Log-log plot of Outdegree vs. Ranking. 37
3.6 Log-log plot of Frequency vs. Outdegree. 37

3.7 Log-log plot of number of pairs of nodes within A hops vs. number of

hops h. e 38
3.8 Log-log plot of eigenvalues in decreasing order. 38
3.9 Log-log plot of derived f-d law.. 41
3.10 Log-log plot of derived d-rlaw. 43

xii

3.11
3.12
3.13

3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21

3.22
3.23

4.1
4.2
4.3
4.4
4.5
4.6

4.7
4.8

Log-log plot of derived d-f law using the new d-r law. 44
Silly host configurations generated by the initial GridG annotator. . . 45

Rule frame governing the correlation among CPU architecture, OS,

number of CPUs, and CPU clock rate. 47
Example rules.o oo 47
Default rules. 48
Dependence tree.o 49
Example of conditional probability. 49
Flow chart of the algorithm. 52
Linear promotion probability function. 53
Power promotion probability function. 53

Influence of promotion probability and rate functions on correlation

coefficient between number of CPUs and memory or disk. 54
Sensible hosts generated by current GridG annotator. 54
OS concentration observed in IP subnets. 54
An RGIS Query. 59
Nondeterministic query and its implementation. 61
Scoped query and its implementation. L. 63
Approximate query and its implementation. 64
Scoped approximate query and its implementation. 66

Performance of nondeterministic queries with different sizes of grid,
different numbers of hosts, and different selection probabilities. 69
Query time and number of selected rows versus selection probability. 70

Query time and number of selected rows versus number of hosts. . . . 71

xiii

4.9 Parameters passed to GridG to generate grids for nondeterministic
query evaluation.o o Lo
4.10 Query running time versus selection probability for nondeterministic
network query. L.
4.11 Number of selected rows versus selection probability for nondetermin-
istic network query.o Lo oL
4.12 Parameters passed to GridG for generating grids to evaluate scoped,
approximate, and scoped approximate network queries.
4.13 Host group query response time vs. number of hosts with 980,000
hosts (scoped approximate query)..
4.14 Cluster finder query times in seconds for the four query techniques for
a database populated with 9,800 hosts. In the figure, N/A represents
those tests that were not run due to expected extremely long query
times. e
4.15 Cluster finder query time vs. cluster size with 980,000 hosts (scoped
approximate qUery).
4.16 Cluster finder with multiple concurrent users and update load (scoped
approximate).
4.17 Host group query with multiple concurrent users and update load
(scoped approximate).o

4.18 Time-bounding nondeterministic queries.

5.1 Scheduling policies used in the chapter.
5.2 Queuing models studied in the chapter.
5.3 Examples of generated estimated size/actual size pairs.

5.4 Parameters for Bounded Pareto Distribution.

Xiv

81

9.5

2.6

5.7

0.8

9.9

5.10

5.11

6.1
6.2

Mean sojourn time versus R, synthetic traces, M/G/1/m, Pareto ser-
vice times, Poisson arrivals.
Slowdown as a function of the percentile of the job size distribution.
Synthetic traces, R = 0.0224, M/G/1/m, Pareto service times, Poisson
arrivals. L
Slowdown as a function of the percentile of the job size distribution.
Synthetic traces, R = 0.239, M/G/1/m, Pareto service times, Poisson
Y 0
Slowdown as a function of the percentile of the job size distribution.
Synthetic traces, R = 0.4022, M/G/1/m, Pareto service times, Poisson
arrivals.o
Slowdown as a function of the percentile of the job size distribution.
Synthetic traces, R = 0.5366, M/G/1/m, Pareto service times, Poisson
arrivals.o
Slowdown as a function of the percentile of the job size distribution.
Synthetic traces, R = 0.7322, M/G/1/m, Pareto service times, Poisson
arrivals. oL oo
Slowdown as a function of the percentile of the job size distribution.
Synthetic traces, R = 0.9779, M/G/1/m, Pareto service times, Poisson

arrivals. oL .

Summary of experiments.o L0
CDF of correlation coefficients R between flow sizes and throughput

in experiments Correlation Set and Verification Set.

XV

6.3

6.4

6.5

6.6

6.7

6.8

6.9

6.10

6.11

TCP throughput versus flow size (file size) with GridFTP. Transfers
are between Northwestern University and Argonne National Lab. Sin-
gle TCP flow with TCP buffer set. We made similar observations on
all the other paths we studied.
Transfer time versus TCP flow size with GridF'TP. Transfers are be-
tween Northwestern University and Argonne National Lab. Single
TCP flow with TCP buffer set. We made similar observations on all
the other paths we studied.
CDF of B, the startup overhead. Even for the simple client/server
there is startup overhead likely caused by the residual slow start effect.
The startup overheads of scp and GridF TP are much larger.
CDF of R? for linear model of Figure 6.4. Each R? is from a inde-
pendent test. Both simple client/server and applications that require
authentication show a strong linear property. Note that the Y axis is
in log scale to show detail. Over 99% of the runs had R? > 0.95. . . .
CDF of relative prediction error for TCP throughput with different
flow sizes.
Quantile-quantile plot of relative prediction error with flow size 2MB
against standard normal distribution. qqplot of relative prediction
error for flows with different sizes looks almost identical to this figure.
CDF of standard deviation of transfer time at all Internet paths for 5
different flow sizes.o oL L oo
CDF of COV (coefficient of variation COV = —*4.) of transfer Time
at all Internet paths for 5 different flow sizes.
CDF of statistically stable region (SSR) for steady-state TCP through-
put with different p. 0oL oo

xXVi

118

120

6.12

6.13
6.14

6.15
6.16
6.17
6.18
6.19
6.20

7.1
7.2

CDF of R? for five common distributions for TCP throughput char-
acterization on segmented traces. The size of the file is 10 MBytes.
Other flow sizes show similar results.
System architecture of DualPats.
Prediction error statistics for Online Evaluation Set. RTT is the round
trip time between the two sites in milliseconds, and Mean Interval is
the average interval time between dualPackets in seconds. Mean error
is the average relative error while mean abs(error) is the average of the
absolute value of relative error. Mean stderr is the standard deviation
of relative error while mean abs(stderr) is the standard deviation of
the absolute value of relative error.
CDF of relative errors. oL
CDF of mean and standard deviation of relative error.
CDF of standard deviation of relative errors.
CDF of mean and standard deviation of absolute relative error.

Correlation coefficient R among prediction error and path properties.

CDF of CPU load average on a subset of PlanetLab nodes.

The TameParallelTCP() function.
Simulation Topology. Cross traffic goes from node N1 to N5, while
parallel TCP flows go from node N2 to N6. Cross traffic and parallel
TCPs share the same bottleneck link Ls. Each simulation lasts 100
seconds with individual TCP cross traffic flows starting randomly dur-
ing the first 8 seconds, and all parallel TCPs starting simultaneously

at time 10 8ec. e

xvii

7.3 Bandwidth and latency configuration for different scenarios. The la-
tency for L, and L, is fixed at 4 milliseconds, while the latency for L,
and Ly is fixed at 5 milliseconds. The buffer size on each node is fixed
at 25 packets. Both DropTail and RED queue management policies
are simulated.

7.4 Simulation results for scenario 1: latency of Lz is 20 ms; bandwidth of

Ls is 1.5 Mbps; TCP buffer is properly tuned. Refer to Figure 7.3 for

7.5 Simulation results for scenario 2: latency of L3 is 20 ms; bandwidth
of L is 100 Mbps; TCP buffer is properly tuned. Refer to Figure 7.3
fordetails.

7.6 Simulation results for scenario 3: latency of L3 is 50 ms; bandwidth
of L3 is 100 Mbps; TCP buffer is properly tuned. Refer to Figure 7.3
fordetails.o

7.7 Simulation results for scenario 4: latency of Lz is 50 ms; bandwidth of
L3 is 1000 Mbps; TCP buffer is properly tuned. Refer to Figure 7.3
fordetails. L

7.8 Simulation results for scenario 5: latency of Lz is 50 ms; bandwidth of
L3 is 1000 Mbps; TCP buffer is not properly tuned. Refer to Figure 7.3
fordetails. Lo

7.9 Simulation results for scenario 6: latency of Lz is 20 ms; bandwidth of
L3 is 100 Mbps; TCP buffer is not properly tuned. Refer to Figure 7.3
fordetails.o

7.10 Throughput prediction examples.

7.11 Prediction error statistics. Paths ID are ordered by the standard de-

VIAbION. L e e e s

7.12 Relative Prediction Error Statistics for Parallel TCP Throughput. . .
7.13 Prediction sensitivity to the selection of probes.
7.14 Relative prediction error for parallel TCP throughput as a function of
number of parallel TCP flows.
7.15 Performance of parallel TCP on a 100 Mb LAN where the RTT is very
small (about 0.2 0.4 ms). One TCP flow is the optimal in this case.
Our tool accurately estimated it.
7.16 Cross traffic estimation examples.
7.17 Cumulative distribution function of relative prediction error for cross
traffic estimation for all the simulations with 6 scenarios as described

in Figure 7.3.

161

162

167

7.18 More complex topology for further evaluation of cross traffic estimation.169

7.19 Estimation results with 14 TCP flows in cross traffic group 1 (gl) and
14 TCP flows in cross traffic group 2 (g2).

8.1 Two binary trees with nodes A and B as sources, publishing at 5 Kbps
each. (a) shows a normal binary tree where node E becomes the
bottleneck, resulting on a reduced (dash line) outgoing stream quality.
Node E has to forward the stream A to node B and node GG, as well as
stream B to node A and node GG, thus it needs an outgoing bandwidth
capacity of 20 Kbps. However, it has only 10 Kbps available, making
it a bottleneck in the tree. (b) shows a fat-tree with higher capacity
nodes placed higher in the tree.

8.2 Leiserson’s organization of a fat-tree in a supercomputer [137].

Xix

8.3 Nemo’s logical organization. The shape illustrates only the role of a
peer within a cluster: a leader of a cluster at a given layer can act as
leader, co-leader, or an ordinary member at the next higher layer.

8.4 FatNemo’s Topology. The figure illustrates how the tree gets fatter
when moving toward the root. This tree has a cluster degree of 2.

8.5 Three simulation scenarios: Low-, Medium- and High-Bandwidth.
Bandwidth is expressed in Kbps. 00000

8.6 Delivered packets (256 end hosts, Low-Bandwidth scenario).

8.7 Response Time CDF with 1, 4 and 8 publishers (figures ordered top-

down; 256 end hosts, Low-Bandwidth scenario).

A.1 Scheduling policies used in the appendix.
A.2 Queuing models used in the appendix. Both Pareto and Weibull ser-

vice time distributions are considered.o
A.3 Complementary distribution of CPU load on the web server.
A.4 Complementary distribution of hard disk read I/O on the web server.
A5 Hard disk to memory bandwidth, KB/sec.
A6 Rdependsonfilesize. L.
A.7 Scatter plot of file size VS. service time. (a) shows the plot of the

whole web trace, where the R is about 0.14. (b) shows the trace of a

particular /16 network, where the R is about 0.25..
A.8 Complementary distribution of R in web cache traces.
A.9 Mean sojourn time versus load, G/G/n/m, Pareto arrivals. Web server

trace driven simulation. o000
A.10 Mean queue length versus load, G/G/n/m, Pareto arrivals. Web server

trace driven simulation.

XX

182

184

A.11 Correlation R versus number of bits used to define a domain k.. . . .
A.12 Mean sojourn time versus k for web trace, domain-based scheduling,
G/G/1/m, Pareto arrivals with a = 1.32, Lower bound 84, Upper
bound 5 x 10%, load 0.88.
A.13 Mean queue length versus k for web trace, domain-based scheduling,
G/G/1/m; Pareto arrivals with o = 1.32, Lower bound 84, Upper
bound 5 x 10%, load 0.88.

B.1 Key parameters of collected traces from P2P servers. Number of

Threads is the number of available server threads.
B.2 CCDF of interarrival time of requests to P2P server
B.3 Serial correlation of interarrival time of requests to P2P server
B.4 CCDFs of served data chunk size, requested data chunk size, and full

object size L L
B.5 Correlation coefficients between service time, served chunk size and

requested chunk size.

238

255

B.6 Mean Response time for different scheduling policies under varying load 256

B.7 Rejection rate for different scheduling policies under varying load

xx1

257

List of Tables

8.1

8.2
8.3
8.4

Cluster and Crew Size as a function of the cluster degree d, for a 20,000
peer population. The variable x is a place holder for the cluster index
starting at O for the lowest layer. 186
Response Time (1 Publisher, 256 end hosts, Low-Bandwidth scenario). 190
Delivery Ratio (1 Publisher, 256 end hosts, Low-Bandwidth scenario). 192
Overhead (1 Publisher, 256 end hosts, Low-Bandwidth scenario).. . . 193

xxii

Chapter 1

Introduction

1.1 Background

An information service stores information about the resources of a distributed com-
puting environment and answers questions about it. One example of Internet-based
information service that people use every day is the Domain Name Service (DNS).
DNS is a system that stores information about host names and domain names on
networks. Most importantly, DNS provides an IP address for each host name, and
lists the mail exchange servers accepting e-mail for each domain.

Grid computing [96, 102] aims at providing dependable, consistent, pervasive,
unlimited computing power and services to the users, in a manner similar to today’s
electrical power grid. As grids evolve from cluster to enterprise to global grids — from
single departments to multiple departments to outside the firewall — grid computing
will provide seamless, transparent, secure access to IT resources such as hardware,
software, scientific instruments, and services. While the primary adopters of grid
technology today are in compute intensive research of various kinds — the benefits of
grid computing have broad appeal.

As the scale and diversity of the resources, applications, and users involved in grid

CHAPTER 1. INTRODUCTION 2

computing continues to increase quickly, the amount of information needed to keep
track of them grows commensurately. Simultaneously, applications need to pose and
answer increasingly powerful queries over this information in order to exploit Grid
resources well and satisfy users. Grid Information Service (GIS) systems provide this
functionality. The possible models and the design space for GIS systems is large. A
highly scalable distributed GIS is the target application of this dissertation.

Our view of a GIS is that it is a database (in the generic sense of the word)
of information about the entities within a wide area distributed high performance
computing environment. Examples of Grid entities include organizations, people,
computational resources (workstations, parallel computers, clusters), communica-
tions resources (switches, routers, topologies), services, benchmarks, software, event
channels, sensors, scientific instruments, and others. A GIS consists of a set of objects
that represent these entities, relationships between objects, and systems needed to
query and update the objects and relationships. Each object has a unique identifier,
a timestamp, and a set of attributes. Updates to the database take the form of addi-
tions or deletions of objects and of changes to the attributes of existing objects. The
GIS makes updates available to queries as soon as possible. It also manages access to
the objects, making sure that they are updated and read only by valid users. It may
present different views of the objects to different users. A more detailed description
of this view of a GIS is available elsewhere [179].

We are developing a GIS system, RGIS, that is based on the relational data
model. Specifically, RGIS servers are implemented on top of the Oracle RDBMS and
use SQL as their query language. Oracle is not a requirement of our approach—
other RDBMSes could also be used. RGIS focuses on modeling the hardware and
software resources of a distributed computing environment. Information streams

from dynamic resource monitoring and prediction tools such as RPS [78] are currently

CHAPTER 1. INTRODUCTION 3

outside of the scope of RGIS, although RGIS does model the existence and location
of such tools.

This thesis focuses on the design and implementation of several important com-
ponents for the RGIS system. These include a synthetic grid information generator,
query rewriting techniques, job scheduling, serial and parallel TCP throughput mon-
itoring and prediction, and end-system multicast. These components have value
beyond the RGIS system because they are generic research work that can be applied
in the design of other distributed systems.

Query rewriting component: A powerful feature of RGIS is that users can
write queries in SQL that search for complex compositions of resources, such as
groups of hosts and network resources, that meet collective requirements. These
queries can be very expensive to execute, however. In response, we have introduced
three extensions to the SQL select statement that we call nondeterministic query,
scoped query and approximate query. In essence, the three query extensions allow
the user (and RGIS) to trade off between the running time of a query (and the load
it places on an RGIS server) and the number of results returned. The result set is
a random sample of the result set of the deterministic version of the query, which
we argue is sufficient and appropriate for a GIS. We implement the queries using
a combination of query rewriting, schema extensions, indices, and randomness. No
changes to the RDBMS are needed. The three query techniques make it possible to
ask complex questions of RGIS and get useful responses quickly.

Generating synthetic grids: Designing and evaluating grid middleware such
as RGIS demands realistic workloads. Our query rewriting techniques allow us to
trade off between the number of nondeterministically chosen results returned by
the query and the amount of work done in support of it. This tradeoff depends

strongly on the structure of the grid: the network topology and the characteris-

CHAPTER 1. INTRODUCTION 4

tics of the hosts, routers, and links within the topology. As the grids are still
in their early stages, there is limited available data on the structure of compu-
tational grids. We examined the contents of several running GIS systems. The
largest dataset we have found contains fewer than one thousand nodes. Given the
limited data sets, a synthetic grid generator is a necessity. In response to this
need, we built GridG, a synthetic grid generator, which can be downloaded from
http://www.cs.northwestern.edu/~urgis/GridG. While developing GridG, we discov-
ered interesting relationship among the four power-laws of Internet topology. GridG
is the first topology generator that follows the power-laws while maintaining clear hi-
erarchical network structure. Also, to my best knowledge, GridG is the first topology
generator that can annotate the topology with sensible attributes at the end-system
level.

Scheduling with inaccurate job size information: Effective query schedul-
ing is essential for the performance of RGIS servers. Although size-based scheduling
policies such as SRPT have been studied since 1960s and have been applied in var-
ious arenas including packet networks and web server scheduling. SRPT has been
proven to be optimal in the sense that it yields—compared to any other conceivable
strategy—the smallest mean value of occupancy and therefore also of waiting and
delay time. One important prerequisite to applying size-based scheduling is to know
the sizes of all jobs in advance, which are unfortunately not always available. No
work has been done to study the performance of size-based scheduling policies when
only inaccurate scheduling information is available. In the thesis, we study the per-
formance of SRPT and FSP as a function of the correlation coefficient between the
actual job sizes and estimated job sizes. We developed a simulator that supports
both M/G/1/m and G/G/n/m queuing models. The simulator can be driven by

trace data or synthetic data produced by a workload generator we have developed

CHAPTER 1. INTRODUCTION 3

that allows us to control the correlation. The simulations show that the degree of
correlation has a dramatic effect on the performance of SRPT and FSP and that a
reasonably good job size estimator will make both SRPT and FSP outperform PS
in both mean response time and slowdown. We then explored several job size esti-
mators that support size-based scheduling on web servers and the server side of P2P
systems. Our work shows that it is feasible to apply size-based scheduling in RGIS
Sservers.

Centralized VS. Distributed: A centralized information server can’t scale
with the growth of the distributed system because the server’s CPU, memory or disk
can potentially become performance bottlenecks. Even if we use a high-performance
cluster to host the information service, the outgoing bandwidth can potentially be-
come the bottleneck as the distributed system grows and more and more clients try
to get query results back via the outgoing link. Our solution for better scalability
of the information service is to replicate and distribute the information servers to
geologically different locations on the Internet and keep weak consistency among the
replicas. The servers share the query processing load and the network is not likely to
become bottleneck. RGIS servers do not talk directly with each other, but indirectly
via a content delivery network (CDN), which is based on the publish /subscribe model
and is used solely to propagate updates to friendly RGIS servers.

TCP throughput monitoring and prediction component is responsible for
predicting the data transfer time accurately in a real time manner on the overlay
network. We have prototyped DualPats, a novel TCP flow rate monitoring and pre-
diction framework which can predict serial as well as parallel TCP flow rate accurately
with low overhead.

DualPats is designed with two goals in mind. First, it can be used by the RGIS
servers to monitor TCP throughput between them, which helps to soft time bound the

CHAPTER 1. INTRODUCTION 6

consistency control by accurately estimating the updates transferring time. Second,
it can be used to monitor the TCP throughput between the distributed computing
resources.

In this work, we first exploits the strong correlation between TCP throughput and
flow size, and the statistical stability of Internet path characteristics to accurately
predict the TCP throughput of large transfers using active probing. We propose
additional mechanisms to explain the correlation, and then analyze why traditional
TCP benchmarking fails to predict the throughput of large transfers well. We char-
acterize stability and develop a dynamic sampling rate adjustment algorithm so that
we probe a path based on its stability.

Parallel TCP flows are broadly used in high performance distributed computing,
and can be used by the RGIS servers for update propagation rate adaptation. In
this thesis, we address how to predict parallel TCP throughput as a function of the
number of flows, as well as how to predict the corresponding impact on cross traffic.
To the best of our knowledge, we are the first to answer the following question on
behalf of a user: what number of parallel flows will give the highest throughput with
less than a p % impact on cross traffic? We term this the maximum nondisruptive
throughput. We begin by studying the behavior of parallel TCP in simulation to
help derive a model for predicting parallel TCP throughput and its impact on cross
traffic. Combining this model with some previous findings we derive a simple, yet
effective, online advisor.http://www.cs.northwestern.edu/~urgis/GridG

Our analysis, design, and evaluation is based on a large-scale measurement study.

The multicast component: I contributed to the design of FatNemo, a novel
overlay multicast protocol that emulates the fat-tree architecture on the wide area
network. The overlay fat-tree architecture helps to prevent the root from becoming

bottleneck in the case of multi-source multicast. The end-system multicast protocol

CHAPTER 1. INTRODUCTION 7

can be integrated into the CDN for better scalability and efficiency.

1.2 Related work

The data model, query language, and implementation of GISes and similar services
that store the information about networked resources has been evolving for some
time.

Today, many sites that provide externally accessible computing resources make a
description of those machines available as web pages. Web search engines are often
used to find appropriate resources. This has been aided significantly by the advent
of highly discriminating search algorithms for arbitrary documents, such as PageR-
ank [45]. By providing highly structured data, most GIS systems aim to provide
more sophisticated queries.

Within the networking community, SLP [223] has been proposed as a standard
for discovering services. The DNS name service [20] is universally used. DNS maps
a hierarchical name (a path) to a blob of information and is typically used to resolve
host names to IP addresses. Protocols for constructing and querying hierarchical dis-
tributed databases such as X.500 [121] and LDAP [119] can be viewed as extensions to
this idea, although hierarchical databases predate DNS. Each node on an LDAP tree
can have multiple typed attributes associated with it. An LDAP query is a traversal
of a subtree that returns nodes whose attributes satisfy the query constraints. Each
subtree can be serviced by a different LDAP server, making it straightforward to par-
tition responsibility and security over multiple sites. In contrast to these approaches,
RGIS builds on a relational data model instead of a hierarchical data model.

Within the distributed systems community, service location and naming services

are basic needs. DCE [214], CORBA [168], and Java’s Jini Framework [224] in-

CHAPTER 1. INTRODUCTION 8

clude these services. In DCE and CORBA, the service and the query consists of a
type specification for a procedure or object (the interface) and the result is match-
ing instances. Jini uses a more general tuple of attribute-value pairs as the service
descriptor, and a tuple of attribute constraints as the query. One strand of recent re-
search [16, 220, 135, 215] has focused on timelines of updates and on how services can
push updates to users. Another strand has focused on distributing data throughout
the network and then routing queries to likely nodes where matching data may reside
using distributed hash tables [207, 192]. In contrast to these systems, RGIS attempts
to provide compositional queries (joins) where collections of objects are needed to
satisfy the query.

The Grid computing community has seen an explosion of work on GIS systems.
The most relevant systems are Globus MDS2 [67], the Condor Matchmaker [185], and
R-GMA [91]. MDS2 is based on LDAP and defines a schema (the attribute types)
that can be associated with nodes in the tree. In contrast, RGIS uses a relational
data model.

In the Condor Matchmaker, both resources and queries are collections of attributes
and constraints. This enables bilateral matchmaking, where both the resource owner
and the querier can constrain which results are returned on a query. Bilateral match-
ing is a very fast process. Condor Matchmaker was later extended to support gang-
matching, meaning that a query can be written that requires more than one resource
to be satisfied [186]. Gang-matching is implemented using prioritized search with
backtracking, which is more expensive than the search for bilateral matchmaking.
Recently, Liu and Foster have proposed a matchmaking scheme and developed a
system, Redline, in which the language for constraints enables the definition of con-
straint satisfaction problems (CSPs) [139]. CSPs are NP-Hard and are solved using

the heuristic techniques implemented in an underlying CSP solver.

CHAPTER 1. INTRODUCTION 9

R-GMA [91] is close to our work in that it also proposes a relational data model
for GIS systems. RGIS differs from R-GMA in two ways that are relevant to RGIS.
First, R-GMA focuses currently on dynamic properties of resources (e.g., load), while
RGIS focuses currently on relatively static properties (e.g., memory). Both systems
are evolving to unify static and dynamic information, however. Our second difference
is RGIS’s support for nondeterministic, approximate and scoped queries.

Efforts to define the broad structure of the computational grids [94] and standard-
ize the specifics of interaction among components [93] suggest that there are roles for
multiple kinds of GIS systems, and that different systems can and will interoperate.

Traditional replicated transactional databases use strong consistency as a cor-
rectness criterion [39], while optimistic systems such as Coda [130] and Bayou [178]
greatly favored the availability and performance over strong consistency. Recently,
Yu, et al showed that relaxed consistency with a bound of maximum inconsistent
access rate is important to many distributed applications. They also proposed nu-
merical error, order error and staleness as three consistency bound metrics and ap-
plied anti-entropy [71] in building TACT [235], a middleware layer that enforces
adjustable consistency bounds among the replicas. However, the replicas have to be
synchronized in real time (in contrast to logical time) to bound the staleness of a
replica. Besides, using anti-entropy is not network efficient because anti-entropy is
like controlled unicast, while multicast at different levels will improve the efficiency.

To meet the consistency constraint, we need to estimate accurately the TCP
throughput on the wide area network so that a RGIS server can finish sending its
update within a time bound. The concept of available bandwidth has been of central
importance throughout the history of packet networks, and researchers have been
trying to create end-to-end measurement algorithms for a long time. From Keshav’s

packet pair [129], to Crovella’s cprobe [53], and the latest work, such as IGI [117],

CHAPTER 1. INTRODUCTION 10

the purpose is to measure the end-to-end available bandwidth accurately, quickly,
and non-intrusively. Today’s definition of available bandwidth is “the maximum rate
that the path can provide to a flow, without reducing the rate of the rest of the
traffic.” [117, 122]. Other tools to measure either the bottleneck link capacity or the
available bandwidth include nettimer [134], pathchar and pchar [85], pathload [122,
123], NCS and pipechar [127], pathrate [84], spruce [208] and pathchirp [189], and
Remos [141]. Most of such tools used the packet pair or packet train techniques to
conduct the measurements.

The available bandwidth is different from the TCP throughput that an application
can achieve, and that difference can be huge. Lai’s Nettimer paper [134] showed many
cases where the TCP throughput is much lower than the available bandwidth, while
Jain’s pathload paper [122] showed the bulk transfer capacity [158] of a path could
even be higher than the measured available bandwidth. Additionally, most of these
tools take a long time to run, which make them unsuitable to be used in real time
for applications and services.

The most widely used TCP throughput prediction tool is Network Weather Ser-
vice [230] (NWS). NWS applies benchmarking techniques and time series models
to measure TCP throughput and provide predictions to applications in real time.
NWS has been broadly applied. Allen, et al [24] applied NWS to address the so
called Livny and Plank-Beck problems. Swany, et al [210] applied NWS in the grid
information service.

Unfortunately, recent work [222, 221] has argued that NWS, and by implica-
tion, TCP benchmarking techniques in general, are not good at predicting large file
transfers on the high speed Internet. Sudharshan, et al [222] proposed and imple-
mented predicting large file transfers from a log of previous transfers and showed that

it can produce reasonable results. However, a pure log-based predictor is updated

CHAPTER 1. INTRODUCTION 11

at application-chosen times and thus neglects the dynamic nature of the Internet.
Hence, when a path changes dramatically, the predictor will be unaware of it until
after the application begins to use the path. To take the dynamic changes of In-
ternet into consideration, Sudharshan, et al [221] and Swany, et al [209] separately
proposed regression and CDF techniques to combine the log-based predictor with
small NWS probes, using the probes to estimate the current load on the path and
adjust the log-based predictor. These techniques enhanced the accuracy of log based
predictors. However, these combined techniques are limited to those host pairs that
have logs of past transfers between them, and due to the dynamic nature of Inter-
net, which only shows certain statistical stabilities, the logs can become invalid after
some time. Furthermore, due to the strong correlation between TCP flow size and
throughput [239], logs for certain ranges of TCP flow (file) size are not useful for
the prediction of different TCP flow sizes. This motivated us to design DualPats, a
novel TCP throughput monitoring and prediction framework that can predict TCP
throughput in a soft real time manner without such constraints.

Parallel TCP flows are broadly used to enhance end-to-end throughput. For ex-
ample, GridF TP [21], part of the Globus project [95], supports parallel data transfer
and has been widely used in computational grids [22]. RGIS servers can utilize it for
data transfer rate adaptation. Hacker et al [108] explained mechanisms parallel TCP
flows achieve higher throughput, and proposed a loose upper-bound for parallel TCP
throughput. However, to the best of our knowledge, we are the first to answer the
following question on behalf of a user: what number of parallel flows will give the
highest throughput with less than a p% impact on cross traffic? We term this the
maximum nondisruptive throughput.We begin by studying the behavior of parallel
TCP in simulation to help derive a model for predicting parallel TCP throughput

and its impact on cross traffic. Combining this model with some previous findings

CHAPTER 1. INTRODUCTION 12

we derive a simple, yet effective, online advisor. We evaluate our advisor through
extensive simulations and wide-area experimentation.

Multicast is an efficient way to distribute data among multiple users. End system
multicast [64, 124, 30, 57, 187, 170] has recently become an effective alternative for
IP multicast which only has very limited support on today’s Internet [70, 79]. We
designed a fat-tree based end-system multicast protocol that emulates a fat tree on
the wide area network. This protocol can be used as an effective alternative for data

propagation among the RGIS servers.

1.3 Outline and contributions

The following chapters describes several important components that can be used to
build a scalable distributed RGIS system. These chapters also appeared in refereed

publications.

1.3.1 Chapter 2: Architecture of the RGIS system

Chapter 2 describes the architecture of the RGIS system. This chapter also appeared
as part of our refereed publication [77] in ACM/IEEE Supercomputing 2003.
Contributions: A scalable relational GIS was proposed and its architecture was

presented.

1.3.2 Chapter 3: Generating Synthetic Grids

Chapter 3 describes the design and implementation of GridG, our extensible synthetic
grids generator. GridG was used to generate synthetic grids information for the
evaluation of the RGIS system. GridG consists of two components, namely the

topology generator and the annotation generator.

CHAPTER 1. INTRODUCTION 13

This work was published in proceedings of ACM /IEEE Supercomputing 2003 [145]
and Sigmetrics Performance Evaluation Review [143].

Contributions: GridG is the first topology generator that follows the power-
laws of Internet topology while retaining a clear hierarchical network structure. Also,
to my best knowledge, GridG is the first topology generator that can annotate the
topology with sensible attributes from router level to the end-system level. While
developing GridG, we also made contributions to the networking theory by revealing
interesting relationships among the power-laws of Internet topology. We released the

GridG toolkit at http://www.cs.northwestern.edu/~urgis/GridG.

1.3.3 Chapter 4: Query Rewriting Techniques

Chapter 4 describes the design and evaluation of our query rewriting techniques,
including nondeterministic queries, scoped and approximate queries.

This work was published in ACM/IEEE Supercomputing 2003 [77] and Grid
2003 [147].

Contributions: These query rewriting techniques trade off the query time with
the number of results returned. We show that tradeoffs over many orders of magni-
tude are possible, and the techniques can also be used to keep query processing time
largely independent of query complexity, albeit returning fewer results with more
complex queries. Several time-bounded query techniques were also developed based

on the three query rewriting techniques to provide soft real time bound for each

query.

CHAPTER 1. INTRODUCTION 14

1.3.4 Chapter 5: Scheduling With Inaccurate Job Size In-
formation

Chapter 5 describes our simulation study on size-based scheduling policies with inac-
curate job size information. A few new applications were also briefly discussed. This
work can be potentially used by the RGIS servers.

This work was published in IEEE MASCOTS 2004 [154]. Another two papers
relating to this topic are in submission.

Contributions: Through simulations, we have evaluated the performance of
size-based scheduling policies (SRPT and FSP, with PS for comparison), as a function
of the correlation between actual job size and estimated job size. We found that SRPT
and FSP’s performance strongly depends on the correlation. When provided with
weak correlation, SRPT and FSP can actually perform worse than PS, but given a
reasonably good job size estimator, they can outperform PS in both mean response
time and the slowdown. We also described three new applications of SRPT and FSP.

To generate correlated trace data for the simulation, we introduced a new random
number pair generation technique, where each number of the pair is chosen from its
required distribution and they are correlated to degree R. This technique can be
very useful for simulation related research in this and other areas.

To the best of our knowledge, this work is the first to address the performance of

size-based policies with inaccurate scheduling information.

1.3.5 Chapter 6: Characterizing and Predicting TCP Through-
put

Chapter 6 describes DualPats, our TCP throughput monitoring and prediction frame-
work that can be used to build the TCP throughput monitoring and prediction com-
ponent of the RGIS system.

CHAPTER 1. INTRODUCTION 15

This work was published in ICDCS 2005 [152].

Contributions: We have characterized the behavior of TCP throughput in
the wide area environment, providing additional explanations for the correlation of
throughput and flow size and demonstrating how this correlation causes erroneous
predictions to be made when using simple TCP benchmarking to characterize a path.
In response, we proposed and evaluated a new benchmarking approach, dualPacket,
from which TCP throughput for different flow sizes can be derived. We developed
a novel dynamic sampling rate adjustment algorithm to lower the probing overhead
while capturing the dynamism of end-to-end paths. Based on these results, we de-
scribed and evaluated the performance of a new TCP throughput monitoring and

prediction framework, DualPats, and implemented this approach.

1.3.6 Chapter 7: Modeling and Taming Parallel TCP

Chapter 7 describes our techniques in modeling and taming parallel TCP flows which
can be used as an adaption mechanism to control the data transfer time between RGIS
servers.

This work was published in IPDPS 2005 [150].

Contributions: This chapter shows how to predict both parallel TCP through-
put and its impact on cross traffic as a function of the degree of parallelism using
only two probes at different parallelism levels. Both predictions are monotonically
changing with parallelism levels. Hence, the TameParallelTCP() function can be
implemented using a simple binary search. To the best of our knowledge, our work
is the first to provide a practical parallel TCP throughput prediction tool and to

estimate the impact on the cross traffic.

CHAPTER 1. INTRODUCTION 16

1.3.7 Chapter 8: FatTree Based End-System Multicast

Chapter 8 describes the design and implementation of FatNemo,a fat-tree based end
system multicast protocol. This is a highly scalable and efficient data distribution
mechanism that can be used by the CDN of the RGIS system.

Initial results were published in WCW 2004 [41] and the final long version is in
submission.

Contributions: This chapter makes three main contributions. First, this chap-
ter introduces the use of Leiserson fat-trees for application-layer multi-source mul-
ticast, overcoming the inherent bandwidth limitations of normal tree-based overlay
structures (Section 8.3). Second, this chapter describes the design and implementa-
tion of FatNemo, a new application-layer multicast protocol that builds on this idea.
Lastly, this chapter evaluate the FatNemo design in simulation, illustrating the ben-
efits of a fat tree approach compared to currently popular approaches to end-system

multicast.

1.3.8 Chapter 9: Conclusions and Future Work

Chapter 9 concludes this thesis and describes future work.

1.3.9 Appendix A: Domain-based scheduling on web servers

We proposed and evaluated domain-based scheduling, a simple technique that better
estimates connection times by making use of the source IP address of the request.
Domain-based scheduling improves SRPT and FSP performance on web servers,
bringing the performance benefits of these scheduling polices even to those regimes
where the correlation between file size and service time is low. Our paper is in

submission.

CHAPTER 1. INTRODUCTION 17

Contributions: We have demonstrated that the assumption that file size is a
good indicator of service time for web servers is unwarranted. File size and service
time are only weakly correlated. We have evaluated the performance of SRPT-FS
and FSP-FS, SRPT and FSP by running simulations driven by our web server traces.
We found that their performance does indeed degrade dramatically with the weak
correlation reflected in the trace. In some cases SRPT-FS and FSP-FS can actually
perform worse than PS.

We have proposed, implemented, and evaluated a better service time estimator
that makes use of the hierarchical nature of routing on the Internet and the history of
past requests available on the web server. We refer to SRPT and FSP augmented with
our domain-based estimator as SRPT-D and FSP-D. The state size of our estimator

is a parameter.

1.3.10 Appendix B: Scheduling the server side of P2P sys-
tems

We focused on the problem of scheduling download requests at the server-side of
P2P systems with the intent of minimizing the average response time experienced by
users.

Early results were published in LCR 2004 [182]. Our final long version is in
submission.

Contributions: We characterized P2P server side workload based on extensive
trace collection and analysis. We also evaluated the performance and fairness of
different scheduling policies through trace-driven simulations. Our results show that
average response time can be dramatically reduced by more effectively scheduling the

requests on the server-side of P2P systems.

Chapter 2

Architecture of the RGIS system

This chapter describes the architecture of the RGIS system. The following chapters
describe the design of the individual components of the system.

Figure 2.1 illustrates the structure of the RGIS system, focusing on a single RGIS
server. We expect that each site within a computational grid will run one such server,
although multiple servers per site can also be supported. The goal of the RGIS server
for a site is to provide a view of the entire computational grid appropriate to that
site’s users. A site’s RGIS server is responsible for all queries issued by users on the
site.

An RGIS server is built around an RDBMS system. At the present time, we use
Oracle 9i Enterprise Edition, but our system could also be based on other RDBMS
systems such as DB2, MS SQL Server, Postgres, and MySQL. A early implementation
of our work used MySQL. Like most serious database systems, Oracle provides a single
front-end interface to multiple back-end implementations. In particular, this provides
platform independence (Oracle runs on many operating systems and platforms) and
intra-site scalability (Oracle has a variety of implementations, including a Parallel
Server product that scales over clusters). RGIS consists of ~18,200 lines of Perl

and ~2500 lines of SQL and PL/SQL. ~5000 lines of PL/SQL are automatically

18

CHAPTER 2. ARCHITECTURE OF THE RGIS SYSTEM 19

‘ Users ‘ ‘ Applications ‘
/ I i i
Canned ‘ Web Interface ‘ ‘SOAP Interface }-7
- Canned
Approximate) —
Queries Queries
‘ Authenticated Direct Interface ‘
Scoping Rewrite — T~ '
M~ Content Delivery
\kQuery Manager Update Network Interface
Nondeterminism Rewrite | and Rm ‘}rlager For loose consistency
Time Bounding ‘ Oracle 9i Front End
(And Iteration Of Query) | transactional inserts and updates Updates encrypted

using stored procedures, using asymmetric

queries using select statements CWUTUQF%'YI °”h
RDBMS{ | (uses database’s access control) network. Only those
with appropriate keys

) have access

Oracle 9i Back End
Windows, Linux, Parallel Server, etc

I

Schema, type hierarchy, indices,
PL/SQL stored procedures
for each object

site-to-site

Figure 2.1: RGIS Structure.

generated.

RGIS includes a type system to identify a wide range of components including
hosts, routers, switches and hubs at layers 2 and 1, links at layers 3 through 1, paths
at layer 3, benchmarks, operating systems, operating system vendors and versions,
switches, switch vendors, software modules, running software, and communication
endpoints.

Is it feasible to populate a database of such components, particularly the network
graphs? Yes. Beyond the observation that network administrators and designers
can provide such data for their individual sites, automated network mapping can
also be used. Mapping networks at layer 3 is a well established research area that
started in the late ’90s [60] and has evolved to a considerable degree of sophistication
today [118, 206, 83]. The last paper provides an extensive discussion of research and
tools in this area. Layer 2 network discovery within a site, in particular automatically

mapping large switched Ethernet networks, has also been achieved [142].

CHAPTER 2. ARCHITECTURE OF THE RGIS SYSTEM 20

Typed objects are inserted into the database by updating one or more tables. An
object is also identified in a special table (insertids) by a unique insertion identifier,
a timestamp (NTP is assumed), and ancillary information to support our special-
ized needs, such as our query extensions, and to link virtual resources with physical
resources [90]. Every other table that is updated includes this insertion id, hence
making it easy to find all elements of an object, no matter what tables it spans.

The RGIS schema includes the sequences, tables, constraints, triggers, and indices
that represent our grid modeling efforts. Figure 2.2 shows a high-level view of the
RGIS schema, focusing on the representation of a host computer.!

Given transactional updates, the constraints and triggers are designed to keep
the database in a consistent state. We use Oracle’s access control mechanisms to
assure that insertions, updates, and deletions occur only via stored procedures that
force transactions. For every type of object, there is an associated PL/SQL package
(essentially, a class) that provides this functionality. Each package also includes non-
transactional versions of the operations which very privileged users can use to batch
multiple updates together into a single transaction. These packages are automatically
generated from the schema so that the schema can evolve easily. Figure 2.3 shows
our SQL representation of a host.

Layered on top of the RDBMS front-end is a query manager/rewriter, and an
update manager. Chapter 4 describes the details of our query rewriting techniques
while chapter 5 explores the feasibility of applying size-based scheduling policies on
the query manager. Together, these two provide the core application interface to an
RGIS server. This interface is exported through a layer that provides authentication

of the user and checks his capabilities for each request, mapping from an external

!The formal schema is available at http://urgis.cs.northwestern.edu/schemas.

CHAPTER 2. ARCHITECTURE OF THE RGIS SYSTEM

modul eexecs datasources | insertids
’ id,type,name,blobm ’ id,type |H ‘ id =>time, rand |H
modules endpoints |eases
’ id,modul eexec | H ’ id,type, module,datasource ‘ ’ id => endtime | H
software layer virtuals
hosts iplinks | ’Id:>{ld} |H
Lidtypeinfodistip ||| |idsrc.dest Il futures
-) lid=> id |l
ostbenchmarks ippaths
Lidtypeinfoblob ||| |id.srcdest |l _.Tesource metadata;
r.outers. — |p' - : archtypes, routertypes, i
’ id,typeinfo,distip |H ‘ distip => {ip} |H switchtypes, linktypes, :
routerbenchmarks ipmacassoc ﬁ;ﬁsv?r;zqegggs'
|idtypeinfoblob ||| [ip=> macazltdr k !H ””";yf’es’ oethtypes,
network layer moduletypes,
endpointtypes,
______ datat !
macswitches Macassocs hosit?/;?\marktypes,
| id typeinfo,distack{| | distacx => {acq}]| routerbenchmarktypes
maclinks ’ id, name, desc |H
’ |d,type|nfo,src,desﬁ datalink laver | vahdtypes_:
connectorSNitch-e; connectorassocs | giaiiﬁ%pgwong
’ id,typeinfo,distadx” ’ distadx => {adx} |H Resourceli_mits...
connectorlinks connectormacassoc E:rer;tﬂ Z;pe\g; lity)
’ id,typei nfo,src,desﬂ ’ adx => macaddr |H user => { resource limit}
physical layer i i security

21

Figure 2.2: Overview of the RGIS Schema. Highlighted are the minimum tables used
to represent a host. A host may also be represented in the leases table if it may leave
the system, the virtuals table if it is a virtual machine, and the futures table, if it is
not yet instantiated.

CHAPTER 2. ARCHITECTURE OF THE RGIS SYSTEM

CREATE tabl e hosts (

distip var char 2(15) not null primry key,
nane var char 2(256) def aul t (* UNKNOW),
nunpr oc nunber defaul t (1),

mhz nunber defaul t (0),
constraint good_mhz_hosts check (nmhz>=0),

arch var char 2(32) defaul t (* UNKNOW),

constraint good_arch_hosts foreign key (arch)
references archtypes(nane),

hwvendor VARCHAR2(32) DEFAULT(" UNKNOA) ,

constraint good_hw _hosts foreign key (hwendor)
references hardwar evendor s(nane),

os var char 2(32) def aul t (" UNKNOMW),

constrai nt good_os_hosts foreign key (os)
references ostypes(nane),

osvendor var char 2(32) defaul t (" UNKNOW),

constraint good_osv_hosts foreign key (osvendor)

ref erences osvendors(nane),

osver var char 2(256) defaul t (" UNKNOW),
kernel ver varchar 2(256) def aul t (* UNKNOW),
mem_nmb nunber defaul t (0),
constraint good_nmem hosts check (nmem nb>=0),
vimrem _nb nunber defaul t (0),
constrai nt good_vrmem hosts check (vnem nb>=0),
di sk_gb nunber defaul t (0),

constraint good_di sk_hosts check (disk_gb>=0),
| ocation var char 2(256) defaul t (" UNKNOW),
owner var char 2(256) defaul t (" UNKNOMW),
description varchar 2(256),
insertid nunber not null unique,
constraint good_insert_hosts foreign key
(insertid) references insertids(insertid)
ON DELETE cascade

)i
CREATE table insertids (
note var char 2(256) ,
time timestanp not null,
insertid nunber not null primry key,
rand nunber not nul |
)i
CREATE tabl e ipassocs (
distip var char 2(15) not null,
ip var char 2(15) not null primry key,
insertid nunber not null,

constraint good_insert_i passocs foreign key
(insertid) references insertids(insertid)
ON DELETE cascade

Figure 2.3: Specific SQL representation of a host. Definitions of indices elided.

CHAPTER 2. ARCHITECTURE OF THE RGIS SYSTEM

2 NU Prescience Lab - Common Queries - Microsoft Internet Explorer provided... |:IE ‘X

File Edic View Favories Tools Help
Qus - @ (8 @ (b Pswo frroces @nss @ (3-
Addres |) hitps: flocalbhost{~mweinrichjURGILS _queries.pl v Bso ks *
G0 gle = Imateriaized view vl Bpsearchweb 0 o News | PageRank o

A

Common Queries
Commaon Queries sections: Digk Memory and Processor

Search for Multiple Hosts

Minimum Totol Memory ®45)

Figure 2.4: RGIS web interface.

&

CHAPTER 2. ARCHITECTURE OF THE RGIS SYSTEM 24

notion of user to a database-local notion of user. This interface in turn is made visible
to the outside world via a web interface, and a SOAP interface, both running over
the encrypted HTTPS protocol. Figure 2.4 shows the current web interface of RGIS.

The update manager aggregates updates (insertions of new objects, deletions of
existing objects, and changes to the properties of existing objects) coming from local
sources and remote sources and batches them into transactions for the RDBMS. In
this role, it can prioritize updates and also control the rate of updates and the update
latencies going into the database.

RGIS servers do not talk directly with each other, but indirectly via a content
delivery network (CDN), which is based on the publish/subscribe model and is used
solely to propagate updates to friendly RGIS servers. There is no implicit notion of
trust among RGIS servers. If a site is interested in receiving updates from a remote
RGIS server, it must arrange with the remote administrator to create a key pair.
Each update to the local RGIS server is then encrypted in a manner similar to PGP
multiple destination messages [101], making it readable only to those RGIS servers
that hold one of the perhaps many keys used in the encryption process. The CDN is
used to send the update to the group of all those holding keys using either unicast
or more scalable application-layer multisource multicast. Chapters 6, 7 and 8 are
devoted to these data transfer components. An RGIS server combines local updates
and remote updates to create a view of the computational grid that corresponds to
that which its users have access.

In the limit, each RGIS server could contain data about all the resources on a wide
area network, although we expect this will rarely happen. Although this is clearly
asymptotically unscalable, it is not unreasonable for computational grids of likely size.
Consider a computational grid of one billion hosts and routers (about five times the

current size of the Internet). With two kilobytes of information per host, about 2 TB

CHAPTER 2. ARCHITECTURE OF THE RGIS SYSTEM 25

3500 [] msert single)
3000 Insert (Bulk)
~2500 Update
'§ 20001 (Single)
@ 1500 [(atnes o
(7] 100)
5 400+
% Bl urdate (Buik)
° 300] oetete (Bully
& 200
1004
0

50,000 500,000 5,000,000
Number of Hosts in Database

Figure 2.5: Insert, update, and delete rates.

of data storage would be necessary in the RGIS server. In 2004, this requires less than
$10,000 of disk storage using a modern direct-attach RAID box, making it clearly
within the realm of possibility. Furthermore, the $/MB of disk capacity is shrinking
much faster than the Internet is growing. Update rates can be an issue, but three
things ameliorate this. First, we can achieve quite high update rates on off-the-shelf
RDBMS systems such as Oracle. Figure 2.5 shows the rates for insertions, updates,
and deletions in RGIS with different size databases running on our hardware (See
Section 4.3 for details about the hardware and software configuration). Here an insert
means adding a host to the database, which involves a transactional modification of
a sequence and three tables, an update means modifying the memory attribute of a
host already in the database, which is a transactional modification of two tables, and
delete means to remove a host from the database, transactionally modifying three
tables. Second, bandwidth into a site grows with the update rate, since the update
rate grows with the number of hosts and routers. Third, RDBMS systems such as
Oracle and DB2 can scale over clustered servers to support very high update rates. In
effect, we can leverage the existing TPC-C online transaction processing benchmark

competition [219] to address the updates.

CHAPTER 2. ARCHITECTURE OF THE RGIS SYSTEM 26

A site sends queries only to its RGIS server. This ties the resources a site is
willing to commit to its RGIS server to the number and kind of queries it wants to
make. This is vital because the nature of many RGIS queries is similar to decision
support queries (TPC-H [219]) in relational database systems. Such queries can be
very expensive to execute and so are unlikely to be welcome on foreign RGIS servers.

The goal of the query manager/rewriter is to shape the query workload so that
it can be effectively executed by the RDBMS, by which we mean that the load
on the RDBMS is kept below one and individual queries finish quickly. Chapter 4
describes our query rewriting techniques in details. Queries take the form of select
statements written in a slightly extended form of SQL. The query manager /rewriter
translates queries into the underlying SQL dialect, modifying the query semantics to
balance between the needs of the query and the needs of the system. In essence, the
query manager/rewriter can trade off between the result set size for a query and the
resources the query requires to execute.

Query processing is a three stage process, as shown in Figure 2.1. First, for com-
mon inquiries, we provide pre-written “canned queries”. Some canned queries have
been rewritten to an approximate form by hand. Both canned queries and queries
constructed on the fly pass through two further automatic rewriting steps, scoping
and nondeterminism. The final SQL query is then executed for a specified amount
of (wallclock) time and the matching results are returned. The use of nondetermin-
ism and scoping can cause the query to be run repeatedly within the alloted time if
necessary, using a different random sample each time.

In industry, the development of relational queries and their optimization is often
allotted to a specialist. Similarly, we envision a “grid query developer” who will
create canned queries. However, RGIS users will always be able to write their own

queries of arbitrary complexity (but constrained running time.)

Chapter 3

Generating Synthetic Grids

This chapter describes the motivation, design and implementation of GridG, our
extensible toolkit for generating and annotating synthetic grid topologies. GridG
was used to evaluate the RGIS system.

GridG was released at http://www.cs.northwestern.edu/~urgis/GridG.

3.1 Introduction

Designing and evaluating grid middleware demands realistic workloads. The RGIS
system is no exception [74, 77]. Using RGIS system, users are able to pose complex
compositional queries that resemble decision support queries. A typical query might
look for a group of machines that use the same OS, together have a certain amount
of memory, and that the subset of the network connecting them have some bisec-
tion bandwidth. To make these queries fast, we implement them using stochastic
search, allowing us to trade off between the number of nondeterministically chosen
results returned by the query and the amount of work done in support of it. This
tradeoff depends strongly on the structure of the grid: the network topology and the
characteristics of the hosts, routers, and links within the topology.

While Smith, et al [204] studied the update and query processes on such grid

27

CHAPTER 3. GENERATING SYNTHETIC GRIDS 28

information, there is no extant work and limited available data on the structure of
computational grids. We examined the contents of several running GIS systems.
The largest dataset we have found, generously provided by Smith, contains fewer
than one thousand nodes. Given the limited data sets, a synthetic grid generator
is a necessity. Furthermore, even as more data becomes available, it will continue
to be useful to have a parametric source of grids. For example, such grids could be
used with simulation toolkits such as GridSim [49], Simgrid [55], MicroGrid [205] and
Bricks [17]. to study the benefits of different scheduling techniques. Unfortunately,
no such generator currently exists. Synthetic grids could also be useful in simulation
studies of overlay networks and peer-to-peer systems [193, 31]. Although the cor-
rectness of such protocols do not depend on the underlying topology, their efficiency
does depend on topology and on the performance of the end-systems.

In response to this need, we have built GridG, a grid generator. Our definition of
a synthetic grid is an annotated directed graph in which the nodes represent hosts,
routers, switches, and hubs, and the edges represent network links. The graph is thus
a network topology that extends to the level of hosts. In addition, each node or edge
is annotated with information relevant to its use as a part of a computational grid.
A grid generator, such as GridG, produces a grid of a given number of hosts. It must

meet the following requirements:

e It must produce a realistic network topology. Much is known about the proper-
ties of real network topologies: they are connected, and they have hierarchical
structures. Furthermore, wide-area network topologies, including the Internet,
have recently been found to follow certain topological power laws [88]. A good

generator will provide both structure and follow the power laws [213].

e It must generate realistic annotations for hosts and network components. For

CHAPTER 3. GENERATING SYNTHETIC GRIDS 29

a host, it should at least provide the architecture type, processor type and
speed, number of processors, memory size, disk size, hardware vendor, operat-
ing system, and available software. For a link, it should provide the hardware
bandwidth and latency. For routers and switches, it should specify the aggre-
gate backplane or switching fabric throughput and latency. It should capture
correlations between different attributes (for example, we might expect that
memory size increases with processor speed with high probability), and be-
tween nearby components (for example, a high speed router is unlikely to be

connected only to a few slow links).

The networking community has produced a wide range of topology generators,
including random Waxman [226], Tiers [80, 50], Inet [125, 229], etc. These genera-
tors either meet the structure requirement or they meet the power-law requirement.
GridG starts with the output of a structure-oriented topology generator (we currently
use Tiers) and adds redundancy to it in such a way as to make it conform to the
power laws. As far as we are aware, this makes it the first topology generator that
provides structured topologies that obey the power laws.

GridG in fact directly enforces only one power law, the so-called outdegree ex-
ponent power law. Its outputs, however, show obedience to all the other laws as
well. In studying the unreasonable effectiveness of the outdegree law, we discovered
a new fact: it is either the case that the so-called rank exponent power law is not
actually a power law, or that it is more significant than the others. We believe that
the former is actually the case, but that over the typical range that is considered, a
power law is a useful approximation. At this point, we believe the outdegree law is
more significant and that the other power laws can be derived from it.

GridG provides mechanisms for annotating each node and edge. These mecha-

CHAPTER 3. GENERATING SYNTHETIC GRIDS 30

nisms are currently based on user-supplied empirical distributions and conditional
probability rules. The rules enforce correlations between different attributes on the
same graph element and correlations between different graph elements that are close
to each other. Distributions and rules can be determined by measurement. For ex-
ample, we discovered OS concentrations on all the class C IP subnets we probed with
nmap—most subnets appear to have a dominant operating system. These kinds of
clustered attributes are very important for Grid modeling, resource allocation and
scheduling research, because much of the resource allocation and scheduling work
that has proved successful depends on clustered homogeneity of such attributes. We
added this optional rule to GridG as an example of capturing correlation between
attributes on nearby graph elements. We also added optional rules correlating the
different attributes of a host that are not measurement based, but reflect the sensible
beliefs most people have of how machines are configured.

Unfortunately, very little is known about the characteristics of a grid or network
that are represented by the annotations. We point to the information that we think
is necessary to develop models of these little studied network and host characteristics.
The successful collection of this kind of data, and the models that could be developed
from it are a very exciting research opportunity.

In the following, we begin by presenting the overall architecture of GridG in
Section 3.2. While GridG can apply any number of transformations to produce a
synthetic grid, there are two core steps: topology generation and annotation. In Sec-
tion 3.3, we describe how topology generation is done and demonstrate that GridG
conforms to the power laws of Internet topology. Section 3.4 discusses our insights
into those laws, including the apparent contradiction between two of them. Sec-
tion 3.5 describes the GridG mechanisms for annotation, outlines the requirements

of a model for annotation, discusses the OS concentration phenomenon, and de-

CHAPTER 3. GENERATING SYNTHETIC GRIDS 31

GIs

Grid Simulator

Base Translation GridG Structured Topology

Topology To Structured Topology | Power that obeys power laws GridG

Generator |?] Common Law Annotator DOT
(Tiers) Format Enforcer Visualization

Other transformations
oncommon format .~ Other
(Cluster meker, etc)’ Tools

Figure 3.1: GridG Architecture.

scribes the open research questions posed by the need for such a model and how we

are attempting to address them. Finally, Section 3.6 concludes this chapter.

3.2 Architecture of GridG

GridG is implemented as a sequence of transformations on a text-based represen-
tation of an annotated graph. The transformations are generally written in Perl,
although this is not a requirement. Figure 3.1 illustrates how these transformations
are composed to generate a grid. Currently, we begin with a structured graph with-
out redundancy that is generated by the Tiers topology generator. The number of
networks at each level of the topology is the primary input. This also indirectly
specifies the number of hosts. The first transformation enforces the power laws by
adding extra links to the graph. The outdegree exponent is main input. The next
transformation annotates the graph according to user-defined empirical distributions
on and correlations over attributes such as memory and CPU. Additional transfor-
mations can be added. For example, we can add clusters to sites on the grid. The
final output can then be visualized with DOT, used for GIS evaluation, or for other

purposes.

CHAPTER 3. GENERATING SYNTHETIC GRIDS 32

Rank exponent dy ocrE
Power Laws Outdegree exponent fq o< d©
Eigen exponent Ai X °

Approximation Hop-plot exponent P(h) o hff

Figure 3.2: Power laws of Internet topology.

Symbol Description Typical Values or Constraints
R Rank exponent ~~ —0.488 at router level
o Outdegree exponent ~ —2.487 at router level
€ Eigen exponent ~ —0.177 at router level
H Hop-plot exponent & 2.84 at router level
dy Outdegree of node v 1 <dy < MaxzD
log o
MaxzD Theoretical maximum outdegree MazD = e__é_
Ty Ranking of node v Nodes with same outdegree have same ranking
fa Frequency of outdegree d Number of nodes with outdegree d, fg > 1
Number of hops
p¥ The it biggest eigenvalue of the graph
P(h) Total number of pairs of nodes within h hops
N Total number of nodes in the graph
B Constant in equation 3.1 = exp(4.395) at router level
o Constant in equation 3.3 = exp(8.52) at router level

Figure 3.3: Symbols used in this chapter.
3.3 Topology

GridG generates topologies comprised of hosts, routers, and IP layer links. In GridG’s
graphs, nodes in WANs and MANs are routers while nodes in LANs are hosts.
Routers have switching capability and several IP interfaces while hosts have com-
puting and storage resources.

Recent research [35, 19, 131] shows that many natural and artificial networks
follow the so-called outdegree power law, including such examples as molecules in
a cell, the power grid, the World Wide Web, species in an ecosystem, and people
in a social group. In particular, recent work [88, 191] show that not only does the
Internet topology [88] follow this power law, but also the peer-to-peer sharing overlay
network Gnutella [191]. Like the Gnutella network, future grids will be embedded in

the Internet topology and thus will likely follow its rules.

CHAPTER 3. GENERATING SYNTHETIC GRIDS 33

3.3.1 Power laws of Internet topology

Faloutsos, et al [88] identified three power laws and one approximation in their in-
fluential 1999 paper. Figure 3.2 summarizes these laws. (Figure 3.3 summarizes the
symbols used in this chapter.) The rank exponent law says that the outdegree, d,,
of a node v, is proportional to the rank of the node, r,, raised to the power of a
constant R. In our examples and evaluation, we choose to parameterize our power
laws according to the router-level data in the Faloutsos paper. The parameterized

rank exponent law is

dy = BrE = exp(4.395) * r; 04 (3.1)

The omitted constant term does not affect our results and is commonly dropped [18].

Another useful form of the rank exponent power law is

ry = (%); (3.2)

The outdegree exponent law says that the frequency, f4, of an outdegree d, is pro-
portional to the outdegree raised to the power of a constant (. Parameterizing the

law using the Faloutsos router-level data, we have
fa=ad® = exp(8.52) x d~2* (3.3)

A node’s ranking is defined in the following way, conforming with the Falout-
sos paper. We do a topological sort of the nodes in decreasing order of outdegree.
We then assign ranks according to this ordering and the number of nodes in each
equivalence class. All n; nodes in the class with largest outdegree are assigned rank
ry, = 1. All ny nodes in the class with the second largest outdegree are assigned rank

ry = 1 4+ mnq. This accumulation continues such that all nodes in the class with the

CHAPTER 3. GENERATING SYNTHETIC GRIDS 34

kth largest outdegree are assigned rank r, =1+ n; +ng + ...+ ng_;. For example,
if there are 1000 nodes with outdegree larger than 3, and there are 100 nodes with
outdegree 3, then the nodes with outdegree 2 will be ranked 1101. All nodes with
same outdegree have the same ranking.

The Eigen exponent power law says that the eigenvalues, \;, of a graph are pro-
portional to the order, ¢, raised to the power of a constant . Here, the topology
graph is represented as an adjacency matrix and its eigenvectors and eigenvalues are
found. The eigenvalues represent the contribution of each eigenvector to the graph,
in decreasing order.

The hop-plot exponent law is listed as an approximation by Faloutsos, et al. It
says that the total number of pairs of nodes, P(h), within A hops, is proportional to

the number of hops raised to the power of a constant, H.

3.3.2 Current graph generators

There are mainly three types of topology generators in use: random [226], hier-
archical, and degree-based. Debates as to which type is better for Internet graph
generation have persisted over a long period of time [213]. Our belief is that a good
graph generator should produce a clear hierarchy that also follows the discovered
power laws. Hierarchical generators such as Tiers [50, 80] and Transit-Stub [50] can
generate a clear hierarchical network, but the graphs don’t follow the power laws
by nature. The degree-based generators, such as Inet [125, 229], Brite [161], the
CMU power law graph generator [172] and PLRG [18], generate graphs that follow
the power laws,but have no clear hierarchical structure. The topologies generated by

GridG follow the power laws and have a clear three-level hierarchy.

CHAPTER 3. GENERATING SYNTHETIC GRIDS 35

3.3.3 Algorithms in topology generation

GridG takes the output of a basic graph generated by Tiers as its input. This
input graph has no redundant links. GridG adds links to the graph according to the
outdegree power law. Hence, the graphs generated by GridG have a clear three-level
hierarchical structure and follow the power laws. The following is a more detailed

description.

1. Generate a basic graph without any redundant links using Tiers. Tiers itself
has several parameters, specifically the number of nodes and networks at each
level of hierarchy. Translate the graph into GridG’s native format. This basic
graph has three levels of hierarchy: WAN, MAN, and LAN. At each level, the
nodes are connected by a minimum spanning tree. Each lower level network is
connected to one node on the higher level network. The graph is guaranteed

to be connected.

2. Assign each node an outdegree at random using the outdegree power law as the
distribution. The probability P(k) that a vertex in the network interacts with &
other nodes decays as a power law. This probability is scale-free, meaning that
we can extend graphs of any size in this manner [35]. Nodes of outdegree one
deviate from the power law as described by Faloutsos, et al [88, Figure 6(b)].
We set fi = f, as this is the case for real router level data. Given outdegree
d = 2,3...MaxD, we calculate the corresponding frequencies according to
fa = exp(8.9)d,**¢ where 8.9 and —2.486 are the defaults for parameters
given a configuration file. N = Y"M%" f; where N is the total number of
nodes in the graph. We then generate a random number x between 1 and N

for each node, if z < f;, the node is assigned outdegree 1; if f; < x < f; + fo,

the node is assigned outdegree 2; if f1 + fo < z < f1 + fo + f3, the node is

CHAPTER 3. GENERATING SYNTHETIC GRIDS 36

Internet Routers GridG Tiers

Rank exponent -0.49 -0.51 -0.18
R? 0.94 0.89
Outdegree exponent -2.49 -2.63 -3.4
R? 0.97 0.55
Eigen exponent -0.18 -0.24 -0.23
R? 0.97 0.97
Hop-plot exponent 2.84 2.88 1.64
R? 0.99 0.99

Figure 3.4: GridG topology generator evaluation.

assigned outdegree 3, etc.

3. Calculate the remaining outdegree of each node after taking the links of the

minimum spanning tree into consideration.

4. Add redundant links to the graphs by randomly choosing pairs of nodes with
remaining outdegree > 0. Nodes at higher levels (e.g., WAN) are given priority
over nodes at lower levels (e.g., MAN). Continue to add more redundant links

until no pairs of nodes with positive outdegree can be found.

3.3.4 Evaluation

In this section, we show that the graphs generated by GridG follow the power laws.
For comparison, the basic graph generated by Tiers is also shown in our figures. The
basic graph was generated by “Tiers 1 50 10 500 40 51 1 1 1 1”, meaning one WAN
containing 50 MANSs, each containing 10 LANs. The WAN contains 500 nodes, while
the MANs and LANs contain 40 and 5 nodes, respectively. This is similar to the
parameters used in other evaluations [213].

Figure 3.4 shows that the exponents of the topology generated by GridG match

router level data from the Faloutsos paper much better than those of the basic Tiers

CHAPTER 3. GENERATING SYNTHETIC GRIDS

Figure 3.5: Log-log plot of Outdegree vs. Ranking

35
3 \ e GridG
2.5

e 27

k= 1

o]

— 1.5

1

0.5
0O+
0 02 04 06 08 1 12 14

log(d)

Figure 3.6: Log-log plot of Frequency vs. Outdegree

37

CHAPTER 3. GENERATING SYNTHETIC GRIDS 38

N

log(number of pairs)

2+ * GridG

1, Tiers

O 7HxwHH“HwHH“Hx“HWHHMHWHHMIH
0 0102030405060.70809 1

log(number of Hops)

Figure 3.7: Log-log plot of number of pairs of nodes within A hops vs. number of
hops h.

0.

(] 4

= 1

©

g 0.6

(S

2

=

(@) 4

304

o .

0.2 GridG
] Tiers
0 TII‘III{YYY{YTY{TTT{ITI{YIY

0O 02 04 06 08 1 12 14
log(Order)

Figure 3.8: Log-log plot of eigenvalues in decreasing order.

CHAPTER 3. GENERATING SYNTHETIC GRIDS 39

graph. The coefficients of determination, R?, represent how well a power law fits the
generated data. We can see that GridG produces R? values close to 1, the ideal. The
exponents in Figure 3.4 are the slopes in Figures 3.5, 3.6, 3.7, and 3.8.

Figure 3.5 is a log-log plot of outdegree versus ranking. We can see that a linear fit
on this graph explains the relationship for GridG’s topology very well. The divergence
at small ranks is quite interesting and shows up in studies of real topologies including
Faloutsos, et al [88, Figure 4(b)] and Medina, et al [162, Figure 6]. Removing the
three diverging datapoints from Figure 3.5 increases R? to 0.99. In Section 3.4, we
will describe a potential new rank law that models this divergence and can be derived
from the outdegree law.

Figure 3.6 shows a log-log plot of frequency versus outdegree. GridG follows the
outdegree exponent power law very well except when outdegree equals 1, which is not
plotted in the graphs. We have already noted that this divergence is intentionally
induced to better match real topologies.

Figure 3.7 is a log-log plot of the number of pairs nodes within A hops versus
number of hops h. Clearly, GridG’s topology conforms to this power law.

Figure 3.8 is a log-log plot of the eigenvalues in decreasing order. We can see that
GridG agrees very well with this power law, though our exponents deviate slightly

from the data given by Faloutsos, et al [88].

3.4 Relationships among power laws

Several recent graph generators [125, 229, 18, 172] and GridG generate graphs ac-
cording to the outdegree law only. However, the generated graphs follow all four
power laws! Why is this possible? A possible reason is that the power laws (Fig-

ure 3.2) are closely interrelated. A recent paper [35] proposed incremental growth

CHAPTER 3. GENERATING SYNTHETIC GRIDS 40

and preferential connectivity to explain the phenomenon and origin of the outdegree
law. Medina, et al found that the hop and eigenvalue power laws were followed by
all the topologies they considered [162]. Mihail and Papadimitriou have shown that
the eigenvalue law follows from the outdegree law [163].

In the following, we show that the outdegree law follows from the rank law. It
does not appear, although we can not prove, that the rank law follows from the

outdegree law. This suggests one of several possibilities:
e The rank law is strictly more descriptive than the outdegree law.
e The rank law is wrong.
e The outdegree law is wrong.

The evidence against the first and third possibilities is the unreasonable effectiveness
of using the outdegree law to generate graphs that appear to follow all of the laws.
Furthermore, as we noted earlier, the rank/outdegree relationship diverges from a
strict power law in actual topologies at small ranks. Finally, earlier work has shown
that the eigenvalue law follows from the outdegree law and that most networks exhibit
the eigenvalue and hop-plot laws.

Our belief is that the second possibility is the case. We show that it is possible to
derive a power law like rank law from the outdegree law that captures the divergence
seen in real topologies and gives the appearance of a power law over much of its
range. This also would explain the surprising effectiveness of only using the outdegree

law in graph generation. We advocate the following relationship among the laws:

New rank law <= Outdegree law = Eigenvalue law.

CHAPTER 3. GENERATING SYNTHETIC GRIDS 41

log()

o+——"r—T—"T—T1"
0 0.2 0.4 0.6 0.8 1 1.2 1.4
log(d)

Figure 3.9: Log-log plot of derived f-d law.

3.4.1 Rank law = outdegree law

Starting from the rank law, we derive a form of the outdegree law. Let f; be the
frequency of nodes with outdegree equal to d, or the number of nodes with outdegree
d. Let ry be the ranking of the nodes with outdegree d. Similarly, let r4_; be the
ranking of the nodes with outdegree equal to d — 1. Given the outdegrees d and d —1,

and the ranking of nodes with those outdegrees, the frequency of outdegree d is

fd =T4g—1—T¢g (34)

Now, substitute for r4_; and r, their values according to the rank law (Equa-

tion 3.2). This gives

) (3.5)

To simplify further,

CHAPTER 3. GENERATING SYNTHETIC GRIDS 42

This relationship is itself a power law that associates frequency and outdegree.
Figure 3.9 shows the log-log plot of this derived outdegree law (Equation 3.6). We

have derived an outdegree power law from the rank power law.

3.4.2 Outdegree law <= new rank law

Starting from the outdegree law, we attempted to derive a power law for the rank-
outdegree relationship. Our end result is a rank law which is not a power law. If
our reasoning is correct, then this shows that the rank law can not be derived from
the outdegree law. As discussed earlier, we believe that the new rank law, which we
derive from the outdegree law, is more accurate than the original rank law in that it
fits actual topology data better.

First, note that

fa=N (3.7)
d=1

where N is the total number of nodes in the graph, MaxD is the maximum outdegree
and f,; is the number of nodes with outdegree d, or the frequency of outdegree d. The
minimum frequency is 1, so we must make sure that f; = ad® > 1 (Equation 3.3).
Substituting, we see that

log

MaxD =e 0 (3.8)

From the definitions of rank and frequency, we get

=1+ > f4 (3.9)

That is, the rank of the nodes with outdegree v is equal to one plus the total number

of nodes with outdegree bigger than d,. Using the outdegree law (Equation 3.3), we

CHAPTER 3. GENERATING SYNTHETIC GRIDS 43

log(r)

Figure 3.10: Log-log plot of derived d-r law.

get
MazxD dv
ro=1+a » d°=1+N-a) d° (3.10)
d=d,+1 d=1

If we assume that O is a negative rational number, as shown in paper [88], we can

then derive the following relationship between rank and outdegree:

ry =1+ N —a[¢((-0) — ((-0,1+d,)] (3.11)

Here, {(t) = Y., = is the Riemann Zeta function, and {(—O, 1+d,) = >.>°, , n°.

Figure 3.10 is a log-log plot of this derived rank law. Surprisingly, this derived law
is not an ideal power law—it is far from a straight line. If our derivation is correct,
it is clear that the rank law does not follow from the outdegree law. Furthermore,
our derived law is a better fit to the actual observed topologies than the rank law.
A close look at Figure 3.10 shows that when rank r» >~ 37, the relationship between

log rank and log outdegree is nearly a straight line, giving the appearance of a power

law relationship. The divergence for r <= 37 is similar to that shown for the actual

CHAPTER 3. GENERATING SYNTHETIC GRIDS 44

log(f)

—_—T T
0 02 o 06 08 1 12 14 16
log(d)

Figure 3.11: Log-log plot of derived d-f law using the new d-r law.

router level topology in Faloutsos, et al [88, Figure 6(b)].
Figure 3.11 shows the log-log plot of the outdegree and frequency relationship
that can be derived from the new rank law (Equation 3.11) and Equation 3.4.

3.5 Annotations

In addition to producing a realistic topology that extends to the level of hosts, a grid
generator must also annotate the topology with the attributes of its links, routers,
switches, and hosts.

As to the network link bandwidth and latency, we can rely on the output of the
underlying structure graph generator, leveraging work in the networking community
as discussed earlier. As an alternative, we have also built into GridG an optional
feature to explicitly generate network link bandwidth and latency. We assume that
these distributions are different at the WAN, MAN and LAN levels, and give the user

a mechanism to supply them. Similarly, the distributions of the switching bandwidth

CHAPTER 3. GENERATING SYNTHETIC GRIDS 45

Host CPUS CPU MHZ Memory (MB) Disk (GB) Arch oS OS vendor Current Load
1 512 1200 256 40 IA32 DUX Sun 0
2 16 1000 512 800 PARISC NetBSD Microsoft 3
3 4 1600 512 160 SPARC32 DUX RedHat 1
4 1 1800 65536 400 1A32 Solaris Microsoft 2

Figure 3.12: Silly host configurations generated by the initial GridG annotator.

of routers are specified by the user in a configuration file. GridG then selects randomly
based on the supplied distributions.

Host characteristics are considerably more complex. Our initial approximation
is to treat each attribute of a host independently. The user supplies an empirical
distribution for the attribute, and we select randomly based on that distribution.
Host attributes are not independent, however. This oversimplified approach can
generate unreasonable results. Figure 3.12 shows examples of silly combinations of
host configurations that can result. These hosts appear silly because they violate
our expectations about how the attributes of an individual machine are likely to be
related. For example, we expect that most buyers will scale the memory of a machine
with the number of CPUs, and that software vendors rarely sell their competitor’s
OS.

There also exist correlations between the attributes of machines that are near
each other in the network topology. The obvious example is a cluster, in which
tightly coupled machines have identical attributes. While we can support clusters
via an additional graph transformation that explicitly creates them, there are other
examples: servers in the same machine room are likely to have more in common with
each other than with the client hosts that use them.

To capture such intra-host and inter-host attribute correlations, we extended
GridG’s annotator with a general engine that supports user-supplied conditional
probability rules. For example, the user can assert that hosts with four or more

processors have at least 4 GB of memory. In the following, we describe the en-

CHAPTER 3. GENERATING SYNTHETIC GRIDS 46

gine, a set of core “common sense” intra-host rules used to prevent silly hosts, an
inter-host OS concentration rule for subnets derived from measurement, and show
examples of sensible annotations. More rules are necessary and need to be derived
from measurement. We describe our efforts to capture sufficient measurements to do

SO.

3.5.1 Annotation algorithm

Given a model of the distributions and correlations of host characteristics, it would be
relatively straightforward to generate realistic host attribute information. However,
at the present time we do not have such a complete model because of the difficulties
in collecting a sufficient amount of data from which to infer the model. We appear to
be the first to need to do this, and we have tried a number of techniques to acquire
data, which we discuss later.

In light of the limited data, we have made GridG annotations conform to user-
supplied rules and created a set of common-sense rules. In this way, the current
generated host attribute information is reasonable on its face, and as new distribu-
tions and correlations are discovered, the user can add rules to GridG to make the
generated grids conform. In the current implementation, user rules take the form
of Perl functions. Frames for those functions are given to which the user can sim-
ply add their rules. For example, Figure 3.13 shows a function frame governing the
correlation among CPU architecture, OS, the number of CPUs and CPU clock rate.
Figure 3.14 shows two example rules added to this frame. The first rule says that
Intel 32 and 64 bit architecture machines support no more than 4 CPUs, while the
second rule says that for any architecture, the maximum number of CPUs per host
is 1024. Figure 3.15 presents GridG’s default rules in English. These rules can be

removed or enhanced by the user and new rules can be added.

CHAPTER 3. GENERATING SYNTHETIC GRIDS 47

sub ARCHandOSandCPUrule {
my ($arch, $0S, $numcpu, $cpuspeed) = @ _;
#add rules here

#rules end here
return 1;

}

Figure 3.13: Rule frame governing the correlation among CPU architecture, OS,
number of CPUs, and CPU clock rate.

sub ARCHandOSandCPUrule {

my ($arch, $OS, $numcpu, $cpuspeed) = @_;
#add rules here
#example rule: Intel arch can't support more than 4 CPU/host
if(($arch eq "1A32") || ($arch eq "I AB4")){

if($numcpu > 4) {

return O;
}

}
#example rule: Max num of CPU is 1024

if($numcpu > 1024) {
return O,

}

#rulesend here

return 1,

Figure 3.14: Example rules.

CHAPTER 3. GENERATING SYNTHETIC GRIDS 48

. One CPU will have at least 64M memory.

. One CPU will have at most 4G memory.

. More CPUs, more likely to have bigger memory.
. One CPU will have at least 10G disk.

. More CPUs, more likely to have bigger disk.

. More memory, more likely to have bigger disk.

. More disk, more likely to have more memory.

0o N oo 0o~ W DN P

. Intel& Windows box will have at most 4 CPUSs,
other type may have up to 1024 CPUs.
9. Intel Arch and other Arch have different distributions
of CPU MHZ.
10. Host load is not correlated to any other attributes.

Figure 3.15: Default rules.

We believe that there are at least two types of correlations among the host’s
attributes. The first type is the correlations among the different attributes of an
individual host, namely, correlations among the number of CPUs, CPU clock rate,
memory size, disk size, etc. We can easily imagine important correlations of this type.
For example, we assume a positive correlation between the number of CPUs and the
total memory, and that machines with more CPUs are less likely to run a version of
Windows. These assumptions appear in our default rules as shown in Figure 3.15.
Some of those correlations are deterministic (e.g., a machine with 16 CPUs can’t run
windows as its operating system), and others are probabilistic (e.g., a machine with
32 CPUs is likely to have more memory per CPU than a 2 CPU machine, but not
necessarily.)

The second type is a correlation between the attributes of machines that are near

each other in the network topology, namely, correlations such as OS concentration

CHAPTER 3. GENERATING SYNTHETIC GRIDS 49

Load Arch

oS ‘CPUMhz‘ ‘NumofCPUs‘

OS vendor disk

Figure 3.16: Dependence tree.

P{mem=1024}

g

P{mem=1024 | numcpu=2, arch=MIPS}

Figure 3.17: Example of conditional probability.

on IP subnets as described in Section 3.5.2 and shown in Figure 3.23. This type of
correlation is mostly probabilistic.

To make the GridG annotator conform to the first type of correlations, we as-
sume a dependence tree as shown in Figure 3.16. Host load is independent of other
attributes in our model. Architecture is the root of the tree on the assumption that
it is the most significant attribute, and that it largely decides what OSes can run on
a host and how many CPUs it is likely to have. Clearly the OS vendor depends on
the OS. We believe that memory and disk size is likely to grow with the number of
CPUs on a machine.

With this dependence tree, we can make GridG conform to correlations by ap-
plying conditional probability, choosing the distribution of an attribute based on
attributes picked before it. For example, we would first pick the architecture, then
the number of CPUs based on that choice, and finally the amount of memory based

on those two choices, as shown in Figure 3.17. This approach appears to work well

CHAPTER 3. GENERATING SYNTHETIC GRIDS 20

in practice, generating sensible hosts. In the following, we present in detail the algo-
rithm used to annotate the hosts on a LAN. This process is repeated for each LAN
in the topology. To make the description easier to understand, we present the flow

chart of the algorithm in Figure 3.18.

1. If the OS concentration feature (Section 3.5.2) is turned on, then, for each IP
subnet (generated LAN in our topology) , select the OS concentration percent-
age P from the user configuration file. Next, select the dominant architecture
for the subnet according to the user configuration file. Select the dominant OS

according to the dominant architecture for the LAN. There is one dominant

architecture and OS for each LAN.

2. For each host, generate architecture for the host according to distribution spec-
ified in the user configurable file. If the OS concentration feature is turned on,

change the host architecture to the dominant architecture with probability P.

3. Architecture is subdivided into several groups, such as the Intel Architecture
family, MIPS, etc. Each group has its own specified distribution for OS, number
of CPUs and CPU clock rate in the configure file. Using the distributions,
generate the OS according to the architecture type. If the OS concentration
feature is turned on and the architecture has been changed to the dominant

architecture, also change the generated OS to the dominant OS.

4. Using the distributions, generate CPU clock rate and the number of CPUs

according to the architecture type.

5. Apply the user rule governing the correlation among architecture, OS, number
of CPUs and CPU clock rate. If the rule is not satisfied, go back to the last

step.

CHAPTER 3. GENERATING SYNTHETIC GRIDS o1

6.

10.

11.

12.

The number of CPUs is subdivided into several groups, such as the number
of CPUs, n < 4,4 <n < 32, 32 < n < 128, etc. Each group has its own
memory and disk size distribution specified in the configuration file. The con-
figuration is such that a group with a large number of CPUs has distributions
for memory and disk size that are of higher mean than those for a group with
a small number of CPUs. Within each group, we apply a promotion probabil-
ity function and and a promotion rate function so that a machine with larger
number of CPUs is more likely to increase its memory and disk. Optionally, we
apply a degradation probability function and degradation rate function so that
a machine with smaller number of CPUs is more likely to decrease its memory
and disk, which is a strengthening mechanism for promotion probability and

rate functions. We discuss these functions in more detail below.

. Apply the user rule governing the correlation among the number of CPUs,

memory size, disk size, and OS, architecture, and CPU clock rate. If the

correlations are not satisfied, go back to last step.

Generate OS vendor according to its OS.

. Apply the user rules governing the correlation between OS and OS vendor. If

the correlation is not satisfied, go back to last step.

Generate a load value for the host according to the specified distribution in

user configuration file.

Apply the user rule governing the correlation between load and other attributes.

If it is not satisfied, go back to last step.

Apply the overall user rule governing architecture, OS, number of CPUs, CPU

CHAPTER 3. GENERATING SYNTHETIC GRIDS 52

Is OS concentration on?

Yes

Select number of CPUs, CPU
— clock rate according to arch for [«
the host.

Yes

Select OS concentration

percentage P.
Select dominant Arch and proper
dominant OS for the LAN. Sefect memory and disk size
+ according to number of CPUs.
Apply promotion probability and
"B Select Architecture for the host rate functions.

—»{ ontheLAN.

Is OS concentration on?

Is user rule satisfied?
Yes

Yes

Select OS vendor according to its
with the probability P.
.>
Select Load value for the host.
Is OS concentration on?
Yes
Isuser rule satisfied?
If the host arch has been changed
Y

change the selected host OSfor the host.
Arch to dominant Arch
Is user rule satisfied?

Select OS according to its arch for
each host. Yes

to dominant arch, change the

host OS to dominant OS. &

Isoverall user rule satisfied?
Yes

Finished annotating all hosts

Figure 3.18: Flow chart of the algorithm.

clock rate, memory size, disk size, OS vendor and load of the host, if it is not

satisfied, go back to step 4.

13. If all the hosts on the LAN are annotated, go to next step, otherwise, go to

step 2.

14. Terminate.

The promotion probability function and the demotion probability function map

CHAPTER 3. GENERATING SYNTHETIC GRIDS 93

sub promotionProb

{
my($numcpu, $maxcpu, $mincpu) = @_;
my $pp100;
$pp100=100* (numcpu-$mincpu)/($maxcpu-$mincpu);
return $pp100;

Figure 3.19: Linear promotion probability function.

sub promotionProb

{
my($numcpu, $maxcpu, $mincpu) = @_;
my $pp100;
$pp100=100* sr t(($numcpu-$mincpu)/($maxcpu-$mincpu));
return $pp100;
}

Figure 3.20: Power promotion probability function.

from the number of CPUs to a probability PP, the probability that memory and disk
size will be increased (promotion) or decreased (demotion) based on a host’s number
of processors. A larger number of processors leads to an increased promotion and a
decreased demotion probability. Paired with these are the promotion and demotion
rate functions, which determine the extent to which memory and disk size will be
changed. The default rate function doubles/halves the memory and disk size, but
user can specify their own rate and promotion/demotion functions. Figure 3.19 shows
a linear promotion probability function, while Figure 3.20 shows a power function
where the probability of promotion increases faster with the number of CPUs.
Together, the promotion/demotion probability and rate functions control the cor-
relation coefficient between number of CPUs and memory or disk sizes. Shown in

Figure 3.21 is the influence of promotion probability and rate functions. If stronger

CHAPTER 3. GENERATING SYNTHETIC GRIDS o4

Promotion function Correlation coeflicient

None 0.69
Linear 0.73
Power 0.76

Figure 3.21: Influence of promotion probability and rate functions on correlation
coefficient between number of CPUs and memory or disk.

Host CPUS CPU MHZ Memory (MB) Disk (GB) Arch oS OS vendor Current Load
1 512 1200 65536 10240 MIPS FreeBSD FreeBSD 9
2 16 1000 8192 800 PARISC NetBSD NetBSD 4
3 4 1600 1024 160 SPARC32 Solaris Sun 1
4 1 1800 512 80 IA32 Win2k Microsoft 3

Figure 3.22: Sensible hosts generated by current GridG annotator.

correlations are required, both promotion and degradation probability and rate func-
tions are chosen to increase faster with the number of processors.

This algorithm and the default rules work well and generate results that are
sensible. More rules can be added as they are discovered. Figure 3.22 shows a few

reasonable hosts generated by the current GridG implementation.

3.5.2 OS concentration rule

The nmap port-scanning tool [100] has the ability to determine a host’s operating
system based on how its TCP/IP implementation behaves. We used nmap to scan
10 different class C IP networks, both at Northwestern and belonging to a company

that maintains a popular web site. In each subnet we oberved OS concentration to

Organization Subnet Dominant OS Percentage of concentration Percentage of recognized OS
CS 1 Windows 79/95 = 83.2% 78%
Department 2 Windows 31/37 = 83.8% 81%
3 Linux 40/40 = 100% 100%
ECE 4 Solaris 67/76 = 88.2% 65%
Department 5 Solaris 41/41 = 100% 94%
6 Solaris 21/21 = 100% 96%
7 FreeBSD 214/214 = 100% 87%
A popular 8 FreeBSD 187/187 = 100% 89%
web site 9 FreeBSD 191/192 = 99% 92%
10 FreeBSD 72/73 = 99% 91%
Total machines 976

Figure 3.23: OS concentration observed in IP subnets.

CHAPTER 3. GENERATING SYNTHETIC GRIDS 95

various degrees, that is, there was typically one dominant operating system.

Figure 3.23 shows the data for all the 10 subnets. Nmap couldn’t recognize
every host’s OS from its TCP/IP fingerprints because nmap doesn’t have fingerprints
for all versions of every OS. However, notice that even if we assume that all the
unrecognized OSes were of a type other than the dominant OS, we can still assert
that OS concentration exists in all 10 subnets. Subnet 3 is known to be a Linux
cluster but there is no cluster in subnet 4, 5 and 6.

People are very sensitive to the port scanning and therefore we have had to limit
our activity. However, given this sample of 976 machines and 10 subnets, it seems
likely that such OS concentrations occur on many subnets. It also appears sensible
given that subnets are owned by individual organizations, and many organizations
have standardized operating systems and even machines. Another factor is the exis-
tence of clusters in which every node has identical hardware and software. We have

added this OS concentration behavior to the GridG rulebase as an optional feature.

3.6 Conclusions

We have presented GridG, a tool for generating synthetic computational grids. GridG
produces structured network topologies that obey the power laws of Internet topology.
While developing GridG’s topology generator, we found that two of the power laws
(rank and outdegree exponent laws) are in conflict. We derived a new rank law from
the outdegree law that conforms well with published data on actual topologies and
has a power law like range. We speculate that this new law is a better approximation
of rank behavior.

The topology annotation component of GridG can annotate the network according

to user supplied empirical distributations and user conditional probability rules. Two

CHAPTER 3. GENERATING SYNTHETIC GRIDS o6

kinds of correlations among hosts attributes are considered and built into GridG: cor-
relations between an individual host’s attributes and correlations between attributes
on nearby hosts. We developed a basic set of rules that capture common sense intra-
host correlations. Through nmap based measurement, we observed OS concentrations
in all the IP subnets we probed. We added this as an inter-host rule.

Developing additional rules will require more host measurement data to analyze.
We have tried a number of techniques for acquiring such data and have been largely
unsuccessful. We continue to explore ways to acquire a rich set of measurements from
which to derive a larger rulebase for GridG annotations.

GridG was used to evaluate the RGIS system and several other systems that

require synthetic annotated topologies [41, 140).

Chapter 4

Query Rewriting Techniques

This chapter describes the motivation, design and implementation of our query

rewritting techniques that enable fast processing of complex queries.

4.1 Introduction

A powerful feature of RGIS is that users can write queries in SQL that search for
complex compositions of resources, such as groups of hosts and network resources,
that meet collective requirements. These queries, as they are expressed using joins,
can be very expensive to execute, however. In response, we have introduced four

extensions to the SQL select statement:

e Nondeterminism: the result set is a random sample of the result set of the full

query. This extension is processed automatically.

e Scoping: the query is limited to a region of the modeled network, giving a result
set that is a deterministic subset of the full query. This extension is processed

automatically.

e Approximation: the query’s joins are eliminated and new constraints are added,

giving a result set that is a deterministic subset of the full query. This extension

o7

CHAPTER 4. QUERY REWRITING TECHNIQUES o8

requires humans to process it and is used in “canned queries”, pre-written

queries for commonplace inquiries.

e Time bounding: the query (or the RGIS server) can place limit on the wallclock

time of the query. This extension is processed automatically.

The goal of these extensions, which can be used orthogonally, is to make it possible
for the user (and RGIS) to trade off between the running time of a query (and the
load it places on an RGIS server) and the number of results returned. The extensions
require no changes to the RDBMS. We argue that it is sufficient and appropriate for
a GIS to provide partial results, particularly a random sample.

In this chapter, we describe our query extensions, and their implementation.
We also present a performance evaluation of our implementation that shows that
a meaningful tradeoff between query processing time and result set size is possible
using our techniques, that we can use that tradeoff to keep query running time largely
independent of query complexity, and that we can bound the response time of a query.
These results demonstrate that we can deliver powerful relational queries to users,
which is a necessary support for our general argument that GIS systems should be

built on a relational data model.

4.2 Addressing the query problem

Parallel and distributed applications are not interested in individual resources per se,
but rather in compositions of them. For example, suppose a data parallel program
has been compiled to run on four processors. At startup, it will want to ask questions
such as “find me a set of four unique hosts which in total have between 0.5 and 1 GB of
memory and which are connected by network paths that can provide at least 2 MB/s

of bandwidth with no more than 100 milliseconds of latency.” Such questions can be

CHAPTER 4. QUERY REWRITING TECHNIQUES 99

select
“Find 2 hosts with Linux that hl.insertid, h2.insertid
together have 3 GB of RAM” from
, hosts hl, hosts h2
where
h1l.0s='LINUX’ and h2.0s='LINUX’
and
hl.mem_mb+h2.mem_mb>=3072

Figure 4.1: An RGIS Query.

readily posed to RGIS using the SQL language. Indeed, SQL lets the application or
user combine multiple resources in arbitrary ways. Figure 4.1 shows a simple RGIS
query that is searching for all pairs of hosts that both run the Linux operating system
and together have at least 3 GB of RAM. For clarity in this example query, we omit
the constraint that the two machines be distinct. In our evaluation, where we use
similar queries, we introduce this constraint.

Because the query is declarative, there is significant room for the query optimizer
in the RDBMS to make the query efficient. It also means that the query is indepen-
dent of the underlying RDBMS implementation that is being used. The same query
may run today on a basic Windows implementation of Oracle, while tomorrow it may
be run by a parallel implementation of Oracle on a cluster or SMP. The query is also
independent of the indices created by the database or by the database administrator.
Hence, if this form of query becomes common, the administrator can create indices
to speed it up. Finally, if queries are written in ANSI standard SQL, the underlying
RDBMS can be changed without changing the query. Common queries can also be

CHAPTER 4. QUERY REWRITING TECHNIQUES 60

provided as materialized (i.e., precomputed) views on the database.

Unfortunately, queries such as the one in Figure 4.1 can be very expensive to
execute, especially as the number of joins (number of hosts in the query in this
example) grows. In the worst case, the query cost can grow exponentially with the
number of joins, even with our carefully chosen indices. Not only must individual
queries not take long periods of time to execute, an RGIS server must also be able
to handle the query workload of a whole site. If we supported such queries directly,

we would very soon begin disappointing users and overloading the RGIS server.

4.2.1 Deficiencies of limited deterministic queries

One approach to reducing the work involved in answering a query is to limit the
size of the result set that is returned (using “rownum<N” as part of the where
clause in Oracle, or MySQL’s “limit” clause, for example). The query would then
only run until the specified number or rows was returned. We’ll refer to this as a
limited deterministic query. It is intuitive why a limited deterministic query would
be reasonable from an application’s perspective. The application making the query
of Figure 4.1 is not interested in all pairs of hosts that meet its requirements. It is
merely trying to find some pairs that do.

Limiting result set size has two serious problems, however. First, the computa-
tional time for the query is not directly proportional to the result set size—it depends
on the data distribution in the input tables. Continuing the example, the rarer that
pairs of hosts that meet the requirements are, the longer a limited query will run.
In the worst case, the RDBMS may have to scan the cross product of the hosts ta-
ble to the very end to find a single match, making this query as expensive as one
without limits. The other problem with the limited deterministic query is that the

query returns exactly the same results each time it is run. Suppose there are 10

CHAPTER 4. QUERY REWRITING TECHNIQUES 61

SELECT
H1.DISTIP, H2.DISTIP
FROM
SELEF:T NONI?ETERMlNlSTI CALLY Query Manager HOSTSH1, HOSTS H2,
hl.distip, h2.distip and Rewriter INSERTIDSTEMP_H1 , INSERTIDS TEMP_H2
FROM WHERE
hosts h1, hosts h2 P (HLOS=LINUX' AND H2.0S=LINUX'
WHERE AND H1.DISTIP<>H2.DISTIP
hl.os="LINUX’ and h2.0s='LINUX’ AND HLMEM_MB+H2MEM_MB>=3072)
and hi.distip<>h2.distip AND
and hl.mem_mb+h2 mem_mb>=3072 (HLINSERTID=TEMP_HL1INSERTID
WITHIN Random sample of AND TEMP_H1.rand > 982663452.975047
2 seconds input tables AND TEMP_H1.rand <= 1025613125.93505)
Selection probability AND
determined by time constraint (H2.INSERTID=TEMP_H2.INSERTID
and server load AND TEMP_H2.rand > 1877769069.94039

AND TEMP_H2.rand <= 1920718742.90039)

Figure 4.2: Nondeterministic query and its implementation.

pairs of hosts that are appropriate, but the query is limited to one pair. Different
applications making the same query would end up choosing the same pair, leading
to contention. In general, limited deterministic queries can lead to certain resources
suffering contention hotspots merely due to where they happen to be placed in the

database.

4.2.2 Nondeterministic queries

The first query optimization technique we use to limit query running time (and load)
is nondeterminism. This technique also helps to avoid contention. The left-hand side
of Figure 4.2 shows a nondeterministic, time-bounded version of the earlier query.
The additions to the query are shown in italics. A nondeterministic query returns a
random subset of the full set of query results. The computational cost of the query
is controlled by the selection probability, which is derived from the time limit of the
“within” clause and the current load on the RGIS server, as described in Section 4.4.
The selection probability is the probability that a row of an input table will be

included in the join. Intuitively, as the load increases or the time limit shrinks, the

CHAPTER 4. QUERY REWRITING TECHNIQUES 62

selection probability shrinks. As the selection probability shrinks, so does the amount
of work needed to perform the query and the expected number of rows returned by it.
Each time the query is run, the rows returned are different while the computational
cost of getting them stays roughly the same.

We implement nondeterministic queries using a combination of query rewriting,
schema extensions, indices, and randomness. No changes to the RDBMS are needed.
When a nondeterministic query is posed to the query manager /rewriter, it determines
a selection probability, p, for the query. Associated with each object inserted into
the database (in the insertids table), at insert time, is a random number, ranging
from R,,;, to R, for a range, R = Ry — Rpnin- We translate the p into a
subrange, r = pR. Next, for each input table 7; in the query, we add a where clause
that constrains rows in that table to have associated random numbers in the range
[si, $; + 1), where s; is chosen from a uniform random distribution over [Ryin, Rmaz)
at query translation time. Notice that in implementing this selection, each input
table is joined with the insertids table to recover the random number. While these
equijoins are likely to be fast given the RGIS indices, it does double the number of
joins in the query. If the underlying RDBMS provides a sampling operator, we can
use it to avoid this doubling. Oracle has recently added such an operator, but we do
not use it in our evaluation in this chapter.

It is important to note that this approach has a grouping effect that should ideally
not occur in an implementation of random sampling. Two objects inserted into the
database may be assigned nearby random numbers. Hence, if one is chosen, there is
a greater likelihood that the other will also be chosen. With small selection prob-
abilities, the effect is negligible. However, to ameliorate it, we regularly “reshuffle”
the insertids table, assigning new random numbers to objects.

In addition to the random numbers associated with each object in the database,

CHAPTER 4. QUERY REWRITING TECHNIQUES 63

SELECT
hl.distip, h2.distip SELECT
FROM H1.DISTIP, H2.DISTIP
hosts hi, hosts h2, iplinks 11, iplinks 12, routers r FROM
WHERE Query Manager HOSTSH1, HOSTSH2, IPLINKS L1, IPLINKSL2, ROUTERSR
hl.mem_mb+h2.mem_mb>=1024 and Rewriter WHERE
and hl.os='LINUX" and h2.0s='LINUX" _ H1.MEM_MB+H2.MEM_MB>=1024
and ((11.src=r.distip and |12.src=r.distip » AND H1.0S='LINUX' AND H2.0S='LINUX'
and |1.dest=h1.distip and 12.dest=h2.distip) AND ((L1.SRC=R.DISTIP AND L2.SRC=R.DISTIP
or (I1.dest=r.distip and |12.dest=r.distip AND L1.DEST=H1.DISTIP AND L2.DEST=H2.DISTIP)
and |1.src=h1.distip and 12.src=h2.distip)) OR (L1.DEST=R.DISTIP AND L2.DEST=R.DISTIP
and hl.distip<>h2.distip AND L1.SRC=H1.DISTIP AND L2.SRC=H2.DISTIP))
and 11.BW_MBS>=100 and 12.bw_mbs>=100 AND H1.DISTIP<>H2.DISTIP
SCOPED BY r.distip=X AND L1.BW_MBS>=100 AND L2.BW_MBS >= 100
WITHIN AND RDISTIP = X;
100 seconds;

Figure 4.3: Scoped query and its implementation.

the database also includes indices on these random numbers and on their associations

with other attributes. These indices help to make the random sampling fast.

4.2.3 Scoped queries

It is a common misconception that, unlike hierarchical data models, it is impossible
to scope queries in the relational data model. In actuality, it is schema-dependent.
Because the RGIS schema models the network, it is possible to scope queries with
respect to the network of the grid. Scoping can dramatically lower the cost of a
query.

Can a user scope to a network component? Yes. It is as straightforward as scoping
to a host or a site, which is common in hierarchical GIS systems. If the user chooses
a host, he can issue a quick RGIS query to determine its first hop router (or layer 2
switch). If the user has access to the host, he does not even have to use RGIS—the
gateway router is in the routing table of the host. Scoping to a site is done by using
the site’s readily available CIDR block as a prefix match against host TP addresses,
an operation that turns into a fast range scan on the database.

Figure 4.3 shows a scoped version of our running example query along with its

CHAPTER 4. QUERY REWRITING TECHNIQUES 64

SELECT
R.DISTIP, HLDISTIP
FROM
SELECT APPROXIMATELY HOSTSH1, IPLINKSL1, ROUTERSR
h1.distip, h2.distip WHERE
FROM H1.MEM_MB>=512 AND H1.0S="LINUX'
hosts hi, hosts h2, iplinks 11, iplinks 12, routersr Canned Query and AND L1.BW_MBS>= 100
WHERE Query Manager AND ((LL.SRC=R.DISTIP AND L1.DEST=HL.DISTIP)
hl.mem_mb+h2.mem_mb>=1024 and Rewriter - OR (L1.DEST = R.DISTIP AND L1.SRC=H1.DISTIP))
and h1.os='LINUX' and h2.0s='LINUX' » AND RDISTIPIN
and ((I11.src=r.distip and 12.src=r.distip (SELECT
and |1.dest=h1.distip and 12.dest=h2.distip) RDISTIP FROM HOSTSH1, IPLINKSL1, ROUTERSR
or (I1.dest=r.distip and 12.dest=r.distip WHERE
and | 1.sre=h1.distip and 12.src=h2.distip)) H1.MEM_MB>=512 AND H1.0S="LINUX’
and hi.distip<>h2.distip AND L1BW_MBS>=100
and 11.bw_mbs>=100 and 12.bw_mbs>=100 AND ((L1.SRC=R.DISTIP AND L1.DEST=H1.DISTIP)
WITHIN OR (L1.DEST = RDISTIP AND L1.SRC=H1.DISTIP))
100 seconds; GROUP BY
RDISTIP
HAVING COUNT(*) >= 2)
ORDERBY
RDISTIP;

Figure 4.4: Approximate query and its implementation.

implementation. Here, we have extended the previous query to include the network:
we are asking for pairs of hosts that are connected to the same router. Scoping is
achieved by constraining the choice of router to one particular router. A scoped
query may return no results if the router does not have a set of machines that meets
the constraints. The user may issue the query iteratively with a list of routers known
to him, or have the system issue it repeatedly with randomly chosen routers until a

match is found or the time limit is exceeded.

4.2.4 Approximate queries

The main idea behind approximate queries is to minimize the number of joins by
rewriting a SQL query with tighter constraints that returns a result set that is a
deterministic subset of the full result set. Consider an example query in which we
seek to find N machines with total memory > B MB. In this simple example the
original SQL query will execute an N way join. A valid approximation of this query

is to find N machines each with memory > B/N MB. The approximation is valid in

CHAPTER 4. QUERY REWRITING TECHNIQUES 65

that those N machines must also be a row of the result set of the original query. It
is an approximation in that the constraints are stronger. A solution in which N/2
machines have 4B/3N MB and N/2 have 2B/3N would be found by the original
query but not by the approximate query. The upshot is that we can quickly compute
a result set that is a deterministic subset of that of the original query using a fized
number of join operations.

Note that we must know the semantics of the particular resource (hosts and their
memory) to know whether the transformed query makes sense. For this reason, the
approximation rewrite is done by hand and supplied to users in the form of canned
queries.

Figure 4.4 shows an approximate version of our running example (again, including
the network) along with its implementation. Notice that the number of tables joined
is three (with an additional 3-way join in the sub select). This is fixed regardless of
the number of hosts being searched for. Such a “cluster finder” query that looks for
64 machines would also involve the same joins. In the query, the sub select returns
those routers that have at least N = 2 appropriate machines attached to them, and

the main select returns all those machines ordered by their router.

4.2.5 Combining query techniques

Scoping, approximation, and nondeterminism are orthogonal and can be combined.
Combining techniques often leads to a simplification of the ultimate implementation.
For example, combining scoping and approximation leads to very efficient and very
small queries. Figure 4.5 illustrates this form of query and its implementation. Here,
the entire sub select of the approximate query of the previous section is replaced
by the router to which the query is scoped. The query now involves only a three-

way join. Instead of looking for two machines with total memory of 1GB attached

CHAPTER 4. QUERY REWRITING TECHNIQUES 66

SELECT APPROXIMATELY
hi.distip, h2.distip

FROM SELECT
hosts 1, hosts h2, iplinks|1, iplinks |2, routersr | Canned Query and HLDISTIP
WHERE Query Manager .
hl.mem_mb+h2.mem_mb>=1024 dR it FROM
e ; . and Rewriter HOSTSH1, IPLINKS L1, ROUTERSR
and hl.os='LINUX' and h2.0s='LINUX » \WHERE

and ((I1.sre=r.distip and |12.src=r.distip
and |1.dest=h1.distip and |2.dest=h2.distip)
or (11.dest=r.distip and |12.dest=r.distip
and |1.src=h1.distip and |2.src=h2.distip))
and hl.distip<>h2.distip
and |1.bw_mbs>=100 and 12.bw_mbs>=100
SCOPED BY r.distip=X
WITHIN
100 seconds;

H1L.MEM_MB>=512 AND H1.0OS="LINUX"

AND L1.BW_MBS>=100

AND ((L1.SRC=R.DISTIPAND L1.DEST=H1.DISTIP)
OR (LL.DEST = R.DISTIP AND L1.SRC=H1.DISTIP))

AND RDISTIP=X

AND ROWNUM <=2

Figure 4.5: Scoped approximate query and its implementation.

to a common router, the approximate query looks for two machines that each have
memory > 0.5 GB, both attached to a common router, which is a deterministic subset
of the original query results. This query can be extended to N host clusters in the
following way.

To find a cluster of NV qualified machines that are connected to one router, we first
randomly choose a router (or iterate through a list provided by the user). We then
perform the three-way join query, limiting the number of rows returned to N, to find
possible combinations of hosts in the LAN. This process repeats until we find a router
with N appropriate hosts attached, we run out of routers with no results found, or
we run out of time. Notice that for any arbitrary N, the query remains a fixed three-
way join. With the original SQL query, we would need a 2N + 1-way join to find
a [N machine cluster, which is of course extremely expensive. If random routers are
chosen, then we essentially randomly sample the result set of the approximate query

(Figure 4.4), which is itself a deterministic subset of the full result set.

CHAPTER 4. QUERY REWRITING TECHNIQUES 67

4.3 FEvaluation

We evaluated our query techniques using versions of the queries described in the
previous section, studying the tradeoffs possible between query run time and result
set size. Similar to earlier GIS evaluation work [237], our query run time metric is
the average response time from the users perspective. Ultimately, RGIS’s goal is to
use these techniques to return at least one valid result within the time limit specified

by the query or the system.!

4.3.1 Experimental setup

Our experimental infrastructure is based on Oracle 9i Enterprise Edition running on
Red Hat Linux 7.1 on a dedicated Dell PowerEdge 4400 server. The server has two
1 GHz Xeon processors, 2 GB of main memory, and a PERC3DI RAID controller
producing about 240 GB of RAID 5 storage over eight 36 GB U3 SCSI disks.

To evaluate queries, we must first populate our database. We did this using
GridG [145], which was described in details in chapter 3.

Host memory sizes and network properties are most critical for the types of queries
we use in our evaluation. For memory sizes, we studied (anonymized) data dumps
from the MDS servers running on several large grids, and data provided by the
BOINC project at Berkeley. The largest dataset was one collected by Smith, et al [204].
We extracted memory sizes from the Smith dataset and then configured GridG to
generate hosts with the same memory size distribution.

We generated networks using specific parameter values found by Faloutsos, et

al, in their dataset on routers in the Internet [89]. GridG network topologies are

!The original and rewritten queries of this section are available from
http://urgis.cs.northwestern.edu/example_queries.

CHAPTER 4. QUERY REWRITING TECHNIQUES 68

configured using eight parameters. Six determine the hierarchical structure of the
generated grid (these are passed to the underlying Tiers generator [82]) while the
remaining two determine the parameters of outdegree power law of Internet topology
(our extension). The eight parameters are: o (outdegree law constant), O (outdegree
exponent), NW (maximum number of WANs), NM (maximum number of MANSs per
WAN), NL (maximum number of LANs per MAN), SW (maximum number of nodes
per WAN), SM (maximum number of nodes per MAN), and SL (maximum number

of nodes per LAN). We provide the actual parameter values in the relevant sections.

4.3.2 Nondeterministic queries

We evaluated nondeterministic queries by studying how the query run time and
the result set size depends on the database size, the selection probability, and the
complexity of the query. We use two different queries. The first looks for groups
of hosts that together have a given amount of memory. The second looks for two

directly connected hosts running the same operating system.

“Find groups of N distinct Linux hosts with at least B total memory”

This query our running example from Section 4.2.2; generalized to find N different
hosts. Note that while such queries can become quite complex as the number of hosts
grows, they can be automatically generated very easily.

Using the memory size distribution, we generated grids of 50,000, 500,000, and
5,000,000 hosts with GridG. For each grid, we evaluated 2, 4, 8, and 16 host versions
(using 2, 4, 8, and 16-way joins) of the query, varying selection probabilities. We
ran each query five times, measuring the query running time and the number of rows
returned by the query. We report the mean, minimum, and maximum of the five

runs. Figure 4.6 shows all the performance data, which we elaborate on below.

CHAPTER 4. QUERY REWRITING TECHNIQUES 69

Number of rows selected Query Time (seconds)
Hosts Joins Selection Probability — Average Min Max Average Min Max
50K 2 way deterministic - - - >1hour >1hour > 1 hour
50K 2 way limited deterministic 1,10 1,10 1,10 0.13 - -
1 or 10 rows
50K 2 way 0.001 562 261 933 0.42 0.376 0.463
0.01 55729 50093 66803 17.8 17.3 18.7
4 way 0.0001 527 111 1343 0.35 0.3 0.45
0.0005 131791 69357 181139 26.3 12.1 34.2
8 way 0.00005 1156 0 3103 0.72 0.53 0.99
0.0001 178853 1920 597911 29.3 0.83 102
16 way 0.00001 0 0 0 6.67 6.64 6.7
0.00005 298598 0 1492992 81.3 6.64 380
500K 2 way 0.0001 566 299 802 0.81 0.53 0.94
0.0005 13048 10620 16168 5.34 4.42 6.73
0.001 57524 13048 62340 18.3 16.3 19.43
0.002 216382 210290 220030 73.0 70.0 76.0
4 way 0.00001 541 0 1293 0.36 0.26 0.48
0.00005 143226 62853 219366 26 18.2 32.9
8 way 0.000005 1231 0 6848 0.69 0.53 1.3
0.00001 54127 9368 130971 9.1 2.2 19.9
16 way 0.000001 0 0 0 6.65 6.63 6.7
0.000005 804533 0 3930540 115.6 6.63 523.6
5000K 2 way 0.00001 507 380 635 1.1 0.96 1.13
0.0001 60315 52707 70613 22.4 20.9 23.9
4 way 0.000001 235 20 624 0.55 0.46 0.65
0.000005 189920 109533 322668 23.2 17.5 35.4
8 way 0.0000005 551 138 1296 0.77 0.71 0.87
0.000001 272704 110614 674554 28.9 13.9 68.2
16 way 0.0000001 0 0 0 6.7 6.69 6.71
0.0000005 121473 0 330884 31 6.7 78.1

Figure 4.6: Performance of nondeterministic queries with different sizes of grid, dif-
ferent numbers of hosts, and different selection probabilities.

CHAPTER 4. QUERY REWRITING TECHNIQUES 70

100 1000000

100000
@ Number of @
§ 10 Results £10000 a
3 &
o F1000 5
£ 5
IS ’
- Query Time -g
g1 F100 2
g
£10
0.1+ T 1
0.0001 0.001 0.002

Selection Probability

Figure 4.7: Query time and number of selected rows versus selection probability.

In addition to the nondeterministic queries, we also evaluated the performance of
deterministic and limited deterministic versions of the simplest query (2 way join)
on the smallest number of hosts (50K), data that occupies the first two rows of
Figure 4.6. Notice that the purely deterministic query, which will eventually return
all possible results, requires over an hour of running time. Oracle’s query plan makes
full use of the available indices.

The limited deterministic query, which returns the first result, or the first 10
results, finished very quickly (0.13 s), but always returned the same results. The
nondeterministic version of the same query executes more slowly, taking about twice
as long even with a very low selection probability. However, following the discussion
of Section 4.2.2, we now get a different set of results each time we run the query, and
the query will do a fixed amount of work each time it is run. It is slower because there
are two additional equijoins with the insertids table, as can be seen in Figure 4.2.
This overhead is the cost for implementing random sampling above the database. A
database engine that supports random sampling will not pay this penalty.

To better illustrate our results for nondeterministic queries, we show two slices

CHAPTER 4. QUERY REWRITING TECHNIQUES 71

-2000
p=0.0001 p=0.00000001_~_ I

Query Time r1800

p=0.000005 1600

2 1400 @
S 2
3 1200

2 p=0.00001 2
o 1000
E 5
- Number of £800 -g
S Results 3
3 600 =

0.1

—— T T T
0
012 3 456 7 8 910111213141516
Number of Hosts

Figure 4.8: Query time and number of selected rows versus number of hosts.

through the table. We use the 500,000 host grid. Figure 4.7 shows the average
number of results and the average query time for the two host version of the query as
a function of the selection probability. The left hand scale corresponds to the query
time, while the right hand scale shows the number of results. Note that all scales are
logarithmic. These results show that it is possible to meaningfully trade off between
query processing time and result set size. The point here is that it is possible to vary
the query time and the result set size over several orders of magnitude by modulating
the selection probability.

Figure 4.8 shows a second slice through our data. Once again, we have used the
500,000 host grid and show the average query time and result set size, but here we
vary the complexity of query (the number of hosts asked for) and choose selection
probabilities to try to keep the query time as constant as possible. The point here is
that it is possible to use the selection probability to control the query time largely

independent of query complexity.

CHAPTER 4. QUERY REWRITING TECHNIQUES 72

Hosts o O NW NM NL SW SM SL
10K 8915 -249 1 20 10 10 10 50
50K 8915 -249 1 100 10 10 10 50
100K 8915 -249 1 100 20 10 10 50

Figure 4.9: Parameters passed to GridG to generate grids for nondeterministic query
evaluation.

“Find pairs of directly attached Linux hosts with at least total memory

B”

Because RGIS also stores information about the network topology of a grid, we can
include topology in our queries. For example, we can find the shortest paths between
a pair of hosts, or all pairs shortest paths, or a group of hosts that are tightly

connected.

Our query here tries to find all pairs of hosts that are directly attached (at layer 3).
The machines must have the same operating system and must have a total memory
of at least 1 GB. We generated different networks, ranging from 10,000 to 100,000
hosts for this query. The network parameters given to GridG are summarized in
Figure 4.9.

Figure 4.10 shows the average query time versus selection probability for different
size grids. Figure 4.11 shows the average result set size for the same parameters. For
this range of selection probabilities, query time increases approximately linearly with
selection probability, while the result set size increases slightly faster. These results
provide more evidence that it is possible to use selection probability to trade off
between result set size and query time for queries about grids with typical topological

and memory size distributions.

CHAPTER 4. QUERY REWRITING TECHNIQUES

60
—=— 10K HOSTS
507 —s— 50K HOSTS
—— 100K HOSTS
40|
%
el
c
o
@ 30
g0
()
£
E
20|
o] .///
0 T T T T T T T T

T
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Probability

73

Figure 4.10: Query running time versus selection probability for nondeterministic

network query.

6000
A
—B— 10K HOSTS
5000 | —e 50K HOSTS
—&— 100K HOSTS
o
£ 4000
ks
[}
12
[
3 3000
5
9]
Qo
£ 2000 1
=z
1000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Probability

Figure 4.11: Number of selected rows versus selection probability for nondeterministic

network query.

CHAPTER 4. QUERY REWRITING TECHNIQUES 74

Hosts o O NW NM NL SW SM SL
9,800 8915 -249 1 7 7 40 30 200
101,200 8.915 -2.49 1 23 22 40 30 200
980,000 8915 -2.49 1 70 70 40 30 200

Figure 4.12: Parameters passed to GridG for generating grids to evaluate scoped,
approximate, and scoped approximate network queries.

4.3.3 Scoped, approximate, and scoped approximate queries

We evaluated how the performance of scoped, approximate, and scoped approximate
queries on RGIS depends on the database size, and the complexity of the query. The
queries we use are nearly identical to those of the previous section. The first looks
for sets of hosts that meet a total memory requirement and total disk requirement,
the latter requirement being the difference from the previous section. The second
looks for groups of hosts that additionally are tightly coupled on the network (i.e.,
clusters.) Here, the coupling is not direct attachment, but sharing a common first
hop router.

The network parameters of the synthetic grids used in this section are described

in Figure 4.12. The memory distributions are as before.

“Find groups of N distinct Linux hosts with at least total memory B and

disk D”

Here we evaluated the performance of original and scoped approximate versions of
a query that searchs for N hosts with a total memory > 512N MB and total disk
> 80N. Figure 4.13 shows the average response time of both versions of the query
for the largest grid size. In all the different sized grids, we see that the scoped
approximate query time is independent of the number of hosts in the group, while the

deterministic query time grows very fast with the number of hosts. In all cases, results

CHAPTER 4. QUERY REWRITING TECHNIQUES 75

100+
] (out of

5 Original Query Time time)
S]
9 104
)]
£]
E 1; Scoped+Approximate
o Query Time
(@4 - » = L -

0.1 w ‘ ‘

2 4 8 16 32 64
Number of Hosts Searched For

Figure 4.13: Host group query response time vs. number of hosts with 980,000 hosts
(scoped approximate query).

were returned. Clearly, human query creation (the approximate form of the query)
combined with automated transformation (scoping) can result in query performance

that scales very well with problem size.

“Find groups of N distinct Linux hosts with link bandwidth L and total

memory B attached to a common router.”

This query searches for an N host Linux cluster with link bandwidths > 100 Mbps,
and total memory > 512N. Here, we measured the response time of original, scoped,
approximate, and scoped approximate versions of this “cluster finder” query as a
function of database size and query complexity (number of hosts). Because of time
limitations, our data compares all versions on the small grid (9,800 hosts), but only
the original (slowest) and scoped approximate (fastest) versions on the larger grids.

Figure 4.14 shows a table of the average response times for each of the different
versions of the query run on the small grid. When going from original SQL queries

to scoping, the decrease in response time is small due to the presence of N-way

CHAPTER 4. QUERY REWRITING TECHNIQUES

Technique

Cluster | Original Scoped Approx Scoped +
Size SQL query query query Approx query
2 21.44 2.27 7.62 1.16

4 >7200 2047.93 7.48 1.32

8 >9000 >3600 7.46 1.43

16 N/A >3600 7.51 1.45

32 N/A >3600 7.65 5.96

64 N/A >3600 >120 9.58

76

Figure 4.14: Cluster finder query times in seconds for the four query techniques for a
database populated with 9,800 hosts. In the figure, N/A represents those tests that
were not run due to expected extremely long query times.

70

601

Time (Sec)
N w S a
2..2.2.2

H
2

"

Average time|

70
60

50 2
F40 5
30 3

per LAN 120 3

Average number of LANs Tried
A_/k’/‘

10

o

2 4

8 16
Cluster Size

32

64

Figure 4.15: Cluster finder query time vs. cluster size with 980,000 hosts (scoped

approximate query).

joins in each. Moving to approximate queries results in much better scaling with N.

Only after the N = 32 does the response time become unreasonable. The scoped

approximate queries have dramatically lower response times, and scale nicely with

increasing cluster sizes.

Figure 4.15 provides more detail for the scoped approximate query running on

the largest grid (980,000 hosts). Here we use randomized scoping, repeating the

query with a different random router until a match is found. Because the scoped

CHAPTER 4. QUERY REWRITING TECHNIQUES 7

approximate queries always perform a three-way join, regardless of N, the larger
that IV is, the more benefit they provide. As the grid grows in size, the expected
number of LANs that must be searched decreases. In addition, the average request
time per LAN scales relatively linearly as the cluster size increases. In the worst case
we studied (64 node cluster, 980,000 hosts) the average time of the request is less than
70 seconds, which is remarkably faster than the >> 2000 second times seen by the
original query. Again, automated query transformations can dramatically improve

performance, with human intervention providing even more gains.

4.3.4 Queries under load

GIS systems must scale in the presence of multiple concurrent users and under update
load [180]. To study RGIS’s performance in this respect, we used the scoped approx-
imate queries described in Section 4.3.3 running on the small grid (9,800 hosts). The
update load consisted of a process continuously doing transactional updates of the
disk size of randomly selected hosts.

In Figure 4.16, multiple users are iteratively issuing scoped approximate queries
that are each searching for Linux clusters with 64 nodes, link bandwidths of > 100
Mbps, and a total memory of 512 x 64 MB. We plot their average response time as
a function of the number of concurrent users. Figure 4.17 is identical except here we
run the host group query trying to find N hosts with a total memory > 64 x 512
MB. We observe that the updating process can slow down the information server,
but the effect is small and no worse than 10% in most circumstances. How well
multiple queries scale depends very much on their nature. RGIS effectively leverages

the existing mechanisms in the RDBMS to handle a mixed query/update workload.

CHAPTER 4. QUERY REWRITING TECHNIQUES

78

Fa0l |
2 | With update load
830 ,

101 Without update load

07 T T T T T
1 10

64

Number of Concurrent Users

Figure 4.16: Cluster finder with multiple concurrent users and update load (scoped

approximate).

0.3
,1 With update load

0.255
0.2.\l/'\./l

Without update load

o
o ©
e g =

Average Query Time (seconds)
o
|_\
o

100

=
o

300

Number of Concurrent Users

Figure 4.17: Host group query with multiple concurrent users and update load

(scoped approximate).

CHAPTER 4. QUERY REWRITING TECHNIQUES 79

4.4 Time-bounded queries

The evaluation of the previous section showed that our query techniques can trade off
between the running time of the query and the number of results returned over many
orders of magnitude. In particular, nondeterminism provides very fine grain control,
the selection probability. However, as described in Section 4.2, queries in RGIS are
also time-bounded. RGIS implements these deadlines using three techniques.

The first technique is hard-limiting. The query manager /rewriter starts the query
as a child process or thread. The child is then allowed to run until the deadline is
exceeded. If it completes before that time, it returns the result set to the parent
which returns them to the caller. If it runs out of time, it is killed and no result
set is returned. Hard-limiting can be used with every query in our system. Non-
deterministic queries and randomly scoped queries are repeated during the allotted
time.

The second technique is climbing, which is limited to nondeterministic queries.
Here, we initially run the query with a very small selection probability. If no results
are returned, the probability is doubled and the query is run again. This happens
iteratively until either the deadline is exceeded or a non-null result set is available.
Notice that because climbing always issues another query if there is time left, it may
overshoot the deadline.

The third technique is estimation, which is also limited to nondeterministic queries.
Estimation is similar to climbing except that we predict the next query time from
the previous query times and then only issue the next query if there is sufficient
time remaining. Hence, it is far less likely to overshoot the deadline. Surprisingly,
predicting query time from previous instances of a nondeterministic query run with

lower selection probabilities appears to be straightforward.

CHAPTER 4. QUERY REWRITING TECHNIQUES 80

We studied several functions (linear, power, polynomial, exponential) for mapping
from selection probability to running time. Degree two polynomials worked best for
the queries described in the previous section. In our implementation, we monitor each
query’s time and selection probability. After the first query, we estimate the second
query time to be the same as the first. After the first two queries, we do a degree
one Lagrange interpolation to estimate the third query time. For the fourth and
further queries, we estimate the next query time by applying a degree two Lagrange
interpolation polynomial to the previous three query times. Hence, after the first
query, we have some model that maps from selection probability to query time. We
then use that model to predict if we still have enough time to do the next query or
must terminate.

Because selection probability grows exponentially, climbing and estimation are
largely insensitive to the initial selection probability and we set it very low.

Figure 4.18 illustrates the performance of these different techniques for a sample
nondeterministic query. The query looks for two hosts with a combined total of 600
GB of main memory in a 50,000 host database. Such a combination is very rare,
but possible, hence the running time would be quite high for a deterministic version
of the query. The only difference between (a), (b), and (c) is the deadline, 1.2, 1.5,
and 60 seconds, respectively. Each query is run five times. The figure illustrates the
average, minimum, and maximum running time. Clearly, it is possible to keep the
running time close to the deadline using the three techniques. This is also the case
for queries that are allowed to run longer, and for queries involving a larger number

of hosts.

CHAPTER 4. QUERY REWRITING TECHNIQUES

2.5
2,
)
2
g 1.5 -
3 : :
@, Target Deadline £
o 1
£
[
0.5
Climbing ‘Chmhlng-ﬁ-Hard Limiting ‘ Estimation Estimation+Hard Limiting
Mechanism
(a) 1.2 second deadline
25
2,
g S B
c
8 15 A Target Deadline I
(3]
@
o 1
£
[
0.5
0 ‘ ‘ ‘
Climbing Climbing+Hard Limiting Estimation Estimation+Hard Limiting
Mechanism
(b) 1.5 second deadline
250
200+
20
2
g 1501
[}
@
o 100
£
= 8
50 Target Deadline] I
Climbing ‘Cllmblng*rhard limiting ‘ Estimation ésllmallon+hard Limiting
Mechanism

(c) 60 second deadline

Figure 4.18: Time-bounding nondeterministic queries.

CHAPTER 4. QUERY REWRITING TECHNIQUES 82

4.5 Conclusions

In this chapter, we have described our SQL query rewritting techniques, inluding
nondeterministic, scoping and approximation, three techniques to reduce the run-
ning time of queries in the RGIS system. Nondeterministic query conducts joins on
randomly selected subset, scoping adds additional constraints to queries relative to
the network topology and other relationships in the schema, while approximation
replaces joins with tighter constraints on individual objects. These techniques are
implemented using a combination of query rewriting, schema extensions, indices, and
randomness. No changes to the RDBMS are needed. In all the three cases there is a
tradeoff: a subset of the full result set is quickly returned. Response time and server
load can be dramatically reduced.

We evaluated the performance of our implementation, populating our database
with networks as large as five million hosts. The evaluation showed that a meaningful
tradeoff between query processing time and result set size is possible using the three
techniques, and that we can use that tradeoff to keep query running time largely
independent of query complexity. We then discussed three techniques that we use to
time-bound nondeterministic queries and evaluated their performance.

These techniques are complementary to each other. The three techniques help to

make a relational approach to GIS feasible.

Chapter 5

Scheduling With Inaccurate

Information

This chapter describes our research on the performance of size-based scheduling poli-
cies when only limited job size information is available. This is of important practical
value for the RGIS system because the RGIS servers typically have to schedule queries
using estimated job sizes and updates. Research in this chapter helps to answer ques-
tions like “can we use size-based scheduling on RGIS?” and “how to use size-based

schedulers on RGIS?”.

5.1 Introduction

In a queuing system, job requests continuously arrive to be serviced by one or several
servers or stations. A request requires a certain service time to be completed. A
request is queued when it arrives and remains in the system until it is complete, with
the total time from arrival to completion being called the sojourn time or response

time. Scheduling policies determine which requests in the queue are serviced at any

83

CHAPTER 5. SCHEDULING WITH INACCURATE INFORMATION 84

point in time, how much time is spent on each, and what happens when a new request
arrives. Common goals of the scheduling policy are to minimize the mean sojourn
time (response time of the request), the average slowdown (the ratio of its response
time to its size), and to act fairly to all requests.

Many policies are widely used due to their simplicity or perceived fairness. First
Come First Served (FCFS) is a non-preemptive policy in which the requests are run
to completion in the order in which they were received. A more common policy is
Processor Sharing (PS), which is preemptive. In PS all requests in the queue are
given an equal share of the server’s resources and all requests share roughly same
slowdown, thus PS is considered to be fair. Generalized Processor Sharing (GPS)
generalizes PS with priorities. Often, FCF'S can be combined with PS or GPS, with
FCFS dispatching of requests from the queue to a pool of processes or threads that
are collectively scheduled using PS or GPS. These polices ignore the service time or
job size of the requests.

Sized-based scheduling policies, such as Shortest Remaining Processing Time
(SRPT) and the Fair Sojourn Protocol(FSP) incorporate the service time or the
job size of the request into their scheduling decisions, and thus can achieve shorter
mean response time than the scheduling policies that ignore the job size information,
such as FCFS and PS.

The primary concern with SRPT is the fear that large jobs may starve under
SRPT [212], that the average performance improvements of SRPT over other policies
stem from SRPT unfairly penalizing large jobs in order to help small jobs. Recent
research [33, 103] has shown that the performance gains of SRPT over PS in fact do
not usually come at the expense of large jobs.

These results make size-based scheduling more practical. However, size-based

scheduling policies require a priori knowledge of job sizes, which is not always avail-

CHAPTER 5. SCHEDULING WITH INACCURATE INFORMATION 85

Scheduling Policy Description

PS Processor Sharing scheduling policy.

SRPT Ideal Shortest Remaining Processing Time scheduler,
job sizes are known accurately a priori.
The scheduler always choose the job with
the shortest remaining size to serve first.

SRPT-E Shortest Remaining Processing Time scheduler
that uses estimated job sizes as scheduling information.
The scheduler always chooses a job with the
estimated shortest remaining size to serve first.

FSP Ideal Fair Sojourn Protocol

FSP-E Fair Sojourn Protocol that uses estimated
job sizes as scheduling information.

Figure 5.1: Scheduling policies used in the chapter.

able. This is another reason for the lack of broad application of these policies [33]. All
previous research work has targeted ideal size-based policies where the job sizes are
assumed to be accurately known in advance. As a result, the behavior of size-based
scheduling policies with inaccurate scheduling information is largely unknown. This
dissertation is the first work to address the question.

The rest of this chapter is organized as follows. We talk about related work in
Section 5.2. In Section 5.3, we describe our simulation setup and introduce a useful
random number generator algorithm that allows us to control the correlation between
two random number series. Next, we show simulation results on performance in
Section 5.4, and fairness results in Section 5.5. We conclude with two new applications
of size-based scheduling policies in Section 5.6 that would be made possible given

reasonably accurate job size estimators.

CHAPTER 5. SCHEDULING WITH INACCURATE INFORMATION 86

5.2 Related work

SRPT has been studied since the 1960s. Schrage first derived the expression for
the response time in an M/G/1 queue [197]. For a general queuing system (G/G/1)
Schrage proved in 1968 that SRPT is optimal in the sense that it yields—compared to
any other conceivable strategy—the smallest mean value of occupancy and therefore
also of waiting and delay time [196]. Schassberger obtained the steady state appear-
ance of the M/G/1 queue with SRPT policy in 1990. Perera studied the variance
of delay time in M/G/1/SRPT queuing systems and concluded that the variance is
lower than FIFO and LIFO [177]. Bux introduced the SRPT principle into packet
networks [48] in 1983.

Recently, SRPT [33, 199, 112, 103, 98] and FSP [98] have received much attention
in the context of connection scheduling at web servers. Bansal, et al proved theo-
retically that the degree of unfairness under SRPT is surprisingly small assuming an
M/G/1 queuing model and heavy-tailed job size distribution [33]. Gong, et al fur-
ther investigated the fairness issues of SRPT through simulation [103] and confirmed
the theoretical results regarding the asymptotic convergence of scheduling policies
with respect to slowdown [113]. Harchol-Balter, et al prototyped SRPT scheduling
on Apache web server and their evaluation showed the superiority of SRPT over
PS [112] in terms of mean response time. To further improve the fairness of SRPT
scheduling, Friedman, et al proposed Fair Sojourn Protocol (FSP) that combined
SRPT with PS to trade off fairness with performance [98]. They concluded that
FSP is both efficient in a strong sense (similar to SRPT), and fair, in the sense of
guaranteeing that it weakly outperforms processor sharing (PS) for every job on any
sample path.

All the previous research on size-based scheduling assumes accurate knowledge of

CHAPTER 5. SCHEDULING WITH INACCURATE INFORMATION 87

job sizes a priori, which is not obtainable in many cases. To the best of our knowledge,
no work has been done to characterize size-based policies with inaccurate scheduling
information. Furthermore, most theoretical work assumes the M/G/1 queuing model
due to its analytical simplicity. However, many computer systems are better modeled
with a G/G/n/m queuing model, where both job arrival and job size distribution
are not Poisson, and there are n servers serving a queue with limited capacity m.
A web server is an example. Previous research [175, 72] has shown that Poisson
processes are valid only for modeling the arrival of user-initiated TCP sessions such
as the arrival of TELNET connections and F'TP connections. HT'TP arrivals are not
Poisson. Previous work [72] pointed out that the aggregated interarrival times of
HTTP requests can be modeled with a heavy-tailed Weibull distribution.

There has been significant work on the G/G/n queuing model, and only the most
closely related papers are listed here. Tabet-Aouel, et al gave analytic approximations
for the mean sojourn time of P (P > 2) priority classes in a stable G/G/c/PR queue
with general class interarrival and service time distributions and ¢ (¢ > 2) parallel
servers under pre-emptive resume (PR) scheduling [211]. Boxma, et al considered
a G/G/1 queue in which the service time distribution and/or the interarrival time
distribution has a heavy tail, i.e., a tail behavior like t7" with 1 < v < 2, such that
the mean is finite but the variance is infinite. Depending on whether the service time
distribution is heavier than that of the interarrival time distribution, they concluded
that the stationary waiting time can be modeled as either a Kovalenko distribution or
a negative exponential distribution [44]. However, we are unaware of any analytical
results on G/G/n/m for SRPT or FSP scheduling in regimes where interarrival times
and service times are heavy-tailed.

To characterize size-based policies with inaccurate scheduling information under

more realistic queuing models such as G/G/n/m, we developed a simulator that

CHAPTER 5. SCHEDULING WITH INACCURATE INFORMATION 88

Queuing Model Description

M/G/1/m Poisson arrival process;
General job size distribution (Pareto and Weibull);
Single server ; Limited queue capacity m.
G/G/n/m General arrival process (Pareto and Weibull);
General job size distribution (Pareto);
n servers ; Limited queue capacity m.

Figure 5.2: Queuing models studied in the chapter.

can support PS, FSP, and SRPT in both M/G/1/m and G/G/n/m. The simulator
operates on a trace of request arrivals, which can come either from real world traces
or from a trace generator. The trace contains the request arrivals, the actual job
sizes, and the estimated job sizes. Our trace generator allows us to control the
correlation coefficient R between actual job size and estimated job size in a trace.
Using the simulator and the trace generator, we study the mean response time and
slowdown for SRPT and FSP scheduling policies with estimated job size information.
Our simulation experiments with generated traces show that the performance of size-
based policies is strongly related to the degree of correlation (R) between estimated
job size and actual job size. For low values of R, these scheduling policies perform
worse than PS, but given a reasonably good job size estimator, SRPT and FSP can

outperform PS in both mean response time and slowdown.

5.3 Simulation setup

In this section, we describe our performance metrics, simulator validation, synthetic
trace generation and simulation parameters.
Throughout this chapter, we refer to the scheduling policies as listed in Figure 5.1,

and the queuing models used as listed in Figure 5.2.

CHAPTER 5. SCHEDULING WITH INACCURATE INFORMATION 89

We set up the simulations driven by our synthetic traces to investigate how the
degree of the correlation (R) between actual job size and estimated job size affects the
performance of SRPT-E and FSP-E, where estimated job size is used as scheduling
information, and compare them with a size-oblivious policy (PS), ideal SRPT, and
FSP where actual job sizes are assumed to be known a priori.

Using the standard definition [197], we define the load on the queuing system as
mean arrival rate divided by mean service rate throughout the rest of this chapter.
Unless otherwise stated, we fixed the load to be 0.9, making the queuing system

reasonably heavily loaded.

5.3.1 Performance metrics

Our performance metrics are the mean response time and slowdown.

e Mean response time: Response time refers to the time span between a job’s
arrival at and departure from the server. It is also known as sojourn time or
turn around time. Mean response time has been used as a primary performance

metric in queuing theory [197, 33, 103].

e Slowdown: Using the definition introduced by Bansal and Harchol-Balter [33],
we define slowdown of a job as the ratio of its response time to its size (or
service time). Slowdown is also referred to as normalized response time [33].
This metric is important because it reflects how long a job waits in the system
relative to its size, thus helps to evaluate unfairness. Under a fair policy like

PS, all jobs experience the same slowdown.

CHAPTER 5. SCHEDULING WITH INACCURATE INFORMATION 90

5.3.2 Simulator

Our simulator supports both M/G/1/m and G/G/n/m queuing systems. It is driven
by a trace in which each request contains the arrival time, actual job size, and es-
timated job size. We use synthetic traces generated with interarrival times from
exponential and bounded Pareto distributions, actual job sizes from bounded Pareto
distributions, and estimated job sizes also from bounded Paretos. In the synthetic
traces, we directly control the correlation, 2, between actual size and estimated size,
as described later. Throughout the rest of the chapter each simulation is repeated
20 times and we present the average.

Similar to Bansal and Harchol-Balter’s work [33], we concentrate on M/G/1/m
queuing model for the simulations presented in this chapter. Simulations with
G/G/n/m queuing model show similar trends and the details can be found in our
technical report [153]. Figure 5.4 shows the parameters of the bounded Pareto distri-
butions used for the simulations shown in the rest of this chapter. We used identical
bounded Pareto distributions for both estimated job size and actual job size distri-
butions as shown in Figure 5.2.

We validated our simulator by:

e Assuring that Little’s law is never violated on each run, using effective arrival

rate as appropriate for limited queue capacity.

e Repeating the simulations described in Friedman and Henderson’s FSP pa-

per [98]. We got nearly identical results under FSP, SRPT, and PS policies.

e Comparing our simulation results with the analytic results of Bansal and Harchol-
Balter’s SRPT fairness paper [33]. Our simulation results are qualitatively

consistent with theirs.

CHAPTER 5. SCHEDULING WITH INACCURATE INFORMATION 91

5.3.3 Controlling R in synthetic traces

Given some parametric distribution, e.g. exponential, and a target correlation co-
efficient R, we generate pairs of random numbers where each number of the pair is
chosen from its required distribution and where the two numbers of the pair are cor-
related to degree R. To do this, we use a simplified Normal-To-Anything (NORTA)
method. The basic ideas and proofs behind NORTA were developed by Cario and
Nelson [52]. Given the distributions diSestimatedsize a0d diSactuaisize; OUT target cor-
relation coefficient R and our sample size N, the following algorithm generates N

pairs:
1. Set p=R

2. Generate two independent random numbers z,zo ~ N(0,1).

3. letyl=$1,y2=P><$1+\/(1_02)X$2

4. let uy = NormCDF (y1,0,1) and us = NormCDF (y,,0, 1), where
NormCDF(y;,0,1) is the CDF value of a standard normal distribution at y;
for i = 1,2. It can be shown that u; ~ U[0,1],7 =1,2

. . _ _1 . _ _1
5. let estimatedsize = Fy. (u1), actualsize = Fy. (up), where

Fliiseimatedsizes Fdisasruarsi-e &€ the CDFs of our desired distributions for esti-

mated size and actual size respectively. Fd_z-s1 is the inverse of Fy;;.

6. Repeat steps 2-5 N times generating N pairs {(estimatedsize;, actualsize;)}.
{estimatedsize;,j = 1,..., N} and {actualsize;,j =1,..., N} are two corre-

lated random numbers each following their own distributions.

7. Compute the correlation coefficient of {estimatedsize;}, {actualsize;} and call

CHAPTER 5. SCHEDULING WITH INACCURATE INFORMATION 92

it premp- If premp > R, then decrease p and go to step 2. If pyemp < R, then
increase p and go to step 2. If pym, ~ R then stop.

Figure 5.3 gives some examples of estimated size/actual size pairs generated for
different values of R.

To show the correctness of this algorithm, we can try following analysis: First,
it is easy to see that yi,yo ~ N(0,1) and uy,us ~ UJ0,1], thus estimatedsize ~
diSestimatedsize aNd actualsize ~ diSqeiyaisize- S€cCond, it can be shown that y; is corre-
lated with y, and thus so is u; with uy. Intuitively it follows that {estimatedsize;}
and {actualsize;} are correlated as well. Cario and Nelson showed that (1) premp
is a nondecreasing continuous function of p, and (2) piemp and p share the same
sign. These properties guarantee the termination of the above simplified NORTA
algorithm and let us bound the values of R that can be achieved by NORTA. If we
sample p from 0 to 1, we can estimate the range of psemp, producing a set of sets of
pairs, ordered with increasing R as a side effect. This is exactly how we generated
correlated random pairs of file size and service time. Depending on the structures of
different distributions, pien,, may not always take a full range of [0, 1], which is why
some of the results we show here have a restricted range of R.

In Section 5.4, we show the simulation results on mean response time. We study

slowdown as a function of job size and correlation coefficient R in Section 5.5.

5.4 Simulation results on mean response time

To study the effects of the correlation R between actual job size and estimated job size
on the performance of SRPT-E and FSP-E, we generated traces with controlled cor-
relation as described in the previous section. We used bounded Pareto distributions

for both actual job size and estimated job size. For the arrival process, we consider

CHAPTER 5. SCHEDULING WITH INACCURATE INFORMATION 93

10
1=

[
By
@

. 1
a
x
L

o1

01 1 10 W0 200
Setvice fire |Micro Seconds |
(a) R=0.13
10
1.

[
By
@

. 1
a
x
L

o1

01 1 0 100
Service fire |Mic o Seconds |
(b) R=0.78

Figure 5.3: Examples of generated estimated size/actual size pairs.

CHAPTER 5. SCHEDULING WITH INACCURATE INFORMATION 94

a Lower bound Upper bound
Job size 2.0 0.1188 10°

Figure 5.4: Parameters for Bounded Pareto Distribution.

1000

100 -

10 A

Mean Response Time

0.1

0 0.2 0.4 0.6 0.8 1

Correlation Coefficient R

Figure 5.5: Mean sojourn time versus R, synthetic traces, M/G/1/m, Pareto service
times, Poisson arrivals.

Poisson arrivals (exponential interarrival times), heavy tailed Pareto arrivals, and
heavy tailed Weibull arrivals. For all the simulations of this section, the load (mean
arrival rate divided by mean service rate) is 0.9, and the queue capacity is 5000. A
single server is assumed. Multiple servers are similar to the single server case, hence
the results are not shown here.

The scheduling policies used (SRPT, SRPT-E, FSP, FSP-E and PS) are described
in Figure 5.1. Each graph data point represents the average of 20 simulations, each
of which has processed 0.5 million job requests.

Figure 5.5 shows the effects of R on the mean response time of different scheduling
polices with a Poisson arrival process, corresponding to the M/G/1/m queuing model.
The interarrival mean used to generate Poisson process is 0.264. Note that the Y

axis is in log scale. Heavy-tailed Pareto and Weibull arrival process with the same

CHAPTER 5. SCHEDULING WITH INACCURATE INFORMATION 95

job size distributions, corresponding to the G/G/1/m queuing model, show similar
results and thus are omitted here.

As shown in Figure 5.5, SRPT-E results in lower mean response time than FSP-E
does in most cases. The performance of SRPT-E and FSP-E increases quickly with
increasing R. When R is very small, SRPT-E and FSP-E essentially behaves like
a random scheduling policy, and it is worse than PS in mean response time. When
R exceeds a threshold, SRPT-E and FSP-E performance exceed that of PS in both
M/G/1/m and G/G/1/m. The threshold is about 0.7 in our simulations. We believe
this threshold is a function of R and both distributions of job size and estimated job
size. Beyond this point, SRPT-E and FSP-E’s performance increases quickly with
increasing R. The figure clearly shows that SRPT performance is strongly tied to R,
even at high values of R. Improvements in estimating actual job size can dramatically
improve SRPT and FSP for a wide range of R.

The lack of accurate job size information has been an important reason why SRPT
is not widely deployed [33, 198]. Our simulations show that a reasonably good job
size estimator is required for SRPT-E and FSP-E to outperform PS in terms of mean

response time.

5.5 Simulation results on slowdown

Fairness is one major concern when applying size-based scheduling policies such as
SRPT in practice. Theoretical [33] and simulation [103] work has shown that the
degree of unfairness under SRPT is very small. However, no work has been done to
study the fairness issue when the scheduler doesn’t have accurate job size information.
Like previous work [33, 103, 98|, we use slowdown as fairness metric.

We evaluate the slowdown of SRPT-E and FSP-E as a function of job size and

CHAPTER 5. SCHEDULING WITH INACCURATE INFORMATION 96

the correlation coefficient R. Figures 5.6 through 5.11 show the slowdown versus the
percentile of the job size distribution, with R increasing from 0.0224 to 0.9778. Note
that the Y axis is in log scale in all these figures. The job sizes are categorized into
100 bins with each bin containing one percentile of the job size distribution. Again
the load of system is 0.9.

From Figures 5.6 and 5.7, we can clearly see that both SRPT-E and FSP-E per-
form very poorly compared to PS when correlation is weak. This comes as no surprise
because poor estimation of job sizes would render these policies almost equivalent to
random scheduling. Much longer delays are imposed on jobs across the board. How-
ever, as the estimates improve, i.e. the increase of R values, the SRPT-E curve moves
downward. It begins to outperform PS at R = 0.4022 for small jobs. For SRPT-E at
the level of R = 0.5366, jobs below the 30 percentile have lower slowdown than with
PS. For FSP-E, at the level of R = 0.5366, the slowdown is close to that caused by
PS.

When R increases to 0.7322, both SRPT-E and FSP-E perform better than PS
in general. For SRPT-E, close to 93% of the jobs have slowdown smaller than that of
PS, while for FSP-E, it appears that all jobs have lower slowdown than that of PS.
When estimated size is highly correlated with actual job size, SPRT-E and FSP-E’s
performance closely resembles that of ideal SRPT and FSP (Figure 5.11). Note that
in most cases, the performance of ideal SRPT and FSP is very close and not clearly
distinguished in the figures.

Based on the simulation results in Section 5.4 and this section, it is clear that
both the mean response time and slowdown of size-based policies heavily depend on
the correlation between actual job sizes and estimated job sizes. Although SRPT-E
has a lower mean response time than FSP-E, it causes larger slowdowns when the

correlation coefficient is larger than about 0.7.

CHAPTER 5. SCHEDULING WITH INACCURATE INFORMATION 97

10000

1000 -

100 -

Slowdown

10 4

1
0O 10 20 30 40 50 60 70 80 90 100

Job Size Percentile (R=0.0224)

Figure 5.6: Slowdown as a function of the percentile of the job size distribution.
Synthetic traces, R = 0.0224, M/G/1/m, Pareto service times, Poisson arrivals.

The simulations have clearly shown that high correlation between actual job sizes
and estimated job sizes not only helps SRPT-E and FSP-E to reduce the mean
response time, but also helps to achieve smaller slowdowns across various job sizes.
More important than an accurate prediction for each job size is the order of the jobs
in the queue—they need only be ordered by their size. A reasonably good estimator
will enable SRPT-E and FSP-E to outperform PS in both mean response time and

slowdown.

5.6 New applications

In this section, we describe three applications where the size-based policies could be
successfully applied with effective job size estimators. We also show that effective
job size estimators can be achieved at low overhead.

Appendix A describes our work on Domain-based scheduling on web servers.

Appendix B describes our work on P2P server side scheduling.

CHAPTER 5. SCHEDULING WITH INACCURATE INFORMATION 98

10000

1000 -

Slowdown
=
o
o

10

1
0O 10 20 30 40 50 60 70 80 90 100

Job Size Percentile (R=0.239)

Figure 5.7: Slowdown as a function of the percentile of the job size distribution.
Synthetic traces, R = 0.239, M/G/1/m, Pareto service times, Poisson arrivals.

1000

100

Slowdown

10 4

0 10 20 30 40 50 60 70 80 90 100
Job Size Percentile (R=0.4022)

Figure 5.8: Slowdown as a function of the percentile of the job size distribution.
Synthetic traces, R = 0.4022, M/G/1/m, Pareto service times, Poisson arrivals.

CHAPTER 5. SCHEDULING WITH INACCURATE INFORMATION 99

1000

X PS
——— SRPT
o SRPT-E
FSP P
3 0 S O
100 4 —+—FSP-E 0«;%&0 %
_— 0 0 0%
ISEX
o 00060
O AR

Slowdown

<
10 $9% &°°
<o
o

o .‘.""}
1 Jsssssssssssemessnsmanasrstasgo
0O 10 20 30 40 50 60 70 80 90 100

Job Size Percentile (R=0.5366)

Figure 5.9: Slowdown as a function of the percentile of the job size distribution.
Synthetic traces, R = 0.5366, M/G/1/m, Pareto service times, Poisson arrivals.

1000

——— SRPT

o SRPT-E
FSP
100 {| —+—FSP-E

Slowdown

0O 10 20 30 40 50 60 70 80 90 10C
Job Size Percentile (R=0.7322)

Figure 5.10: Slowdown as a function of the percentile of the job size distribution.
Synthetic traces, R = 0.7322, M/G/1/m, Pareto service times, Poisson arrivals.

CHAPTER 5. SCHEDULING WITH INACCURATE INFORMATION 100

1000

x PSS
—a— SRPT
© SRPT-E

FSP
100 ||—+—FSPE

Slowdown

10 4

.‘..,m.. 2600
0O 10 20 30 40 50 60 70 80 90 100

Job Size Percentile (R=0.9779)

Figure 5.11: Slowdown as a function of the percentile of the job size distribution.
Synthetic traces, R = 0.9779, M/G/1/m, Pareto service times, Poisson arrivals.

5.6.1 Domain-based scheduling on web servers

Previous research has tried to apply SRPT scheduling on web servers [111, 112] on
the assumption that the service time is the size of the file being served, as this is very
easy to discover when the request enters the system. More broadly, the assumption
is that the service time is strongly correlated to the file size. In our own work [153],
we found that this assumption is not accurate, and consequently developed Domain-
Based scheduling to effectively apply size-based scheduling on web servers.

The idea of domain-based scheduling is to use web log to classify the Internet
into domains, and use the web log to estimate throughput from different domains
to the web server. Our assumption is that hosts within a same domain have similar
throughput to the remote web server. The domain in our definiton is the high order
k bits of the client IP address, which is based on the Classless Inter Domain Routing
(CIDR) [114]. Our study [153] shows that this job size estimator is very effective

with a low overhead.

CHAPTER 5. SCHEDULING WITH INACCURATE INFORMATION 101

5.6.2 P2P server side scheduling

Peer-to-Peer systems have grown significantly in popularity over the last few years.
In the context of peer-to-peer file sharing, research efforts have focused on routing,
search, incentives, and a few other topics. But no one has looked at the server side
scheduling problem except our own ongoing work [181].

The server side of current file sharing P2P applications such as Kazaa [9] is similar
to a web server in that they both accept requests for files and send back the requested
files. But there are significant differences between them from a scheduler’s point of
view. Requests to P2P nodes are typically a small chunk of the complete file, and
the amount of data actually served is often a fraction of the request size. Therefore,
the job sizes cannot be known a priori for the P2P application. Furthermore, while
web servers can reasonably assume full control over resources, P2P applications are
commonly configured with quite conservative upper bounds for each thread’s resource
consumption to minimize their impact on other applications.

To apply the SRPT-E or FSP-E scheduling policies in current P2P file sharing
applications, we have to use estimated job sizes as scheduling information. Our
work [181] shows that by using the requested data chunk size as the scheduling
metric, we can get a mean response time that is only 30% of that of FCFS and
50% of that of PS. We are currently working on better job size estimators to further

enhance the performance of the P2P applications.

5.6.3 Network backup system scheduling

Backups protect file systems form user errors, disk or other hardware failures, software
errors that may corrupt the file system. The most common uses of backups are

to restore files accidentally deleted by users and to recover from disk failures. As

CHAPTER 5. SCHEDULING WITH INACCURATE INFORMATION 102

more and more data needs reliable and efficient backup, the backup techniques are
becoming increasingly important.

Chervenak, et al [59] has shown that as the capacities of new storage devices
continue to increase at a rate that is much faster than the speed of disk and type
access, it will take increasing long to read the contents of a disk drive and write
them to a backup device. Therefore, it is very important to improve the efficiency of
backup systems.

Most current backup systems such as Amanda [69, 68] allow concurrent backups
in a networked computing environment, where multiple file systems are backed up in
parallel to one or more backup systems. A network backup system is similar to a web
server in that they both transfer a large number of files between multiple machines
via network. However, unlike a web server, a network backup system doesn’t know
the job sizes a priori because of the use of the incremental backup scheme, which
copies only those files that have been created or modified since a previous backup.
Furthermore, incremental backup schemes that compute and store file differences are
the extreme case, where job size is not known until after completion.

If SRPT or FSP scheduling can be applied on network backup systems, the mean
response time could be lowered. However, because the job sizes cannot be obtained
in advance, estimated job sizes have to be used for scheduling. We speculate that
history-based time series predictors can be applied to estimate the backup size for
each machine, and job priority can be assigned accordingly. We are currently studying

this possibility.

CHAPTER 5. SCHEDULING WITH INACCURATE INFORMATION 103

5.7 Conclusions and future work

Through simulations, we have evaluated the performance of size-based scheduling
policies (SRPT and FSP, with PS for comparison), as a function of the correlation
between actual job size and estimated job size. We found that SRPT and FSP’s
performance strongly depends on the correlation. When provided with weak corre-
lation, SRPT and FSP can actually perform worse than PS, but given a reasonably
good job size estimator, they can outperform PS in both mean response time and the
slowdown. We also described three new applications of SRPT and FSP supported
by our job size estimators.

To generate correlated trace data for the simulation, we introduced a new random
number pair generation technique, where each number of the pair is chosen from its
required distribution and they are correlated to degree R. This technique can be
very useful for simulation related research in this and other areas.

To the best of our knowledge, this work is the first to address the performance
of size-based policies with inaccurate scheduling information. However, we believe
that we have by no means completely addressed this area. More simulations and
theoretical work are necessary for a better understanding. We are very interested in
analytical results for the impact of inaccurate job size information, and simulation
results for a wider range of workload characteristics.

To effectively apply size-based scheduling on the RGIS server, we need to have an
effective job size estimator. Our previous work has shown that such effective estima-
tors can be built with the support of extensive traces analysis and characterization.
As grids evolve into production stage and more performance traces become available,
we can develop new job size estimator based on the characterizations of the queries.

Then we can apply size-based scheduling on RGIS servers.

Chapter 6

Predicting TCP Throughput

RGIS servers rely on a Content Distribution Network (CDN) to propogate their up-
dates to other peers. The CDN can use several mechanisms to do its job, for example,
Unicast, Multicast or the Publish/Subscribe model. This dissertation discusses the
unicast and multicast mechanism in chapter 6, 7 and 8.

This chapter describes DualPats, our TCP throughput monitoring and predic-
tion framework, which can be used by the CDN to soft time bound the updates

propagation.

6.1 Introduction

Application developers often pose an age-old question: “what is the TCP throughput
of this path?” The question is more subtle than it appears. This chapter motivates,
describes, and evaluates DualPats, an algorithm and system for answering it. We
define TCP throughput as % where D is the flow size and T is the flow duration,

starting at connection establishment and ending at teardown. For a file transfer [21,

234], D is the file size.

104

CHAPTER 6. PREDICTING TCP THROUGHPUT 105

The awvailable bandwidth of a path—the maximum rate of a new flow that will
not reduce the rate of existing flows [117, 122]—has been thoroughly investigated.
Keshav’s packet pair [129], Crovella’s cprobe [53], IGI [117], and spruce [208] attempt
to measure the available bandwidth accurately, quickly, and non-intrusively. Other
tools, such as nettimer [134], pathchar and pchar [85], pathload [122], NCS and
pipechar [127], pathrate [84] and delphi [190] measure either the bottleneck link
capacity or the available bandwidth.

The available bandwidth is different from the TCP throughput that an applica-
tion can achieve, and that difference can be significant. For example, Jain’s pathload
paper [122] showed the bulk transfer capacity [158] of a path is higher than the
measured available bandwidth, while Lai’s Nettimer paper [134] showed many cases
where the TCP throughput is much lower than their measurement. Jin, et al con-
firmed that available bandwidth is not an indicator of what an application can ac-
tually obtain [126]. Tools for estimating available bandwidth have a further issue:
their slow convergence, on the order of at at least 10s of seconds, makes them too
slow for many applications.

The most widely used real time TCP throughput prediction framework is the Net-
work Weather Service [230] (NWS). NWS applies benchmarking techniques and time
series models to measure TCP throughput and provide predictions to applications.
NWS is widely used in grid computing and other application contexts.

Unfortunately, recent work [222, 221] has shown that NWS, and by implica-
tion, current TCP benchmarking techniques in general, have difficulty predicting
the throughput of large file transfers on the high speed Internet. Sudharshan, et
al [222] showed that NWS was predicting less than 1/10 of the actual TCP through-
put achieved by GridF'TP. In response, they proposed using a log of large file transfers
to predict future file transfers. A key problem with this idea is that the log is up-

CHAPTER 6. PREDICTING TCP THROUGHPUT 106

dated only at application-chosen times, and thus changes in TCP throughput are
only noticed after the application uses the path.

Taking dynamic changes into consideration, Sudharshan, et al [221] and Swany, et
al [209] separately proposed regression and CDF-matching techniques to combine the
log-based predictor with small NWS probes, using the probes to estimate the current
load on the path and adjust the log-based predictor accordingly. These techniques
enhanced the accuracy of log based predictors. However, they remain limited to
those host pairs that have logs of past transfers between them, and the logs must
still be kept fresh. Zhang, et al [238] showed it is misleading to use history older
than one hour. Furthermore, due to the strong correlation between TCP flow size
and throughput [239], a log for one TCP flow size is not directly useful for predicting
throughput for another.

The passive measurement approach [42, 127, 236] avoids the overhead of active
probes by observing existing network traffic. Unfortunately, similar to the log-based
prediction techniques, the passive approach is limited to periods of time when there
is traffic on the network between the hosts of interest. Also, these systems measure
available bandwidth, not TCP throughput.

There is an extensive literature on analytic TCP throughput models [160, 169, 26].
However, these models are limited in practice due to the difficulty in obtaining accu-
rate model parameters such as TCP loss rate and RTT. Goyal et al [105] concluded
that it is not easy to obtain accurate estimates of network loss rates as observed
by TCP flows using probing methods, and that polling SNMP MIBs on the routers
can do much better. However, because these statistics are aggregated and it is well
known that TCP has a bias against connections with high RTT [183], this approach
is limited to paths where the bottleneck router provides common loss rates, such as

with RED. Furthermore, this approach has to determine the bottleneck router on the

CHAPTER 6. PREDICTING TCP THROUGHPUT 107

end-to-end path (a difficult problem) and have SNMP access to it (rarely available
today).
DualPats follows from these questions, which we address via a large-scale mea-

surement study:

e How can we explain the strong correlation between TCP flow size and through-

put, and what are its implications for predicting TCP throughput?

e How can we characterize the statistical stability of the Internet and TCP

throughput, and what are its implications for predicting TCP throughput?

e How can we predict the TCP throughput with different TCP flow sizes without

being intrusive?
The main contributions of this chapter are:

e Additional causes for the observed strong correlation between TCP flow size

and throughput [238],

A characterization of TCP throughput stability and statistics,

A novel yet simple TCP benchmark mechanism,

A dynamic sampling rate adjustment algorithm to lower active probing over-

head, and

DualPats and its evaluation.

6.2 Experimental Setup

Name StatisticS Main Purpose Hosts, Paths, Repetitions Messages, Software, procedure
) Client/Server: 100 RB, 200 RB,
40 PlanetLab. nodes in 400 KB , 600 KB, 800 KB, 1 MB,
620000 T evalate TCP North Americh B\ nt im0 Np Server sends
I D throughput stabil- Tope, Asia, and Aus- e .)
Dstribution Set TCP trans- . data with specific size to client
it and transient tralia. Repeat random))
fers v an pairing 3 times, 60 dis- continuously for 3,000 times and
distributions tinctive paths t,otal then start to sendata of differ-
ent size.
9.430.000 To study correla- 40 PlanetLab nodes in Client/Server: 100 KB, 200 KB,
T’CP’ tion between TCP North America, Eu- 400 KB , 600 KB, 800 KB, 1 MB,
Correlation S transfors:. | throughput and flow TP Asia, and Aus- 2 MB, 4 MB, 10 MB. Server sends
orrelation et ranslers; size. and evaluate pro- tralia. Repeat random a sequence of data with increas-
270,000 ’ P s : : Lo
’ posed TCP benchmark Parmg 3 times, 60 dis- ing sizes in order, start over after
runs mechanism. tinctive paths total each run.
To test proposed
TCP throughput 20 PlanetLab nodes
benchmark mecha- 0 North = Americd: —q jppp oo 5 KB to 10B
4800 TCP nism; To strengthen WWOPS ~Asia, and g ds o ¢ files
. . ’ o & Australia, one mnode e_:rver. sen s.a se‘?“enc_e of nles
Verification Set transfers; Distribution Set and with increasing sizes in order
. . at Northwestern, one ’
300 runs Correlation Set with node at ANL. 30 start over after each run.
large TCP flow sizes .| . ’
and different applica- distinctive paths total
tions o L.
50 Planctbab nodesin
North Americd, FEu- . .
. . 14000 To evaluate the Dual- rope. Asia. and Aus. CTdF 1P, scp: randomly send a
Online Evaluation pe, ’ file of size 8MB or 40 MB or 160
test Pats TCP throughput tralia, random parin
Set - U8 : Pariig \B. About 10 days lon
cases prediction servic®- 2 times, 50 distinctive ' ys Jong

paths total

Figure 6.1: Summary of experiments.

LNdHONOYHL dO.L ONILOIdAYd "9 H4LdVHO

80T

CHAPTER 6. PREDICTING TCP THROUGHPUT 109

Our experimental testbed includes PlanetLab and several additional machines
located at Northwestern University and Argonne National Laboratory (ANL). Plan-
etLab [6] is an open platform for developing, deploying, and accessing planetary-scale
services. It currently consists of more than 400 computers located at about 200 sites
around the world.

We conducted four sets of experiments: Distribution Set, Correlation Set, Ver-
ification Set, and Online Evaluation Set. Each experiment set involves PlanetLab
nodes from North America, Europe, Asia, and Australia. We set the TCP buffer
size in a range from 1 to 3 MegaBytes in all the experiments with GridF' TP, while
we used default TCP buffer in other experiments. In the 2.4 Linux kernel, which
we use, the socket buffer size is automatically tuned to approximately twice the es-
timated bandwidth delay product. More details of the experimental setup can be
found elsewhere [149].

For each of Distribution Set and Correlation Set, we chose 40 nodes on PlanetLab
spread across North America, Europe, Asia, and Australia. We randomly grouped
those nodes into 20 pairs, each containing a client node and a server node and the
Internet path between the two. A server listens and accepts incoming TCP connection
requests from its client counterpart and transfers data of a particular size to the client
through the established TCP connection. The client repeatedly connects to its server,
requests some data, records the transfer time, and then closes the connection. To
evaluate more Internet paths, we randomly changed pairings 3 times, resulting in 60
different paths for Distribution Set and another 60 for Correlation Set.

Distribution Set serves as a basis for evaluating TCP throughput stability and
distributions. Since here we want to see how TCP throughput with a specific flow
size varies with time and its distribution within each stable epoch, we transfer data

of a particular size between pairs of clients and servers continuously for at least 3,000

CHAPTER 6. PREDICTING TCP THROUGHPUT 110

times, then move on to perform the same operation on another data transfer with
a different size until we finish the set of flow sizes as listed in the Distribution Set
entry in Figure 6.1. The trace data used in Distribution Set is mainly used in the
discussion of TCP throughput stability and distributions in Section 6.4.

Correlation Set serves to study the strong correlation between TCP flow size and
throughput, and to verify our TCP throughput benchmark mechanism, as discussed
in Section 6.3. We define a run in Correlation Set and Verification Set as a procedure
conducting a sequence of TCP transfers with increasing flow sizes between two hosts.
For example, in Correlation Set, the client first requests 100 KB data, followed by
a 200 KB request, then 400 KB, etc, up to 10 MB; this sequence forms a run. This
lets us evaluate our TCP benchmark mechanism by predicting the transfer time of
larger TCP transfers based on the transfer time of two smaller TCP flows and then
comparing the predicted time with the actual transfer time of the larger transfers in
the run. To guarantee fair evaluation, runs were repeated approximately 4,500 times
between each pair of nodes, yielding the same number of TCP throughput predictions
scattered at different times during our experiments. In total we have ~ 270, 000 runs
on ~ 60 paths.

Verification Set was done to further verify the correctness of our proposed TCP
benchmark mechanism, and to strengthen analysis based on Distribution Set and Cor-
relation Set with larger TCP flow sizes. Verification Set was conducted on twenty
PlanetLab nodes, one node on Northwestern University campus and one node at
ANL. We used GridFTP and scp in this set because both applications require au-
thentication before transferring effective data. Our script transfered a series of files
ranging from 5 KBytes to 1 GBytes in sequence and recorded each transfer time as
the flow duration.

Online Evaluation Set serves to evaluate our DualPats real time TCP throughput

CHAPTER 6. PREDICTING TCP THROUGHPUT 111

prediction framework. We randomly choose fifty PlanetLab nodes, and do random
pairing twice, resulting in 50 distinctive paths. We use DualPats to monitor the 50
paths for a duration of about 10 days. During the experiment we randomly send a
file of size 8MB or 40MB or 160MB using scp as a test case to compare with the

prediction result. Online Evaluation Set contains 14000 predictions.

6.3 Exploiting size / throughput correlation

A surprising finding in recent TCP connection characterization is that TCP flow
size and throughput are strongly correlated. This section explains the phenomenon,
provides new additional explanations for it, explains why it can lead to inaccurate

TCP throughput predictions, and outlines a new prediction approach.

6.3.1 Phenomenon

Zhang, et al [239] analyzed the correlations between the TCP flow characteristics of
interest, including flow duration and throughput, flow duration and size, and flow
size and throughput. They pointed out that these correlations are fairly consistent
across all their traces, and show a slight negative correlation between duration and
throughput, a slight positive correlation between size and duration, and a strong
correlation between throughput and flow size. They argue that the strong correlation
between flow size and throughput is the most interesting one and explained it in the
following ways.

Slow start: TCP slow start could cause some correlation between flow size and
flow rate [239]. The distribution of TCP flow sizes follows a power law, which, in
part, tells us that the majority of flows are short. Balakrishnan, et al [27] showed that
85% of the web-related TCP packets were transfered during slow start. This implies

CHAPTER 6. PREDICTING TCP THROUGHPUT 112

CDF of Correlation Coefficients between Flow Size and Flow Rate

0.8f —o— The Simple Program
GridFTP+SCP

Cumulative Percentages
o
o

0 0.2 0.4 0.6 0.8 1
Correlation Coefficient

Figure 6.2: CDF of correlation coefficients R between flow sizes and throughput in
experiments Correlation Set and Verification Set.

that most web-related flows ended in slow start, before TCP had fully opened its
congestion window, leading to throughput much lower than would be possible with
a fully open window. However, after eliminating the first one second of all the flows,
they found that the strong correlation between flow size and throughput remained
strong.

User effect: The users are estimating the underlying bandwidth, and thus trans-
ferring big files only when the estimated bandwidth is correspondingly large [239].

These are two valid reasons, but they may be insufficient. We claim that most
users do not estimate the available bandwidth before transferring data. Furthermore,
that the correlation persists even when initial slow start is removed suggests that there
must be some other mechanisms at work.

Let’s consider the correlation between flow size and throughput in our experi-
ments. Figure 6.2 gives the cumulative distribution functions (CDFs) of the corre-

lation coefficient (Pearson’s R) ', where each individual R value is calculated from

1Both Pearson’s Correlation Coefficient R and Coefficient of Determination R? are used in the

CHAPTER 6. PREDICTING TCP THROUGHPUT 113

one run of Correlation Set or Verification Set. The correlation between flow size and
transfer time is large for the majority of transfers using our simple test program,
and even larger for GridF'TP and scp transfers. For our simple TCP test program in
Correlation Set, over 80% of all runs demonstrate strong or medium Rs between flow
sizes and flow rates. Further, 64% of all runs have R > 0.6. For the GridFTP and
scp results in Verification Set: > 98% of the runs shows strong correlation, > 95%

show R > 0.8.

6.3.2 Further explanations

Now we consider additional explanations for the surprising correlation between flow
size and transfer time.

Non-negligible startup overheads: Most applications have an initial message
exchange. For example, GridF'TP and scp require certificate or public key authenti-
cation before starting to send or receive data.

Figure 6.3 shows the TCP throughput as a function of TCP flow size, for trans-
fers using GridFTP between Northwestern university and ANL. The dotted line is
the asymptotic TCP throughput. We tried linear, logarithmic, order 2 polynomial,
power, and exponential curve fitting, but none of them fit well.

We next considered the relationship between TCP flow duration (transfer time)
and flow size (file size). Figure 6.4 shows that this relationship can be well modeled
with a simple linear model with R? close to 1. The majority of the data-points missed

by the linear model are located at the very beginning of the curve, which we refer to

analysis of the paper. R? represents the percent of the variation that can be explained by the
regression equation, therefore we use it to show how good a curve fitting is. R is widely used to
measure the strength of a (linear) relationship, therefore we use R to show how strong two random
variables are linearly correlated.

CHAPTER 6. PREDICTING TCP THROUGHPUT 114

12000

o .
& 10000 .
o « *
X 8000 -
s *
*

2 6000
2 .
© 4000 1 o
£
o
& 2000 {*
2

0 T T T T

0 20000 40000 60000 80000 100000
File size (KB)

Figure 6.3: TCP throughput versus flow size (file size) with GridFTP. Transfers are
between Northwestern University and Argonne National Lab. Single TCP flow with
TCP buffer set. We made similar observations on all the other paths we studied.

35

y=9E-05x+ 0.7246

34 2
R?=0.9992

25 4

21 Noisearea y
154 /

A /

T T T T T T
0 5000 10000 15000 2000&; 25000 30000 35000
File size (KB)

Time (sec)

Figure 6.4: Transfer time versus TCP flow size with GridFTP. Transfers are between
Northwestern University and Argonne National Lab. Single TCP flow with TCP
buffer set. We made similar observations on all the other paths we studied.

CHAPTER 6. PREDICTING TCP THROUGHPUT 115

as the noise area in the figure. The noise area is due to startup costs and the residual
slow start effect, described below. The linear model may not hold in the noise area.

A closer look at Figure 6.4 shows that the total TCP flow duration or file transfer
time can be divided into two parts: the startup overhead and the effective data

transfer time. We represent this as
T=Axz+B (6.1)

where 7" is the TCP flow duration, including both startup overhead and data transfer
time, x is the TCP flow size or file size, and B is the startup overhead, which includes
authentication time and the residual slow start effect as described below. % is the
steady state asymptotic TCP throughput in Figure 6.3.

Given Equation 6.1, we can easily deduce the expression for the TCP throughput

in Figure 6.3 as
x x

TP=—-_=_~—
T Axz+B

(6.2)

where TP is the TCP throughput, and x, A, B are the same as in Equation 6.1.

Residual slow start effect: Mathis, et al [160] pointed out that it takes TCP
some time before its throughput reaches equilibrium. Assuming selective acknowl-
edgments (SACK), TCP will send roughly 1% X loggc%/ﬁ packets in the unstable phase,
where p is the loss rate and C is a constant ~ \/% This number can be significant
given a low loss rate p. This happens because with SACK, slow start will overshoot
and drive up the loss rate or run out of receiver window. Zhang, et al [238] showed
that the mean loss rate in their traces is between 0.006 and 0.0087. Assuming the
loss rate is 0.006, and each packet is 1.5 KB, roughly 800KB data has to be sent
before TCP throughput reaches equilibrium.

We examined hundreds of Linux machines on the Northwestern University campus

CHAPTER 6. PREDICTING TCP THROUGHPUT 116

CDF of Overhead for the Simple TCP Program and (GridFTP+SCP)
1 T

0.9r

0.8-
3
0.
8
g0
9]
o 0.
(3]
2 —&— The Simple Program
S 0. GridFTP+SCP
o

0

0.1

0 0.5 1 15 2

Overhead (second)

Figure 6.5: CDF of B, the startup overhead. Even for the simple client/server
there is startup overhead likely caused by the residual slow start effect. The startup
overheads of scp and GridFTP are much larger.

and on PlanetLab and found that all of them were using SACK. Therefore, it is likely
that most TCP connections experience this slow start overshoot effect, and because
TCP in slow start doesn’t use bandwidth well, this residual slow start effect can be
treated as another kind of startup overhead, incorporated in B as above. This can
also explain why in Figure 6.2 the Rs for the scp and GridFTP traces are much
stronger than that of the simple program.

To verify that this is the case in general for the simple applications without other
startup overheads, we used the data collected in Correlation Set. We did least square
linear curve fitting and calculated B for each set of data. Figure 6.5 shows the CDF
for these Bs. The effect of residual slow start is obvious in the CDF', where we see over
50% simple TCP transfers has a B value equal or larger than 0.1. For comparison
purpose, we also plot the CDF of B for applications that require authentication in
the same Figure, namely GridF'TP and SCP. As the CDF indicates, a typical B for

such applications is much larger than that of the simple application.

CHAPTER 6. PREDICTING TCP THROUGHPUT 117

6.3.3 Why simple TCP benchmarking fails

Now we can explain why current TCP benchmarking approaches, such as imple-
mented in NWS, have difficulty predicting the performance of large transfers such as

GridFTP tests [221]:

e The default probe used by NWS is too small. It will likely end up in the noise

area as shown in Figure 6.4.

e The TCP throughput that the probe measures is only useful to TCP flows of

similar size because of the strong correlation between throughput and flow size.

Given Equation 6.2, it is clear that cotangent(«) is the TCP throughput for
the flow size 2000KB, cotangent(f) is the TCP throughput for the flow size
30000KB and cotangent(y) is the steady state TCP throughput. As file size
increases « decreases, and when the file size is approaching infinity, the through-

put will approach cotangent(7).

e The TCP buffer is not set for NWS probes while the GridF'TP tests were done

with adjusted buffer sizes.

e The usage of parallel TCP flows in GridF'TP increases its aggregated through-
put.

To verify that the linear model is valid for most Internet paths, Figure 6.6 shows
the R? of the linear curve fitting for the data in Correlation Set and Verification Set.
It is clear the model holds for both our simple client and server, and applications

such as scp and GridFTP that require authentication.

CHAPTER 6. PREDICTING TCP THROUGHPUT 118

o CDF of R? for a Simple Program and (SCP+GridFTP)

10
s —e— The Simple Program
% 4 SCP+GridFTP :
210 ¢ 1
j=2}
o
£
9107
j=2)
bS]
c
8
= -3
EGL-’ 10 ¢
[
=
=
2 1070
=}
@]
10_5 Il Il Il Il
0 0.2 0.4 0.6 0.8 1

RZ

Figure 6.6: CDF of R? for linear model of Figure 6.4. Each R? is from a independent
test. Both simple client/server and applications that require authentication show a
strong linear property. Note that the Y axis is in log scale to show detail. Over 99%
of the runs had R? > 0.95.

6.3.4 A new TCP throughput benchmark mechanism

Based on the above observations, we developed a new simple TCP benchmark mech-
anism. Instead of using probes with the same size, we use two probes with different
sizes, chosen to be beyond the noise area. We then fit a line between the two measure-
ments, as shown in Figure 6.4. Using Equations 6.1 and 6.2, we can then calculate
the TCP throughput for other flow sizes (file sizes).

To verify that the new technique works, we used the trace data in Correlation
Set. We chose a small probe with size 400KB and a bigger probe with size 800KB,
and predicted the throughput of the other TCP transfers in the trace. Figure 6.7
shows the CDF of relative prediction error for our results by flow size. > 80% of the
prediction errors are below 20%.

The CDF's suggest that the relative prediction error may follow the normal distri-

bution, so we used quantile-quantile plots to test this. Figure reffig:qqnormal shows

CHAPTER 6. PREDICTING TCP THROUGHPUT 119

Cumulative Percentages

o
[N}
T

0.1r

0
-100 -80 -60 -40 -20 O 20 40 60 80 100
Relative Prediction Error (%)

Figure 6.7: CDF of relative prediction error for TCP throughput with different flow
sizes.

one example for the qgplot. In almost all cases, we can fit a straight line to these plots
with R? ~ 1, which tells us that our relative error is almost always normal. Normality
of prediction errors here is both surprising and extremely useful. In particular, we
can simply estimate the variance of the relative prediction error as we measure and
predict, and then use this information straightforwardly to create confidence intervals
for our predictions. Being able to compute accurate confidence intervals is vital to
using predictions in applications [76]. Time series based predictors can be applied to
enhance the prediction accuracy, as covered in Section 6.5.

In practice, we don’t have to send two probes. Instead, we can send the larger
one of the two probes, record its starting time, the time when as much data as the
size of the small probe was sent and full probe’s finishing time. We call such a probe
a dualPacket'.

For most paths, the larger the flow size is, the bigger the standard deviation

Tt is possible to use more than two probes, e.g. at 200K, 400K, 600K and 800K, and then apply
linear regression.

CHAPTER 6. PREDICTING TCP THROUGHPUT 120

Q-Q Plot of Relative Prediction Error

0.6 i
0.4r

0.2f

Y Quantiles
o

|

o

)
T

1
2
X Quantiles

Figure 6.8: Quantile-quantile plot of relative prediction error with flow size 2MB
against standard normal distribution. qqplot of relative prediction error for flows
with different sizes looks almost identical to this figure.

CDF of Standard Deviation of File Transfer Time

=

o
©
T

o
©
T

e
3
:

o
o
T

Cumulative Percentages
o o
B (5]
i i
>
.

0.3t F -
/}Fﬁ
0.2 :
7
0.1f p i
0 ! ‘ ‘
10 107 ° ? 10*

Standard Deviation (in log scale)

Figure 6.9: CDF of standard deviation of transfer time at all Internet paths for 5
different flow sizes.

CHAPTER 6. PREDICTING TCP THROUGHPUT 121

CDF of COV (Coefficient of Variation) of File Transfer Time

Cumulative Percentages
o
(5]

10° 10"

1 10
COV of File Transfer Time (in log scale)

Figure 6.10: CDF of COV (coefficient of variation COV = —51L) of transfer Time at
all Internet paths for 5 different flow sizes.

of the transfer time. However, consider Figure 6.10, which shows the CDFs of the
coefficient of variation (COV) of transfer time. Here the conclusion is the reverse:
for most paths, the bigger the file is, the smaller the COV of the transfer time. This
essentially means that in relative terms, the variance of transfer time of flows with
larger sizes are actually smaller.

As explained in Section 6.3.2 and 6.3.4, we need two probes with different sizes to
determine the steady state TCP throughput. Inevitably, fluctuations of flow transfer
time happen on the dynamic Internet, and have shown themselves in the standard
deviation we have just seen. These fluctuations are the main cause of the estimation
error of steady state TCP throughput. Since flows with larger sizes actually have less
variance in relative terms, estimating steady state throughput using larger flows will
certainly be more accurate. On the other hand, probes with larger flows are more
expensive. This leads us to the selection of two probe sizes of 400 KBytes and 800
KBytes as default probes, which we feel is a reasonable trade-off between estimation

accuracy and probing cost.

CHAPTER 6. PREDICTING TCP THROUGHPUT 122

6.4 Statistical stability of the Internet

Statistical stability or consistency is one of the most important characteristics of
the Internet and is the basis that makes it possible to predict TCP throughput on
the wide area network. A good understanding of stability will also help us to make
decisions about prediction strategies, such as the frequency of active probing and

optimal time series predictors.

6.4.1 Routing stability

Paxson [174] proposed two metrics for route stability, prevalence and persistency.
Prevalence, which is of particular interest to us here, is the probability of observing
a given route over time. If a route is prevalent, than the observation of it allows us
to predict that it will be used again. Persistency is the frequency of route changes.
The two metrics are not closely correlated. Paxson’s conclusions are that Internet
paths are heavily dominated by a single route, but that the time periods over which
routes persist show wide variation, ranging from seconds to days. However, 2/3 of the
Internet paths Paxson studied had routes that persisted for days to weeks. Chinoy
found that route changes tend to concentrate at the edges of the network, not in its
“backbone” [61]. Routing stability is the basis of other stabilities or consistency. If
the route is changing frequently and quickly, then no other stabilities will hold.

6.4.2 Locality of TCP throughput

Balakrishnan, et al analyzed statistical models for the observed end-to-end network
performance based on extensive packet-level traces collected from the primary web

site for the Atlanta Summer Olympic Games in 1996. They concluded that nearby

CHAPTER 6. PREDICTING TCP THROUGHPUT 123

Internet hosts often have almost identical distributions of observed throughput. Al-
though the size of the clusters for which the performance is identical varies as a
function of their location on the Internet, cluster sizes in the range of 2 to 4 hops
work well for many regions. They also found that end-to-end throughput to hosts
often varied by less than a factor of two over timescales on the order of many tens
of minutes, and that the throughput was piecewise stationary over timescales of
similar magnitude [28]. Myers, et al examined performance from a wide range of
clients to a wide range of servers and found that bandwidth to the servers and server
rankings from the point of view of a client were remarkably stable over time [167].
Seshan, et al applied these findings in the development of the Shared Passive Network
Performance Discovery (SPAND) system [200], which collected server performance
information from the point of view of a pool of clients and used that history to predict
the performance of new requests.

Zhang, et al [238] experimented by sending 1 MB files every minute between pairs
of hosts, and proposed an effective way to evaluate the temporal locality of end-to-
end TCP throughput of those flows. He looks at the length of the period where the
ratio between the maximum and minimum observed TCP throughput is less than a
constant factor p. This is referred to as an Operational Constancy Region (OCR).
Instead of using OCR, we define a Statistically Stable Region (SSR) as the length
of the period where the ratio between the maximum and minimum estimated steady
state TCP throughput is less than a constant factor p. The difference between OCR
and SSR is important because OCR is only characterizing the throughput for flows
with a specific size, while SSR. characterizes the steady state throughput for all flows
with different sizes. We used traces from Correlation Set to characterize the SSR with
steady-state TCP throughput. That is, instead of looking at the TCP throughput

of a specific flow size, we estimated steady-state TCP throughput of the path using

CHAPTER 6. PREDICTING TCP THROUGHPUT 124

CDF of Statistical Stable Region Length at Different Factors

e
3

0.6f

0.5

Cumulative Percentages

Time (seconds)

Figure 6.11: CDF of statistically stable region (SSR) for steady-state TCP through-
put with different p.

Equation 6.1.

Figure 6.11 gives the CDF of length of all SSRs modeled by steady-state TCP
throughput from Correlation Set. Each curve in the plot corresponds to a particular
value of the constant factor p. Under all different values of p, some degree of temporal
locality is exhibited. As we expected, the larger p is, the longer the SSRs tend to be.

For comparison purposes, we also calculated the CDF of OCR with data from
Distribution Set. The comparison between ours and Zhang’s results [238] suggests
that the temporal locality in our test environment is much weaker. For instance,
Zhang found that ~ 60% of OCRs are longer than 1 hour when p = 2 and > 80% of
all OCRs exceed 3 hours when p = 10. In our results, the two corresponding numbers
drop to 2% and 10% respectively. TCP throughput in our testbed appears to be less
stable. We suspect that this difference may largely due to the fact that PlanetLab
nodes often become CPU or bandwidth saturated, causing great fluctuations of TCP
throughput. It is challenging to predict TCP throughput under a highly dynamic

environment.

CHAPTER 6. PREDICTING TCP THROUGHPUT 125

6.4.3 End-to-end TCP throughput distribution

An important question an application often poses is how the TCP throughput varies,
and, beyond that, whether an analytical distribution model can be applied to charac-
terize its distribution. Balakrishnan, et al [28] studied aggregated TCP throughput
distribution across all different flow sizes between each pair of Internet hosts. Their
statistical analysis suggests that end-to-end TCP throughput can be well modeled as
a log-normal distribution. Zhang, et al verified this finding in [239].

Since we have already seen earlier that there exists strong correlation between
TCP throughput and flow size, we are therefore more interested in studying the
TCP throughput distribution of a particular flow size than in getting an aggregated
throughput distribution across all different flow sizes. The data from Distribution
Set lets us do this analysis.

Recall that in Distribution Set, for each client/server pair, we repeated the trans-
fer of each file 3,000 times. We histogramed the throughput data for each flow
size/path tuple. Almost in every case, the throughput histogram demonstrates a
multimodal distribution. This suggests that it is probably not feasible to model long
time TCP throughput using simple distributions.

Because the collection of data for each client/server pair lasted several hours
or even longer, we suspect that the multimodal feature may be partially due to
the change in network conditions during the measurement period. To verify this
hypothesis, we try to study throughput distribution using subsets of each dataset.
A subset contains much less data and covers shorter measurement length. In other
words, we hoped to find “subregions” in each dataset in which the network conditions
are relatively stable and the throughput data can be better modeled unimodally.

It is very hard to predefine an optimal length or data size for such “subregions”

CHAPTER 6. PREDICTING TCP THROUGHPUT 126

in the throughput data; in fact, the appropriate length may vary from time to time.
Therefore, we believe it is necessary to adaptively change the subregion length over
time as we acquire data (or walk the dataset offline). The purpose is to segment the
whole dataset into multiple subregions (or identify segment boundaries online). For
each segment, we fit the data with several analytical distributions, and evaluate the
goodness of fit using R2.

Our offline distribution fitting algorithm for TCP throughput has the following

steps:

1. Select a trace of TCP throughput (sequence of measurements for a particular

flow size on a particular Internet path).

2. Initialize the subregion length, and set the start and end point of the subregion

to 1 and 100, respectively.

3. Fit the subregion data with an analytical distribution, and calculate the value

of R?.

4. Increase the subregion length by 100, that is, keep the start point as from the
previous step, but increase the end point by 100. For this new subregion, fit
the data with the analytical distribution model again, get a new value of R2.

The adjustment granularity can also be changed.

5. Compare the new R? with the previous one. If the new one is larger, repeat step

4, otherwise, we have found that previous subregion has the optimal length.

6. Log the start point, end point, and value of R? from previous subregion. Reset
the subregion length to be 100, and set the start point of the subregion to be

one larger than the end point of the previous subregion.

CHAPTER 6. PREDICTING TCP THROUGHPUT 127

CDF of R for Different Distributions

=

o® *
0.9t Re £
o
4 XEQ? Iy
0.8 L4 el o 7
0 & &
0.7f & S
s § &
G 0.6f ¢ #
o $ R o
& -
o ¥
=
8
g
3 normal
- uniform
pareto
«~ lognormal
- exponential
0.8 1

Figure 6.12: CDF of R? for five common distributions for TCP throughput charac-
terization on segmented traces. The size of the file is 10 MBytes. Other flow sizes
show similar results.

7. Go to step 3 and repeat above procedure, until all data points in the datasets

are examined.

We segmented and model-fitted each path/flow size trace in Distribution Set
using this algorithm. We then considered the R? distribution for each of flow size and
analytical distribution. The CDF's of the values of R? for each flow size and analytical
distribution are shown in Figure 6.12. It is clear that for the five distributions we
compared, the normal distribution best fits the TCP throughput data. However,
throughput is nonstationary, so a given normal distribution holds for only a period
of time before it changes to another one. This nonstationary behavior is remarkably
similar to the “epochal behavior” pattern of load on hosts that we observed in earlier

work [75].

CHAPTER 6. PREDICTING TCP THROUGHPUT 128

6.5 TCP throughput in real time

Based on our study and previous research, we have developed and evaluated Du-
alPats, a prototype real time TCP throughput prediction service for distributed
applications. DualPats actively sends out dualPackets to benchmark a path. It
automatically adjusts its rate to capture the SSR on the path and therefore to min-
imize intrusiveness without losing sampling accuracy. The benchmarking technique
is described in Section 6.3.

DualPats is different from all the previous available bandwidth estimation tools
such as PathLoad [122]. First, instead of estimating current available bandwidth,
DualPats predicts TCP throughput in the next short period of time. Secondly,
DualPats monitors the paths and thus can return a prediction immediately. It takes
DualPats less than 1 ms to give a prediction on a Pentium III machine, while it takes
PathLoad tens of seconds to do one estimation for a path. DualPats don’t send probes
upon a prediction request, instead it monitors the path and sends out dualPackets

according to the dynamic sampling rate adjustment algorithm as described below.

6.5.1 System architecture

DualPats consists of two components, a network sensor and a TCP throughput pre-
dictor.
Figure 6.13 illustrates the two components and their relationship with applications
and the underlying operating system. The whole system works at application level.
The network sensor sends out dualPackets at a self-adjusting rate as described
in Section 6.5.2. It records the sizes and transfer times of each probe in each dual-
Packet. When monitoring N different TCP connections, N series of probe records

are maintained.

CHAPTER 6. PREDICTING TCP THROUGHPUT 129

The TCP throughput predictor interfaces with both the network sensor and ap-
plications. Whenever an application needs a prediction, it sends a query to the TCP

throughput predictor, and the predictor executes the following:

1. Parse the query from the application and get parameters including the desti-

nation and file size.

2. Fetch the dualPacket data series for the destination from underlying network

sensor. If no series exists, a probing process for the destination is started.

3. Apply a prediction model, such as moving average or EWMA, to predict the

current transfer times for each of the two probes in the dualPacket.

4. Fit a linear curve as described in Equation 6.1 and calculate the TCP through-
put for the given file size using Equation 6.2. (Optionally, compute a confidence

interval using normality assumptions).
5. Return the estimated TCP throughput for the transfer time to the application.

We tested several prediction models for step 3, including interval-aware moving
average (IAMA), exponential weighted moving average (EWMA) and simply using
the last value. An IAMA is similar to a moving average except that the IAMA
computes its average over only previous probe values with the same sampling interval.
ITAMA with window size 20 works best on average in our experiments. We believe that
this is so because during each SSR, the end-to-end TCP throughput is best modeled
with a normal distribution. For a normal distribution with no serial correlation, the

mean is the best predictor possible, and IAMA estimates this.

CHAPTER 6. PREDICTING TCP THROUGHPUT 130

Applications

TCP throughput predictor

Network Sensor

OSkernel NIC

Figure 6.13: System architecture of DualPats.

6.5.2 Dynamic sampling rate adjustment algorithm

There are two ways to decrease the overhead caused by the dualPacket probes: de-
crease the sampling rate or decrease the size of the dualPacket.

As we discussed in Section 6.4, each Internet path shows statistical stability in
TCP throughput. However, each path is different in the length of its SSR. Therefore,
instead of using the periodic sampling algorithm used by previous TCP throughput
monitoring frameworks such as NWS [230], we designed a simple algorithm to dy-
namically adjust the sampling rate to the path’s SSR. For stable paths with longer
SSR, we send fewer probes, while for unstable paths with shorter SSR, we adapt to
its dynamics by sampling the path more frequently. The algorithm is:

1. Set an upper bound U and a lower bound L for the sampling interval. They

were set as 20 and 1200 seconds in our tests.

2. Set another two relative changing bounds, B1, B2, in units of percentage. After
sending each dualPacket, estimate the current steady-state TCP throughput.
If it has changed less than B1, increases the sampling interval by a step of S
seconds; if it changes between B1 and B2, keep the current interval; otherwise

decrease the interval. In Online Evaluation Set, B1, B2 were set to be 5% and

CHAPTER 6. PREDICTING TCP THROUGHPUT 131

15%.
3. The interval must be between L and U.

We also want to minimize the size of dualPacket on the condition that none of
them will fall into the noise area as shown in Figure 6.4. However, the noise area is
different for each Internet path, as discussed in Section 6.3. It is a function of loss

rate and underlying bandwidth. Our algorithm for determining it is:

1. Set a default initial size for the dualPackets. In Online Evaluation Set, we used

400KB and 800KB. Also set an upper bound size Us for the dualPacket.

2. If M continuous prediction errors are bigger than a threshold Ty, and with the

same sign, we increase the probe size by 100KB each.

3. The size of dualPacket must be < Usg.

6.5.3 Evaluation

Our primary metric is the relative error:

B PredValue — RealV alue

RealValue (6.3)

err

DualPats ran ~ 14000 predictions on 50 monitored end-to-end paths during about
10 days. Test cases are randomly chosen 8MB, 40MB, or 160MB files. Details of
the evaluation experiments can be found in the Section 6.2 discussion of Online
Evaluation Set.

Our detailed results for each path are available elsewhere [149]. To summarize
them for this chapter, we use the following metrics. Mean error is calculated by

averaging all of the relative errors. For an unbiased predictor, this value should

CHAPTER 6. PREDICTING TCP THROUGHPUT 132

be close to zero given enough test cases. We can see that in our evaluation it is
quite small in most cases, and we see an roughly equal proportion of positive and
negative mean errors. The mean abs(err) is the average of the absolute value of the
relative error. We consider it the most important metric in evaluating the predictions.
Mean stderr is the standard deviation of relative error while mean abs(stderr) is the
standard deviation of the absolute value of relative error.

DualPats is accurate: Figure 6.15 shows the CDF of the mean error and mean
abs(err) of our results. Figure 6.17 shows the CDF of the standard deviation for
relative errors. Over 70% of the predictions have mean error within [-0.1, 0.1], and
all of them are within [-0.21, 0.22]. About 90% of the predictions have mean stderr
smaller than 0.2. About 30% of the predictions have mean abs(err) within 0.1, while
over 90% of the predictions has mean abs(err) below 0.2, and about 95% of them are
below 0.25. Over 90% of the predictions have mean abs(stderr) smaller than 0.35.

We studied the correlation among the prediction errors and several known path
properties. The results are shown in Figure 6.19. We define (|R| > 0.3) as being
weakly correlated, (0.3 < |R| < 0.8) being medium correlated, and (|R| > 0.8)
being strongly correlated. Clearly, the mean error is not related to any others, which
further suggests that the predictions given by DualPats are unbiased. However, if
the path is very dynamic it is hard to predict. Figure 6.19 shows that R between
the mean absolute error and the sampling interval length (and, indirectly, the SSR)
is negatively and very weakly correlated. This implies that our algorithm captured
the path dynamics and effectively adjusted to its changes. The mean interval and
mean standard deviation of error show the strongest correlation in Figure 6.19. This
is because both longer mean interval and smaller mean standard deviation of error
imply a stable path. Also, we can see that number of hops is weakly correlated with

mean RTT.

CHAPTER 6. PREDICTING TCP THROUGHPUT 133

Path Router Hops Mean RTT Mean error Mean stderr Mean abs(error) Mean abs(stderr) Mean Interval

1 20 55 -0.0073 0.11 0.069 0.13 641.97
2 18 60 0.10 0.17 0.17 0.18 29.44
3 17 33 -0.21 0.23 0.25 0.51 132.2
4 11 27.5 -0.03 0.19 0.13 0.25 71.56
5 13 31 -0.04 0.20 0.16 0.28 48.76
6 16 138 -0.079 0.19 0.14 0.29 58.18
7 16 120 0.048 0.355 0.28 0.42 21.87
8 14 51 0.021 0.12 0.095 0.168 512.64
9 18 207 -0.14 0.17 0.18 0.36 51.50
10 14 29 -0.11 0.19 0.14 0.31 180.17
11 19 110 -0.036 0.18 0.11 0.24 28.57
12 15 36 -0.038 0.14 0.078 0.18 258.16
13 17 59 0.035 0.208 0.16 0.24 32.23
14 12 23.5 -0.012 0.060 0.042 0.082 320.97
15 13 28 -0.095 0.186 0.14 0.31 511.33
16 18 100 -0.028 0.16 0.11 0.21 543.75
17 19 70 -0.083 0.030 0.083 0.17 543.63
18 14 81 -0.076 0.025 0.076 0.154 522.20
19 19 72 0.21 0.38 0.29 0.39 48.39
20 17 50 0.11 0.12 0.14 0.12 97.25
21 13 31 -0.068 0.082 0.082 0.17 246.53
22 16 135 0.022 0.18 0.14 0.21 23.93
23 14 36 -0.12 0.16 0.13 0.29 194.04
24 14 51 -0.15 0.14 0.15 0.33 542.34
25 12 24 -0.10 0.10 0.12 0.24 59.41
26 18 148 0.0023 0.18 0.13 0.22 26.74
27 12 48 -0.068 0.11 0.092 0.19 165.86
28 15 113 -0.020 0.10 0.089 0.15 55.85
29 9 181 -0.076 0.060 0.079 0.17 652.53
30 18 208 -0.062 0.095 0.088 0.18 40.50
31 7 2 -0.018 0.12 0.094 0.17 29.09
32 10 25 -0.061 0.034 0.061 0.13 521.16
33 13 33 0.22 0.25 0.25 0.25 423.75
34 16 141 -0.041 0.12 0.11 0.19 26.00
35 14 51 -0.14 0.17 0.15 0.34 600.65
36 16 24 -0.049 0.14 0.10 0.20 481.57
37 14 35 0.025 0.12 0.089 0.14 45.85
38 19 117 -0.059 0.042 0.061 0.13 77.08
39 13 34 -0.057 0.045 0.058 0.12 643.84
40 13 58 -0.13 0.015 0.12 0.27 73.33
41 18 208 -0.075 0.11 0.099 0.21 27.97
42 11 51 -0.063 0.034 0.064 0.13 810.53
43 11 175 -0.052 0.082 0.073 0.15 25.71
44 18 60 -0.095 0.078 0.095 0.21 575.81
45 15 58 0.14 0.20 0.18 0.21 27.64
46 11 50 -0.075 0.038 0.075 0.16 848.39
47 14 36 0.13 0.17 0.10 0.28 148.86
48 15 24 -0.099 0.24 0.19 0.38 24.92
49 21 86 -0.087 0.15 0.11 0.25 30.28
50 19 47 -0.042 0.17 0.12 0.23 24.80

Figure 6.14: Prediction error statistics for Online Evaluation Set. RTT is the round
trip time between the two sites in milliseconds, and Mean Interval is the average
interval time between dualPackets in seconds. Mean error is the average relative
error while mean abs(error) is the average of the absolute value of relative error.
Mean stderr is the standard deviation of relative error while mean abs(stderr) is the
standard deviation of the absolute value of relative error.

CHAPTER 6. PREDICTING TCP THROUGHPUT 134

—— mean error 0 ; |
—=— mean abs(error) 0.8 |
3
A"
5]
j
I
Q
E,
o
-04 -03 -02 -01 0 01 02 0.3 0.4
Relative error
Figure 6.15: CDF of relative errors.
1
53
\"
@
j
I+
Q
£,
o
——mean error
—=— mean stderr

-04 -03 -02 -01 0 0.1 0.2 0.3 0.4

Mean error

Figure 6.16: CDF of mean and standard deviation of relative error.

—— mean stderr

P[mean abs error < X]

—=a— mean abs(stderr)

0 0.1 0.2 0.3 0.4 0.5 0.6

Standard deviation of relative error

Figure 6.17: CDF of standard deviation of relative errors.

CHAPTER 6. PREDICTING TCP THROUGHPUT 135

©o o oo
O N 00 O
‘

o
o

N
~

—— mean abs(err)
0.3

P[mean abs error < X]

—=— mean
abs(stderr)

0 0.1 0.2 0.3 0.4 0.5 0.6

Mean absolute error

Figure 6.18: CDF of mean and standard deviation of absolute relative error.

Router Hops Mean RTT Mean Interval

Mean abs(err) 0.24 -0.024 -0.36
Mean abs(stderr) 0.19 -0.018 -0.28
Mean err 0.10 -0.081 -0.20
Mean stderr 0.30 -0.031 -0.44
Router Hops 1.00 0.34 -0.27
Mean RTT 0.34 1.00 -0.25
Mean Interval -0.27 -0.25 1.00

Figure 6.19: Correlation coefficient R among prediction error and path properties.

Recall from Section 6.1 that Sudharshan, et al [222, 221] showed that NWS was
predicting less than 1/10 of the actual TCP throughput achieved by GridE'TP with
large file transfers. Our evaluations show that DualPats does an effective job of
predicting TCP throughput for large transfers. Also recall that log-based prediction
techniques [209, 221] work only for the host pairs that have recent data exchange
history, and the data to be sent is of similar sizes as in the log. Our conclusion is that
DualPats achieves comparable or even better performance without such constraints.

Our evaluation is conservative: Jin, et al showed that end-system capability
can have significant effects on the network bandwidth estimation algorithms [128].

They showed that resolution of the timer, the time to perform a system call, the

CHAPTER 6. PREDICTING TCP THROUGHPUT 136

interrupt delay and the system I/O bandwidth all can affect network bandwidth esti-
mation. They compared packet pair dispersion against packet train based algorithm
and concluded that packet train based algorithms are less sensitive to the resolution
of the system timer and less affected by I/O interrupt delays. This implies that high
system load has negative effects on bandwidth estimation algorithms.

We ran the experiments of Online Evaluation Set on PlanetLab, which is typically
heavy loaded. Using data available from the CoDeeN project web site [3], we found
that CPU load averages were very high on the machines we used. 50% of the machines
had Unix load averages that exceeded 5.0. Recall that in Section 6.4 we compared
our measured OCR with that shown by Zhang, et al [238], and found that TCP
throughput on PlanetLab is more dynamic than Zhang found. This suggests that our
prediction would probably do better in a more typical, lightly loaded environment,
and that DualPats is robust in the face of high load conditions. We speculate that the
robustness of DualPats is related to the TCP benchmarking approach being used: we
are measuring the application-to-application transfer time, and thus our prediction
must necessarily incorporate the end-system behavior as well.

To get a sense of the CPU load average on the PlanetLab nodes, we took the CPU
load average statistics data from the CoDeeN project web site [3] and summarized
the data in Figure 6.20 as a CDF. The data is a snapshot for when our evaluation
experiments (Online Evaluation Set) were running. The CDF shows the load average
of 85 nodes. We can see that more than 90% of the nodes had a load average above
1, about 55% of the nodes had load average above 5, and about 15% of the nodes
had load average above 10.

DualPats overhead is low: The overhead of DualPats mainly comes from
the dualPackets sent. In our current implementation, we use the default 800KB

probe sent at the rate controlled by our dynamic sampling rate adjustment algorithm

CHAPTER 6. PREDICTING TCP THROUGHPUT 137

1
0.9 4
0.8
0.7 4
0.6
0.5 4
0.4
0.3 4
0.2
0.1 4

0

Plload<X]

0 2 4 6 810121416 18 2022 24 26 28 30 32 34 36

CPUload average

Figure 6.20: CDF of CPU load average on a subset of PlanetLab nodes.

resulting in an overhead on the network of 800KB / (mean Interval). In a highly
dynamic testbed like PlanetLab, close to 30% of the mean intervals achieved by
DualPats are longer than 500 seconds (800KB/500Sec=1.6KB/Sec), close to 50% are
longer than 180 seconds (800KB/180Sec=4.4KB/Sec), and about 90% are longer than
30 seconds (800KB/30Sec=26.7KB/Sec). The interval is bounded by our protocol to
limit the maximum overhead on the network.

As DualPats is designed mainly for today’s high speed networks, we believe the
overhead of DualPats is reasonably small. For less dynamic paths, the overhead
of DualPats will be further reduced because the dynamic sampling rate adjustment
algorithm will automatically increase the sampling interval. In contrast, Strauss, et
al [208] reported that Pathload generates between 2.5 and 10 MB of probe traffic per
measurement, which is much larger than that of DualPats. The amount of data sent

by DualPats is comparable or smaller than current available bandwidth estimators.

CHAPTER 6. PREDICTING TCP THROUGHPUT 138

6.6 Conclusions and future work

We have characterized the behavior of TCP throughput in the wide area environ-
ment, providing additional explanations for the correlation of throughput and flow
size and demonstrating how this correlation causes erroneous predictions to be made
when using simple TCP benchmarking to characterize a path. In response, we pro-
posed and evaluated a new benchmarking approach, dualPacket, from which TCP
throughput for different flow sizes can be derived. We described and evaluated the
performance of a new TCP throughput monitoring and prediction framework, Du-
alPats, and implemented this approach. We have recently extended our work to
support throughput prediction for parallel TCP [150].

Like all benchmarking-based systems, our approach has scalability limits. We
have addressed this to some extent with our dynamic sample rate adjustment al-
gorithm. However, we are also considering combining our techniques with passive
monitoring as in Wren [236], and hierarchical decomposition as in Remos [141] and
NWS Clique [231]. Our evaluation of DualPats was in a conservative, heavily loaded
environment, but its performance and robustness in the next generation high speed
Internet are yet to be explored.

DualPats can be used by RGIS servers to monitor the TCP throughput between

the servers.

Chapter 7

Modeling and Taming Parallel
TCP

This chapter describes our technique in modeling and predicting the throughput of
parallel TCP flows and their influence on the background traffic. Parallel TCP flows
can be used to tune the throughput between the RGIS servers without distrubing
other data traffic.

7.1 Introduction

Data intensive computing applications require efficient management and transfer of
terabytes of data over wide area networks. For example, the Large Hadron Col-
lider (LHC) at the European physics center CERN is predicted to generate several
petabytes of raw and derived data per year for approximately 15 years starting from
2005 [22]. Data grids aim to provide the essential infrastructure and services for these
applications, and a reliable, high-speed data transfer service is a fundamental and

critical component.

139

CHAPTER 7. MODELING AND TAMING PARALLEL TCP 140

struct ParallelTCPChar {
int num_flows;
double max_nondisruptive_thru ;
double cross_traffic_impact ;
h
ParallelITCPChar *
TameParalleITCP(Address dest,
double maximpact);

Figure 7.1: The TameParallelTCP() function.

Recent research has demonstrated that the actual TCP throughput achieved by
applications is, persistently, significantly smaller than the physical bandwidth “avail-
able” according to the end-to-end structural and load characteristics of the net-
work [202]. Here, we define TCP throughput as the ratio of effective data over its
transfer time, also called goodput [183].

Parallel TCP flows have been widely used to increase throughput. For example,
GridFTP [21], part of the Globus project [95], supports parallel data transfer and
has been widely used in computational grids [22].

A key challenge in using parallel TCP is determining the number of flows to use for
a particular transfer. This number affects both the throughput that the transfer will
achieve and the impact that it will have on other traffic sharing links with these data
flows. While there has been significant previous work on the understanding of parallel
TCP performance, no practical parallel TCP throughput prediction techniques exist
and there is no analysis work or system that can support the following API call as
shown in Figure7.1.

Here, the user calls TameParallelTCP() with the destination of her transfer and
the maximum percentage impact she is willing to have on cross traffic. The call
evaluates the path and returns the number of parallel flows she should use to achieve

the maximum possible throughput, while causing no more impact than the specified.

CHAPTER 7. MODELING AND TAMING PARALLEL TCP 141

We refer to this as the mazimum nondisruptive throughput (MNT).
The following sections address the implementation of such a function. With this

in mind, we look for answers to the following questions:

e How does parallel TCP affect the throughput of the user’s transfer, the through-

put of cross traffic, and the aggregate throughput, in different scenarios?

e How can these throughputs be predicted, online and with a small set of mea-

surements, as functions of the number of parallel TCP flows?

e How can these predictions be used to implement the TameParallelTCP() func-

tion?

To the best of our knowledge, we are the first to propose a practical mechanism to
predict the throughput of parallel TCP flows and to answer TameParallelTCP ()-like
questions by estimating the impact on the cross traffic.

Throughout this chapter, we use “parallelism level” interchangeably with “the
number of parallel TCP flows”. A version of our TameParallelTCP() implementation
is available from

http://plab.cs.northwestern.edu/Clairvoyance/Tame.html

7.2 Related work

The available bandwidth of a path is defined as “the maximum rate that the path
can provide to a flow, without reducing the rate of the rest of the traffic.” [117,
122]. Available bandwidth has been a central topic of research in packet networks
over the years. To measure it accurately, quickly, and non-intrusively, researchers

have developed a variety of algorithms and systems. Tools that measure either the

CHAPTER 7. MODELING AND TAMING PARALLEL TCP 142

bottleneck link capacity or the available bandwidth include IGI [117], Remos [141],
Nettimer [134] and pathload [122], among others. Most of these tools use packet pair
or packet train techniques to conduct the measurements and typically take a long
time to converge.

Previous research [134] has shown that, in most cases, the throughput that TCP
achieves is considerably lower than the available bandwidth. Parallel TCP is one
response to this observation. Sivakumar et al. [202] present PSockets, a library
that stripes data over several sockets and evaluate its performance through wide-
area experimentation. The authors concluded that this approach can enhance TCP
throughput and, in certain situations, be more effective than tuning the TCP window
size. Allcock et al. [22] evaluate the performance of parallel GridE'TP data transfers
on the wide-area, and applied GridF'TP to the data management and transfer service
in Grid environments.

Considerable effort has been spent on understanding the aggregate behavior of
parallel TCP flows on wide area networks. Shenker et al [201] were first to point
out that a small number of TCP connections with the same RTT and bottleneck
can get their congestion window synchronized. Qiu et al. [183] studied the aggregate
TCP throughput, goodput and loss probability on a bottleneck link via extensive
ns2-based simulations. They found that a large number of TCP flows with the same
round trip time (RTT) can also become synchronized on the bottleneck link when
the average size of each TCP congestion window is larger than three packets. A
detailed explanation for this synchronization was given in [183]. Due to global
synchronization, all the flows share the resource fairly: in the steady state they
experience the same loss rate, RT'T and thus the same bandwidth.

Considerable effort has been spent on understanding the aggregate behavior of

parallel TCP flows on wide area networks. Shenker et al [201] were first to point

CHAPTER 7. MODELING AND TAMING PARALLEL TCP 143

out that a small number of TCP connections with the same RTT and bottleneck
can get their congestion window synchronized. Qiu et al. [183] studied the aggregate
TCP throughput, goodput and loss probability on a bottleneck link via extensive
ns2-based simulations. The authors found that a large number of TCP flows with
the same round trip time (RTT) can also become synchronized on the bottleneck link
when the average size of each TCP congestion window is larger than three packets.
The reason for the synchronization is that, at the end of each epoch, the bottleneck
buffer becomes full and each flow incurs a loss in the same RTT when it increments
its congestion window. Since most flows have more than three outstanding packets
before the loss, they can recover from the loss by fast retransmission and reduce the
window by half, leading to global synchronization. Due to the global synchronization,
all the flows share the resource fairly: in the steady state they experience the same
loss rate, RI'T and thus same bandwidth. Their findings are highly significant for
our work, as they support our assumption that parallel TCP flows on the bottleneck
link share the same loss rate.

The work most relevant to ours is that of Hacker et al [108]. The authors observe
that parallel TCP increases aggregate throughput by recovering faster from a loss
event when the network is not congested. The authors go on to propose a theoretical
model for the upper bound of parallel TCP throughput for an uncongested path.
The model produces a tight upper bound only if the network is not congested before
and after adding the parallel TCP flows; the aggregated throughput then increases
linearly with the number of parallel TCP flows. Clearly this reduces the utility of
the model as networks are often congested.

Hacker et al also concluded that, in the absence of congestion, the use of parallel
TCP flows is equivalent to using a large MSS on a single flow, with the added benefit

of reducing the negative effects of random packet loss. They advise application

CHAPTER 7. MODELING AND TAMING PARALLEL TCP 144

developers not to use an arbitrary large number of parallel TCP flows, but conclude
that it is difficult, if not impossible, to determine the point of congestion in the end-
to-end path a priori, and therefore to decide on the proper number of parallel TCP
flows.

Most TCP throughput models have limited practical utility due to the difficulty of
obtaining accurate model parameters such as TCP loss rate and RTT. For example,
Goyal et al [105] concluded that it is hard to obtain accurate estimates of network
loss rates as observed by TCP flows using probing methods, and that polling SNMP
MIBs on the routers can do much better. However, the MIB statistics are for the
aggregate traffic crossing a interface on the router while it is well-known that TCP
has a bias against long round trip time connections [183]; the approach is thus limited
to those paths where the bottleneck router is using RED. It is also necessary in this
and similar approaches to determine the bottleneck router on the end-to-end path (a
difficult problem) and have SNMP access to it (rarely available today). Even if this
is possible, with current models for parallel TCP we would have to know the loss rate
after adding in n parallel TCP flows. However, even with the tools like web100 [159],
we cannot obtain this rate by simply measuring the network.

Our work makes the following new contributions to the state of the art:
e We predict throughput for both congested and uncongested paths as a function

of the level of parallelism.

e We estimate the impact of parallel TCP on cross traffic as a function of the

level of parallelism.

e We do so using only a small number of probes and no additional tools.

It is widely believed that, under congested situations, parallel TCP flows achieve

better performance by effectively behaving unfairly, stealing bandwidth from cross

CHAPTER 7. MODELING AND TAMING PARALLEL TCP 145

L1

L2

Figure 7.2: Simulation Topology. Cross traffic goes from node N1 to N5, while
parallel TCP flows go from node N2 to N6. Cross traffic and parallel TCPs share
the same bottleneck link L;. Each simulation lasts 100 seconds with individual TCP
cross traffic flows starting randomly during the first 8 seconds, and all parallel TCPs
starting simultaneously at time 10 sec.

traffic. This has prompted some researchers to propose modifying TCP in order
to make it better suited for parallel transfers by considering both efficiency and
fairness [109, 110]. We believe it will be difficult to persuade people to modify
their TCP implementations just to use parallel TCP more fairly. By relying on
our prediction tools, a user or administrator should be able to trade off a transfer’s
throughput and its degree of impact on cross traffic, achieving what we refer to as
the mazimum nondisruptive throughput (MNT). All these are at application level

without requiring modifications to pre-existing TCP implementations.

7.3 Analyzing parallel TCP throughput

In this section, we use simulation to understand the behavior of parallel TCP under
different scenarios. For all our simulation-based studies we make use of the ns2

network simulator [5].

CHAPTER 7. MODELING AND TAMING PARALLEL TCP 146

7.3.1 Simulation Setup

In a simulation study on aggregate TCP throughput on a bottleneck link, Qiu et
al. [183] developed a simple yet realistic topology model for wide-area Internet con-
nections based on the Internet hierarchical routing structure (Figure 7.2). We adopt
this same topology for our simulations. Each simulation is 100 seconds long, with
cross traffic randomly starting during the first 8 seconds and parallel TCP flows all
starting at 10 seconds into the simulation. Cross traffic goes from N1 to N5, while
parallel TCP flows go from N2 to N6. The bottleneck link is L3. We employ TCP
Reno [87] for both cross traffic and parallel TCP flows, as this is the most widely
deployed TCP congestion control algorithm. In addition, comparable results were ob-
tained using TCP Tahoe. Both DropTail and Random Early Detection (RED) [92]
queue management policies are studied as they are the most commonly used queue
management policies on the Internet. DropTail and RED have similar performance
in most our simulations. The exception is in Scenario 1. Here, when there are more
than 10 cross traffic flows, the cross traffic dominates the queue and starves the par-
allel TCP flows under the DropTail policy. Unless otherwise noted, we show results
for the DropTail policy.

We use TCP flows as cross traffic because of TCP’s dominance in the current
Internet, as reported in the the work by Smith et al. [203], in which TCP accounted
for 90-91% of the packets and about 90-96% of the bytes transferred in traces collected
in 1999-2000 from a educational institution (UNC) and a research lab (NLANR).

We analyze Parallel TCP throughput under a variety of representative scenarios
including a typical slow connection such as cable or DSL (Scenario 1), a coast-to-
coast high-speed Internet connection (Scenario 2) and a current (Scenario 3) and next

generation global-scale Internet connections (Scenario 4). Two additional scenarios

CHAPTER 7. MODELING AND TAMING PARALLEL TCP 147

Scenario Lg latency L3 BW Li,Lo, BW L4, Ls BW TCP buffer
1 20 ms 1.5 Mbps 10 Mbps 10 Mbps > Bandwidth*RTT
2 20 ms 100 Mbps 1000 Mbps 1000 Mbps > Bandwidth*RT'T
3 50 ms 100 Mbps 1000 Mbps 1000 Mbps > Bandwidth*RTT
4 50 ms 1000 Mbps 10000 Mbps 10000 Mbps > Bandwidth*RTT
5 50 ms 1000 Mbps 10000 Mbps 10000 Mbps 60 KB
6 20 ms 100 Mbps 1000 Mbps 1000 Mbps 60 KB

Figure 7.3: Bandwidth and latency configuration for different scenarios. The latency
for Ly and L, is fixed at 4 milliseconds, while the latency for L, and Lj is fixed at 5
milliseconds. The buffer size on each node is fixed at 25 packets. Both DropTail and
RED queue management policies are simulated.

(Scenarios 5 and 6) are used to represent cases where the TCP buffer has not been
appropriately tuned [217]. Figure 7.3 summarizes the different simulation scenarios.
For each scenario, we simulate from 1 to 31 parallel TCP flows with 5, 10, 15, 20, 25
and 30 random TCP cross traffic flows.

7.3.2 Simulation results

Figures 7.4 to 7.9 plot the aggregated throughput of parallel TCP as a function of
the number of flows used for the different scenarios. Plots are shown both without
(left graph) and with (right graph) cross traffic. In the latter case, we also plot the
cross traffic’s and total throughput, i.e. the sum of both the parallel TCP and cross
traffic throughputs. We summarize our results in this section. Much more detail is
available in our technical report [148].

Scenario 1 is used to represent a typical slow connection. Our simulations show
that that the primary benefit from parallel TCP comes from being able to steal
bandwidth from the existing cross traffic.

Scenario 2 represents a current coast-to-coast connection with low latency and

medium bandwidth. Our simulations show that there are some limited benefits from

CHAPTER 7. MODELING AND TAMING PARALLEL TCP

200000

180000 | ¢

160000 -
140000 -
120000 -
100000 -
80000 +
60000 -
40000 +

Throughput (Bytes/second)

20000 -
0

—e— parallel TCP

10 20 30

number of parallel TCP flows

(a) No cross traffic

Throughput (Bytes/second)

250000 {| —e— Parallel TCP
Cross traffic
Overall throughput
200000 -
150000 -
o | A /W/‘
¥
50000 -
0 - - - - - -
0 5 10 15 20 25 30 35

number of parallel TCP flow s

(b) 5 cross traffic

Figure 7.4: Simulation results for scenario 1: latency of Lj is 20 ms; bandwidth of
L3 is 1.5 Mbps; TCP buffer is properly tuned. Refer to Figure 7.3 for details.

12000000

10000000 -

8000000 -

6000000 -

4000000 ~

Throughput (Bytes/seconds)

2000000 -

el

—e— parallel TCP

10 20
number of parallel TCP flows

(a) No cross traffic

30

Throughput (Bytes/second)

12000000

10000000 -

8000000 -

6000000 -

4000000 -

2000000 -

—&— Parallel TCP
Cross traffic
Overall throughput

10 20 30
number of parallel TCP flow s

(b) 10 cross traffic

Figure 7.5: Simulation results for scenario 2: latency of Lj is 20 ms; bandwidth of
L3 is 100 Mbps; TCP buffer is properly tuned. Refer to Figure 7.3 for details.

CHAPTER 7. MODELING AND TAMING PARALLEL TCP 149

12000000
—e— parallel TCP 12000000 J| —¢— Parallel TCP

10000000 Cross traffic
. I Oveall throughput
3 $ 10000000
[=}
2 8000000 | g
2 £ 8000000 -

1]

] Q
) | =3
€ 6000000 £ 6000000 |
3 =
£ g
S 4000000 - 2 4000000 1|
2 2
= S

2000000 1 2000000 +

0 ; ; ;
0 ; ; ;
0 10 20 30
0 10 20 30
number of parallel TCP flow s
number of parallel TCP flow s
(a) No cross traffic (b) 10 cross traffic

Figure 7.6: Simulation results for scenario 3: latency of Lj is 50 ms; bandwidth of
L3 is 100 Mbps; TCP buffer is properly tuned. Refer to Figure 7.3 for details.

50000000
60000000

45000000 1 —e— parallel TCP
g 40000000 1 < 50000000 - Cross traffic
§ 35000000 { § Overall throughput
% 30000000 4 % 40000000 |
= Q
& 25000000 | 5 30000000 |
g 20000000 5
2 15000000 §, 20000000 - s
o
= o
£ 10000000 { =
= £ 10000000 -

5000000 - —e— parallel TCP
0 0 : :
0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35
number of parallel TCP flow s number of parallel TCP flow s
(a) No cross traffic (b) 10 cross traffic

Figure 7.7: Simulation results for scenario 4: latency of Lz is 50 ms; bandwidth of
L3 is 1000 Mbps; TCP buffer is properly tuned. Refer to Figure 7.3 for details.

CHAPTER 7. MODELING AND TAMING PARALLEL TCP

18000000
16000000
14000000
12000000
10000000
8000000
6000000
4000000

Throughput (Bytes/second)

2000000
0

] —e— parallel TCP
0 10 20 30

number of parallel TCP flow s

(a) No cross traffic

Throughput (Bytes/second)

25000000

20000000

15000000

10000000

5000000

0

150

—e— parallel TCP
Cross traffic

Overall throughput

el

0

10

number of parall

(b) 10 cross tr

20 30

el TCPflow's

affic

Figure 7.8: Simulation results for scenario 5: latency of Lj is 50 ms; bandwidth of
L3 is 1000 Mbps; TCP buffer is not properly tuned. Refer to Figure 7.3 for details.

12000000

_. 10000000 1

e}

c

3

2 8000000 -

3

e

@ 6000000 -

5

£

S5 4000000 |

o

=

F 2000000 {
0

—&— parallel TCP

10

20 30

number of parallel TCP flow s

(a) No cross traffic

Throughput (Bytes/second)

14000000

12000000 -

10000000 -

8000000

6000000 4

4000000 4

2000000 -

—e— Parallel TCP
Corss traffic

Overall throughput

0
0

5 10 15

20 25 30

number of parallel TCP flow s

(b) 5 cross traffic

35

Figure 7.9: Simulation results for scenario 6: latency of L3 is 20 ms; bandwidth of
L3 is 100 Mbps; TCP buffer is not properly tuned. Refer to Figure 7.3 for details.

CHAPTER 7. MODELING AND TAMING PARALLEL TCP 151

using parallel TCP without competition in this scenario. In the presence of cross
traffic, however, parallel TCP is an even stronger competitor. Parallel TCP allows
us to increase overall throughput, albeit marginally.

Scenario 3 is a high latency, medium bandwidth link representing a current global-
scale fast Internet connection. In this case there are significant benefits to using par-
allel TCP even in the absence of cross traffic. The performance of parallel TCP under
scenarios 2 and 3, without cross traffic, can be explained using Hacker’s theory [108]
that parallel TCP recovers faster than single TCP when there is a time out. This
effect is more important as the RT'T increases, because the time out will be longer
and a single TCP cannot recover fast enough.

The benefit of using parallel TCP, with and without cross traffic, are quite high
in Scenario 4. Additional throughput in the presence of cross traffic, is mainly due
to an increase in overall throughput.

The advantage of parallel TCP is even more significant with mistuned TCP
buffers. Scenario 5 represents a high bandwidth and high latency link with a small
socket buffer size. The benefits of parallel TCP are quite high, regardless of the
amount of cross traffic. These gains come at no cost to the existing cross traffic.
Parallel TCP gains performance not only by recovering faster after a time out, but
also by providing an effectively larger buffer size. There are diminishing returns as

the number of flows is increased. Scenario 6 is similar.

7.3.3 Observations

The dramatically different behaviors of the previous section illustrate the challenges
in providing a sound TameParallelTCP()-like call. Parallel TCP and cross traffic

as functions of the number of flows adopt a wide range of forms, depending on the

CHAPTER 7. MODELING AND TAMING PARALLEL TCP 152

topology of the network and the configuration of endpoints. In addition, even if
one were to disregard the almost prohibitively high costs of directly measuring these
curves, the cross traffic impact would be very difficult to determine. Without a priori
knowledge of the parallel TCP loss rate, the model proposed by Hacker, et al [108]

only works in uncongested networks like our Scenario 5.

7.4 Modeling and predicting throughput

In this section we combine our simulation work with our analytic treatment of TCP
performance to develop a model that can be used to predict the throughput of parallel
TCP flows in practice. Our approach only needs to send two probes at different
parallelism levels and record their throughput. We don’t need any additional tools
to measure the RTT and loss rate, which can be hard to obtain in practice as we

discussed in Section 7.1.

7.4.1 Algorithm

Mathis et al. [160] developed a simple model for single flow TCP Reno throughput on
the assumption that TCP’s performance is determined by the congestion avoidance

algorithm and that retransmission timeouts are avoided:

pw = M5 (7.1)

2b
RTT /%

Here, p is the loss rate or loss probability, and b is the number of packets that are
acknowledged by a received message. M SS and RTT are the maximum segment size

and round trip time respectively.

CHAPTER 7. MODELING AND TAMING PARALLEL TCP 153

Padhye et al. [169] developed an improved single flow TCP Reno throughput
model that considers timeout effects.

Bollinger et al [43] show that these two models are essentially equivalent with
packet loss rates less than 1/100, which was validated on the current Internet by
Zhang et al [239]. Hacker et al. [108], based on Bollinger’s findings, present a model
for the upper bound of the throughput of n parallel TCP flows. The authors assume
that both M'SS and RTT are stable. Hacker’s upper bound model can be stated as:

<MSS(1+1+ +1
= RTT ' yp = /; /Pn

BW,) (7.2)

where p; is the packet loss rate for flow 7. However, the authors don’t provide any
mechanism to estimate the loss rate at other parallel levels for prediction purposes.
Therefore, the authors acknowledge that the upper bound is tight only when the
network is not congested and the loss rate doesn’t increase with more parallel TCP
flows. The model only has limited utility otherwise.

In our model, we introduce the notion of the number of cross traffic flows, m, and
assume that m does not change dramatically over significantly large time periods.
Note that our model doesn’t require knowledge of m. Both previous work [240] and
our own work on characterizing, modeling, and predicting single flow TCP through-
put [151] have shown this assumption to be a valid one.

It is widely believed that the TCP throughput shows statistical stability over con-
siderable periods of time. Balakrishnan et al found that end-to-end TCP throughput
to hosts often varied by less than a factor of two over timescales on the order of many
tens of minutes, and that the throughput was piecewise stationary over timescales
of similar magnitude [28]. Myers et al examined performance from a wide range of

clients to a wide range of servers and found that bandwidth to the servers and server

CHAPTER 7. MODELING AND TAMING PARALLEL TCP 154

rankings from the point of view of a client were remarkably stable over time [167].
Zhang et al [240] used the notion of the Operational Constancy Region (OCR) to
evaluate the temporal locality of end-to-end TCP throughput. The OCR is the length
of the period where the ratio between the maximum and minimum observed TCP
throughput is less than a constant factor p. They found that ~ 60% of OCRs are
longer than 1 hour when p = 2 and > 80% of all OCRs exceed 3 hours when p = 10.

The Internet does, however, dynamically change thus new measurements are nec-
essary when the TCP throughput has significantly changed. The Network Weather
Service [230] periodically probes the network to resample the TCP throughput. In-
stead, our system dynamically resamples the path at each OCR [151]. Dynamic
monitoring is beyond the scope of this chapter and is addressed in the previous
chapter and our paper [151].

We also assume that all of the parallel TCP flows see the same loss rate and have
the same RTT, although both are functions of n and m. These two assumptions
have been independently verified [183], as discussed in Section 7.2. We denote with
P, the loss rate after adding n parallel TCP connections, and with RTT,, the round
trip time at this point.

Along different paths, the value of MSS can vary ranging from the default 536
bytes to much larger values (for example to support 9000 byte Ethernet jumbo frames
on LANs). Our prediction model does not depend on the a priori knowledge of
MSS. We do assume, however, that this value does not change after connection
establishment. This is a valid assumption as both sides with either use path MTU
discovery at connection establishment time [164] or use the default 576 byte path
MTU.

Based on Equation 7.1 and the assumptions discussed above, we developed the

CHAPTER 7. MODELING AND TAMING PARALLEL TCP 155

following parallel TCP throughput model that essentially sums n TCP flows:

_MSS n o
" RTT, \/pn
V[

BW, (7.3)

The TCP flows share the same RTT and loss rate and thus the same throughput.
Both p, and RTT, are actually functions of n and m. Given that we assume m
is stable during a period of time, we treat them as functions of n alone. ¢; is a
constant in the range (0, 1] that we use to represent the effects of TCP timeouts. In
the following, we assume that c; is stable for a path over at least short periods, so
that our model is equivalent to Padhye’s model with timeout considerations [169].
This assumption is firmly supported by the plethora of research on the statistical
stability of TCP throughput as discussed above. Note that ¢; will be canceled in the
following derivations, therefore our model doesn’t require the knowledge of c;.

If we had a model that could compute the relationship between p,, R1TT, and
the parallelism level n based on a small set of measurements, we could then use
Equation 7.3 to predict the throughput for any parallelism level. This is in essence
what we do. We developed several parametric models for this relationship based on
measurements.

Morris [165] and Qiu, et al [183, 184] independently found that the loss rate is
proportional to the square of the total number of TCP connections on the bottleneck
link, namely (m+n)2. Through wide area experiments, Hacker, et al [108, 109] showed
that RTT on a given path is stable and can be treated as constant. Similarly, we also

assume that RTT is a constant during a short period of time. Therefore we have

o X RTT? = a x (m+n)>+b (7.4)

CHAPTER 7. MODELING AND TAMING PARALLEL TCP 156

where bl is a constant. Given that m is also a constant, Equation 7.4 is equivalent

to a full order 2 polynomial:
P X RTT? = axn®+by xn+c (7.5)

where by = 2am and ¢, = am?+b,. To use Equation 7.5, we need to send three probes
at different parallelism levels to determine the value of a, by and c,. Clearly, there is
a trade-off between the sophistication of the model and the number of measurements
needed to fit it. Recognizing this trade-off, we simplified the full order 2 polynomial
to a partial order 2 polynomial as shown in Equation 7.6. This model requires only

two probes to determine the parameters a and b.
P X RIT? =a xn”+b (7.6)

Here a and b are parameters to be fit based on measurements. We could further

simplify the partial order 2 model to a linear model that also requires two probes.
Pu X RTT? =axn+b (7.7)

We measured the performance of these three alternatives in a wide-area testbed [6],

and found that
1. Equations 7.5 and 7.6 are better models than Equation 7.7.

2. The full order two polynomial model (Equation 7.5) is not significantly better than the
partial order 2 polynomial (Equation 7.6) and can occasionally be worse due to its sensitivity
to sampling errors caused by small network fluctuations. Another problem with the full order

two polynomial model is that it is sensitive to the choice of probe parallelism.

3. The full order 2 model requires three probes instead of the two needed for the linear and

CHAPTER 7. MODELING AND TAMING PARALLEL TCP 157

partial polynomial models.

As a result, we use Equation 7.6 for our system and the discussion in the rest of
this chapter, unless otherwise noted.
In order to use the model in practice, we have to actively probe a path at two

different parallelism levels. The procedure is derived as follows.

We denote —A= in Equation 7.3 as C'. Note that C' and MSS are all constants
3

under our assumptions. We define a new variable p/,:

RTT?
p;L = pnCQTS;’ng = a'n2 + bl (78)

Combining Equations 7.3 and 7.8, we obtain:

BW, = \/7;_, (7.9)

Based on Equation 7.9, we could use the TCP throughput at two different par-
allelism levels to predict the TCP throughput at other levels. Let n; and ns be the

two parallelism levels that are probed:

nq n
BW, = = 7.10
ni \/pITI a,n12 —{—b’ ()
and
%) %)
BW,, = = 7.11
“T o Va0 (7.1)
From which we can determine:
na? s — ni? 5
o = e T (7.12)

TL22 - TL12

CHAPTER 7. MODELING AND TAMING PARALLEL TCP 158

and

b 7”L12 1, 2
=gw. 2 %m (7.13)

By substituting o’ and ¥’ in Equation 7.8 with the expressions in Equations 7.12
and 7.13, we can now predict the TCP throughput for other levels of parallelism
using Equation 7.9.

Notice how our prediction requires only two TCP throughput probes, one for
each of the two different parallelism levels (n; and ny). Both the probing and the
calculation process are simple and incur little overhead, the majority being the com-

munication cost of the two probes.

7.4.2 FEvaluation

We evaluated our model through online experimentation on PlanetLab [6], a planetary-
scale testbed. We randomly choose 41 distinct end-to-end paths with end nodes lo-
cated in North America, Asia, Europe and Australia. For each path, we conduct
10 rounds of experiments using Iperf [4] to obtain our measurements. A round of
experiment starts with two probes for prediction purposes, immediately followed by
parallel TCP transfers with up to 30 parallel TCP flows.

We adopt the mean relative error as our performance metric. Relative error is

defined as:
prediction — measurement

relativeerror = (7.14)

measurement
Mean relative error on a path is the average of all the relative prediction errors on the
path. Mean relative error for a given number of parallel TCP flows is the average of
the relative prediction errors of all the experiments for that number of parallel TCP

flows.

CHAPTER 7. MODELING AND TAMING PARALLEL TCP 159

planetlab7.nbgisp.com to planet2.cs.ucsb.edu

65 ‘ ‘ ‘ ‘
60- —e— Measurement |
Linear
551 *- Partial Order-2 Polynomial |
-o- Full Order-2 Polynomial

a
o
T

N
a1
T

HS

W@M@/@m—@r%\@mg mt/w g/@@@ﬁm gyt

Throughput (Mbps)
N
o

_m— B
35¢ pe =
&
30 7/]
F
251 i J
i
20f |]
&
15 I I I I I
0 5 10 15 20 25 30

Number of Parallel TCP Flows

(a) Example 1: from nbgisp.com to ucsb.edu
planetlab4.cs.berkekey.edu to planet02.csc.ncsu.edu

350 T T T T .
—e— Measurement 7
3000 Linear .
+ - Partial Order-2 Polynomial ;
-o- Full Order-2 Polynomial B
__250f b
|
2 I
€ 200r .
a3 &
ey /
2150 / b
2 d
o /
'_
100/ A]
pa
50 %/%E—é%‘w@?% @*M%/
g
www—%&ﬂ S
0 BB L L L L L
0 5 10 15 20 25 30

Number of Parallel TCP Flows

(b) Example 2: from berkeley.edu to ncsu.edu

Figure 7.10: Throughput prediction examples.

CHAPTER 7. MODELING AND TAMING PARALLEL TCP 160

0.8 —a— Standard Deviation
0.6 4 —=— Mean
0.4 - M“*{.‘J
0.2 4
I k-t /\ AT

S SRR vE \,ww

-0.4 4

-0.6 -

Mean and STD of relative errors

-0.8 4

ID of the End-to-End paths

Figure 7.11: Prediction error statistics. Paths ID are ordered by the standard devi-
ation.

Figure 7.10 shows two examples of prediction using our model. The graphs show
the actual and predicted throughput (based on measurements at ny = 1 and ny = 10).
It can be seen that, for Example 1, predictions made based on the partial order 2
and full order 2 polynomials are virtually identical and have similar accuracy, while
the prediction curve derived using the linear model deviates significantly from the
measurement, curve. In our second example, the prediction made using the partial
order 2 polynomial and the linear model are virtually identical and equally accurate.
The prediction curve generated by the full order 2 polynomial, however, deviates
significantly from the measurement curve.

Figure 7.12 shows the performance of our parallel TCP throughput predictor
using two probes at parallelism levels n;y = 1 and n, = 10 for all of the PlanetLab
pairs. Only the partial order 2 polynomial model is used here. Both the mean and
standard deviation of the relative errors (across different parallelism levels) is shown,
with the graph ordered by the standard deviation. The results are quite encouraging:
in most cases, our predictions have a small mean and standard deviation of relative

prediction errors.

CHAPTER 7. MODELING AND TAMING PARALLEL TCP

161

Source Host Destination Host Mean Standard Deviation
planetlab2.postel.org planetlab-1.cmcl.cs.cmu.edu 0.0822 0.1264
planetlab2.it.uts.edu.au planetlabl.diku.dk 0.1110 0.4061
planetlabl.millennium.berkeley.edu planetlab3.cs.uoregon.edu 0.0910 0.1325
planetlab-1.it.uu.se planet2.cs.ucsb.edu 0.1302 0.2599
ds-pll.technion.ac.il planetslug3.cse.ucsc.edu -0.0453 0.1084
planetlab-2.cs.princeton.edu planetlab9.cs.berkeley.edu 0.07049 0.15274
planetlab2.flux.utah.edu planetl.cs.ucsb.edu -0.1081 0.2583
planetlab2.chin.internet2.planet-lab.org planetlab5.millennium.berkeley.edu 0.0211 0.0594
planetlab2.frankfurt.interxion.planet-lab.org planetl.cc.gt.atl.ga.us -0.1676 0.2887
planetlab2.bgu.ac.il planetlabl.it.uts.edu.au -0.0533 0.1264
planetlab2.cs.berkeley.edu planetslug2.cse.ucsc.edu -0.0138 0.1033
planetl.calgary.canet4.nodes.planet-lab.org planetlab2.sanjose.equinix.planet-lab.org -0.1088 0.1331
planetlab2.cs-ipv6.lancs.ac.uk planetlab4.cs.berkeley.edu -0.0518 0.1514
planetlab2.cs.uoregon.edu planet02.csc.ncsu.edu -0.0522 0.0895
planetlab2.postel.org planetlab2.it.uts.edu.au -0.1208 0.2825
planetlab2.flux.utah.edu planetlab2.chin.internet2.planet-lab.org 0.1235 0.4334
planetlab2.frankfurt.interxion.planet-lab.org planetlab2.bgu.ac.il -0.0956 0.2232
planetlab9.millennium.berkeley.edu planetlab2.cs.berkeley.edu -0.0070 0.0111
planetlab2.cs-ipv6.lancs.ac.uk planetlab2.cs.uoregon.edu -0.2581 0.1828
planetlab-2.it.uu.se planetlab3.sanjose.equinix.planet-lab.org 0.0664 0.0848
plil-pa-3.hpl.hp.com planetlab7.millennium.berkeley.edu 0.0400 0.1542
planetlabl.cs.berkeley.edu planetlab0l.ethz.ch -0.1546 0.1937
planetlab3.cs.uoregon.edu planetlab02.cs.washington.edu -0.1346 0.1068
planetlab7.nbgisp.com planet2.cs.ucsb.edu 0.0033 0.0394
planetslug3.cse.ucsc.edu planetlab9.cs.berkeley.edu -0.2750 0.2743
planetl.cs.ucsb.edu planetlab5.millennium.berkeley.edu 0.0743 0.2118
planetl.cc.gt.atl.ga.us planetlabl.it.uts.edu.au -0.1753 0.3964
planetlab4.millennium.berkeley.edu planetslug2.cse.ucsc.edu 5.1483e-04 0.0028
planetlab4.cs.berkeley.edu planet02.csc.ncsu.edu -0.0136 0.0882
planetlab2.postel.org planetlab2.cs.berkeley.edu 0.0029 0.1051
planetlab-2.cmcl.cs.cmu.edu planetlab2.cs.uoregon.edu 0.0258 0.0664
planetlab2.flux.utah.edu planetlab3.sanjose.equinix.planet-lab.org 0.1742 0.1491
planetlab2.frankfurt.interxion.planet-lab.org planetlab2.tau.ac.il 0.03886 0.2650
planetlab9.millennium.berkeley.edu planetlabl.flux.utah.edu 0.0922 0.1430
planetlab2.cs-ipv6.lancs.ac.uk planetlab7.millennium.berkeley.edu -0.1643 0.1345
planetlab-2.it.uu.se planetlabl.enel.ucalgary.ca -0.1604 0.1833
$2_803.ie.cuhk.edu.hk planetlabOl.ethz.ch -0.0375 0.5193
planet2.pittsburgh.intel-research.net planetlab02.cs.washington.edu 0.190 0.4300
planetlab2.millennium.berkeley.edu planetlabl.it.uts.edu.au -0.1769 0.1695
planetlabl.cs.berkeley.edu planetslug?2.cse.ucsc.edu 0.0200 0.0912
planetlab7.nbgisp.com planetlab5.millennium.berkeley.edu 0.0093 0.0747

Figure 7.12: Relative Prediction Error Statistics for Parallel TCP Throughput.

mean prediction error

& probel-8
A probel-10

X probel-15

ID of the End-to-End pathes

Figure 7.13: Prediction sensitivity to the selection of probes.

CHAPTER 7. MODELING AND TAMING PARALLEL TCP 162

0.1

. 4 °
5 0.08 . "

& 0.06 1 A -

=

% 0.04 1

5 0.02 A * R A

9] * >

S 0 +e—*— * T T . T
© .

_% -0.02 4 5 10* 15¢ R 20 25 . P
< -0.04 1

° . . R

< -0.06 §

o}

£ -0.08 -

-0.1

number of parallel TCP flows

Figure 7.14: Relative prediction error for parallel TCP throughput as a function of
number of parallel TCP flows.

Our predictor is relatively insensitive to the particular level of parallelism for
the probes. Figure 7.13 shows the mean relative error for our predictor using (1,8),
(1,10) and (1,15) parallel probes. We can see that we obtain similar performance in
all cases. Of course, it is important not to use parallelism levels that are too close
together (such as (1,2)), as such probes are very sensitive to small fluctuations in
the network or the existing cross traffic.

As it can be seen from Figure 7.14, the mean relative error for a given number of
parallel TCP flows is not related to the number of parallel TCP flows. The figure,
a scatter plot of the mean relative error (across all 41 paths) versus the number of
parallel TCP flows, shows no clear trend. The correlation coefficient R between the
mean relative prediction error and the number of parallel TCP flows is < 0.1.

Our experimental results have shown how, using the model derived in this sec-
tion, one can effectively predict the throughput of parallel TCP for a wide range of
parallelism relying only on two active probes at different levels of parallelism. In the
following we try to estimate the effect of parallel TCP in the existing cross traffic for a
given level of parallelism, the last “piece” necessary to make the TameParallelTCP ()

call possible.

CHAPTER 7. MODELING AND TAMING PARALLEL TCP 163

7.5 Taming parallel TCP

There are a number of considerable challenges when trying to estimate the effect on

cross traffic with an online system running on the end points:
1. The available bandwidth on the bottleneck link(s) is unknown.

2. The number of cross traffic flows and their loss rates and bandwidths on the

bottleneck link(s) (the offered load) are unknown.

3. Making use of an additional network measurement tool (such as Pathload [122])
to determine the current load on the path is problematic since it can take a long
time to converge. In addition, the measurement accuracy cannot be guaranteed.
One would like to avoid any additional overhead beyond the required two active

probes necessary to predict the throughput of parallel TCP flows.

In what follows, we make simplifying assumptions about the cross traffic’s view
of the shared links on the path in order to provide an estimate of impact on the cross
traffic from the same two probes from which we derived the throughput curve in the

previous section.

7.5.1 Algorithm

We assume that all TCP connections, including our parallel TCP flows and the cross
traffic, share the same loss rate on a bottleneck link. This assumption is valid as long

as one of the two following conditions can be satisfied:

1. The cross traffic has an RT'T similar to our parallel TCP flows. In that case,

all connections are very likely to have their congestion window synchronized,

CHAPTER 7. MODELING AND TAMING PARALLEL TCP 164

and thus share the same loss rate. This fact has been independently verified

by other research groups [201, 183, 184].

2. The router on the bottleneck link is using Random Early Detection (RED) [92]
as its queue management policy, something that is becoming increasingly com-
mon. Research has demonstrated that with RED, different flows roughly experi-
ence the same loss rate (the RED rate, which depends on the queue occupancy)

under steady state [92, 184].

Our approach to determining the effect of parallel TCP on cross traffic is based
on our algorithm to estimate the parallel TCP throughput (Section 7.4). The key
idea is to estimate p, x RTT? as a function of the number of parallel TCP flows.
Based on the assumption that cross traffic shares the same loss rate as parallel TCP
flows, we can then use the simple TCP throughput model (Equation 7.1) to estimate
the relative change to the cross traffic throughput.

Recall in Section 7.4 that we model p, x RTT? with a partial order 2 polynomial
function a X n? + b (Equation 7.6). After obtaining the two necessary measurements,
we can calculate the value of a and b and are now able to estimate the loss rate as a
function of the number of parallel TCP flows.

Relying on our assumptions, we have also obtained the loss rate of the cross traffic
as a function of the number of parallel TCP flows n given there are m cross traffic

flows (recall that m is relatively stable, see Section 7.4).

CHAPTER 7. MODELING AND TAMING PARALLEL TCP 165

Thus, based on Equation 7.1, we can now estimate the relative change on each of

the individual TCP throughputs without knowing m using the following equation:

MSSxC __ _ __MSSxC
_ RTThix\/pn1 RTTy2X+/Pn2
relc = SSRC (7.15)
RTTp1 X\/Pn1
- 1 [Pm (7.16)
Pn2

la X ni2+b
= 1—y/— 1
aXn?+b (7.17)

Here, relc is the relative throughput change for each flow. Equation 7.16 shows that
all the flows share the same relative throughput change. M SS and C' are constants as
described in Section 7.4, and RTT, is stable as was shown by Hacker, et al [108]. %
can be estimated using Equation 7.6. Both a and b can be obtained with two probes
as we discussed in Section 7.4. Note that n; and ny can be any parallelism levels.
In practice, however, we are most interested in estimating the relative throughput
change after adding in n, parallel TCP flows in comparison with adding in only one
TCP flow, therefore n; equals 1 in this case.

In practice, we add another constraint to the TameParallelTCP() function to
avoid the potential “diminishing returns” problem where more parallel TCP flows
bring only marginal benefits. With the TameParallelTCP() function, we can esti-
mate the aggregate throughput at any parallelism level. We then check to ensure that
the performance gain is over an administrator-determined threshold after adding in
an additional TCP flow. If the performance gain is below the threshold, we do not
add more flows even when the impact on cross traffic is within the user’s limit. This
is important because we can avoid the system overhead and network overhead by

avoiding unnecessary TCP flows.

CHAPTER 7. MODELING AND TAMING PARALLEL TCP 166

Parallelism Aggregate Throughput (Mbps) Estimated Impact

1 89.7 0
2 89.85 0.499
3 89.88 0.666

Figure 7.15: Performance of parallel TCP on a 100 Mb LAN where the RTT is
very small (about 0.2 0.4 ms). One TCP flow is the optimal in this case. Our tool
accurately estimated it.

7.5.2 Evaluation

We have done a thorough ns2-based evaluation of our cross traffic estimator. The
simulator allows us to analyze our estimator by controlling settings including bottle-
neck bandwidth and cross traffic characteristics.

Our simulation configuration was introduced in Section 7.3. We consider the same
set of the scenarios presented there. As in Section 7.3, we employ Qiu et al’s [183]
simulation topology (Figure 7.2).

Figure 7.16 shows two examples, for Scenarios 4 and 6, of the performance of our
estimator. In these cases we can accurately predict the impact on cross traffic as a
function of the parallelism level using only two probes, the same probes we use to
predict the throughput of the parallel flows as a function of parallelism level.

We summarize our prediction results as a CDF of the relative error in predicting
the impact on cross traffic across all of our scenarios in Figure 7.17. We can see that
90% of predictions have relative prediction error less than 0.25. The cross traffic
estimator is slightly biased. It conservatively predicts a greater impact on the cross
traffic on average.

To further evaluate our cross traffic estimation algorithm, we designed a more
complex topology with two groups of cross traffic. The topology and the simulation

configuration is shown in Figure 7.18. Each simulation is 100 seconds long with cross

CHAPTER 7. MODELING AND TAMING PARALLEL TCP

50000000
45000000
40000000
35000000
30000000
25000000
20000000
15000000

Throughput (Bytes/second)

0

10000000 -
5000000 -

—e— parallel TCP
cross traffic
estimated cross traffic

0 10 20 30 40 50
number of parallel TCP flow s

(a) Scenario 4 with 5 cross traffic

45000000
40000000
§ 35000000 -
E 30000000 1
@25000000 E
5 20000000 -
o
‘5 15000000 -
=]
2 10000000 1
=
5000000 |

—e— parallel TCP
cross traffic
estimated cross traffic

0

0 10 20 30 40 50

number of parallel TCP flows

(b) Scenario 6 with 15 cross traffic

Figure 7.16: Cross traffic estimation examples.

167

CHAPTER 7. MODELING AND TAMING PARALLEL TCP 168

0.9 +
0.8 -
0.7 4
0.6 4
0.5 -
0.4
0.3

probability (error < x)

fa)
o

-06 -04 -02 0 0.2 0.4 0.6

relative prediction error

Figure 7.17: Cumulative distribution function of relative prediction error for cross
traffic estimation for all the simulations with 6 scenarios as described in Figure 7.3.

traffic starting randomly between 0 and 8 seconds and all the parallel TCP flows
starting at 10 seconds. L1 and L4 have latency 3 ms, L2 and L5 have latency 6
ms, L6 and L7 have latency 10 ms. L3 has latency 50m s and bottleneck bandwidth
1000 Mbit/s. N3 is using the RED queue management policy. Parallel TCP flows go
from N2 to N6. Cross traffic group 1 goes from N7 to N8. Cross traffic group 2 goes
from N1 to N5. We applied our estimation algorithm to these scenarios, resulting in
Figure 7.19.

We also tested the cross traffic estimator for scenarios in which different TCP flows
have different RTTs, and where RED is not used on the routers. Our estimator shows
the right trend of the cross traffic throughput change, although accurate prediction
cannot be guaranteed as flows with longer RTT tend to have higher loss rate than
parallel TCP flows and vice versa. In essence, in situations in which cross traffic RTT

and loss rate is unknown, our estimator is less accurate.

CHAPTER 7. MODELING AND TAMING PARALLEL TCP 169

Figure 7.18: More complex topology for further evaluation of cross traffic estimation.

12000000

—e— parallel TCP
10000000 - cross traffic g1
estimation of g1

—x— cross traffic g2

8000000 -

6000000 —@— estimation of g2

4000000 -

throughput (Bytes/second)

e

2000000 A W i
0 : : . .

0 5 10 15 20 25 30 35 40

number of parallel TCP flow s

Figure 7.19: Estimation results with 14 TCP flows in cross traffic group 1 (gl) and
14 TCP flows in cross traffic group 2 (g2).

CHAPTER 7. MODELING AND TAMING PARALLEL TCP 170

7.5.3 Outcome

We have demonstrated the feasibility of predicting the impact on cross traffic of a

parallel TCP transfer as a function of the degree of parallelism. Under the assumption

that all flows share the same loss rate, we can accurately predict the relative impact

using the same two measurement probes used to predict the throughput of the parallel

TCP transfer as a function of the degree of parallelism.

Combining these two predictions, we can implement the TameParallelTCP() API

call:

1.

5.

Execute two probes at different parallelism levels.

Using the probe results, estimate the parallel TCP throughput as a function
of the number of parallel TCP flows n using the techniques of the previous

section.

Using the probe results, estimate the relative impact on cross traffic as a func-

tion of n using the techniques of this section.

Conduct a binary search on the cross traffic impact function, looking for the
degree of parallelism, [, that has the largest impact less than that permitted in
the API call.

Return [, and the impact and throughput predictions at parallelism /.

The cost of this implementation is dominated by executing the two probes.

7.6 Conclusions and future work

We have shown how to predict both parallel TCP throughput and its impact on cross

traffic as a function of the degree of parallelism using only two probes at different

CHAPTER 7. MODELING AND TAMING PARALLEL TCP 171

parallelism levels. Both predictions are monotonically changing with parallelism
levels. Hence, the TameParallelTCP() function can be implemented using a simple
binary search. To the best of our knowledge, our work is the first to provide a
practical parallel TCP throughput prediction tool and to estimate the impact on the
cross traffic.

We have made a few simplifying assumptions about the cross traffic in order to
predict impact on it while having no knowledge of the actual cross traffic. While these
assumptions are reasonable in many cases, we are now working on how to relax them.
An implementation of a version of our TameParallelTCP() function is available from
http://plab.cs.northwestern.edu/Clairvoyance/ Tame.html.

Although the Internet paths show statistical stability, the transient stability won’t
hold over the long term. Either periodic resampling as in NWS [230] or the dynamic
sampling rate adjustment algorithm from our other work [151] can be applied for the
long term monitoring.

We have shown that parallel TCP flows can be used in a controlled manner,
enhancing end-to-end throughput without significant influence on the background
traffics. Therefore, our modeling technique can be used in the rate adaption for the

data propagation among the RGIS servers.

Chapter 8

FatTree Based End-System
Multicast

The Content Distribution Network (CDN) of RGIS is based on the publish/subscribe
model as described in Chapter 2. For better scalability, we need to enhance the
current prototype that relies on unicast to deliver updates to subscribers. Carzaniga,
et al [54] showed that under many circumstances publish/subscribe systems can be
built with end-system multicast techniques for better scalability and efficiency.

This chapter describes how to enhance the CDN of RGIS using FatNemo [41],
a novel fat-tree based end-system multicast protocol designed by Birrer et al. at

Northwestern University. I contributed to the design of the FatNemo protocol.

8.1 Introduction

As was described in Chapter 2, RGIS servers do not talk directly with each other,
but indirectly via a content delivery network (CDN), which is based on the pub-
lish /subscribe model and is used solely to propagate updates to friendly RGIS servers.

172

CHAPTER 8. FATTREE BASED END-SYSTEM MULTICAST 173

In the current implementation, the CDN uses unicast to send updates to subscribers.
This works fine with a small or medium size RGIS system, but may have scalability
issues.

Carzaniga, et al [54] showed that publish/subscribe systems can be built with end-
system multicast techniques for better scalability and efficiency. Multicast decouples
the size of the receiver set from the amount of state kept at any single node and
potentially avoids redundant communication in the network.

The FatNemo protocol can be adopted for the publish/subscribe model when a
group of friendly RGIS servers subscribe to each other’s updates. In such scenarios,
each RGIS server participates into the distributed RGIS system and propagate its
updates using the end-system multicast mechanism. The advantage of this approach
is better scalability. This chapter first describes the FatNemo protocol and then
discuss how it can be used to enhance the scalability of the CDN in RGIS.

The end-system multicast [64, 124, 97, 176, 58, 30, 57, 187, 241, 170, 218| was
developed as an effective alternative to IP multicast, which is not widely deployed
on the current Internet [70, 79]. In an end-system multicast approach participating
peers organize themselves into an overlay topology for data delivery. Each edge in
this topology corresponds to a unicast path between two end-systems or peers in
the underlying Internet. All multicast-related functionality is implemented at the
peers instead of at routers, and the goal of the multicast protocol is to construct and
maintain an efficient overlay for data transmission.

Among the end-system multicast protocols proposed, tree-based systems have
proven to be highly scalable and efficient in terms of physical link stress, state and
control overhead, and end-to-end latency. However, normal tree structures have two

inherent problems.

Resilience: They are highly dependent on the reliability of non-leaf nodes. Re-

CHAPTER 8. FATTREE BASED END-SYSTEM MULTICAST 174

silience is particularly relevant to the application-layer approach, as trees here
are composed of autonomous, unpredictable end systems. The high degree of
transiency of the hosts ! has been pointed out as one of the main challenges for

these architectures [37].

RGIS is designed for grids, which consist of large scale, dynamic computing
resources. We therefore speculate that RGIS servers will show some degree of

transiency, and it is important to design a highly resilient protocol.

Bandwidth limitations: They are likely to be bandwidth constrained ? as band-
width availability monotonically decreases as one descends into the tree. The
bandwidth limitations of normal tree structures is particularly problematic for
multi-source, bandwidth intensive applications. For a set of randomly placed
sources in a tree, higher level paths (those closer to the root) will become the
bottleneck and tend to dominate response times. Once these links become

heavily loaded or overloaded, packets will start to be buffered or dropped.

RGIS is designed for large scale grid systems that can potentially scale to
the size of the Internet. In such a huge distributed systems there could be
thousands of RGIS servers, and we speculate that the updates sent among
them would require significant bandwidth. Our assumption is supported by
Smith [204], who discovered that the average workload on their centralized GIS
is 8.8 operations per second, and the majority of the operations are updates to
the server. This fact together with the potential large scale of the RGIS system
indicate that the CDN has to be bandwidth efficient to gracefully handle the

!Measurement studies of widely used application-layer/peer-to-peer systems have reported me-
dian session times ranging from an hour to a minute [46, 106, 188, 62].

2The access link of an end system becomes its bandwidth bottleneck, thus we can model the
bandwidth capacity as a property of the end-system.

CHAPTER 8. FATTREE BASED END-SYSTEM MULTICAST 175

updates propagation.

Birrer and Bustamante have addressed the resilience issue of tree-based systems
in previous work [40] through the introduction of co-leaders and the reliance on
triggered negative acknowledgements (NACKs). The FatNemo protocol addresses the
bandwidth limitations of normal tree overlays.

FatNemo’s approach capitalizes on Leiserson’s seminal work on fat-trees [137].
Paraphrasing Leiserson, a fat-tree is like a real tree in that its branches become
thicker the closer to the root, thus overcoming the “root bottleneck” of a regular
tree. Figure 8.1 shows a schematic example of a binary fat-tree. FatNemo organizes
participant end-systems in a tree that closely resembles a Leiserson fat-tree by dy-
namically placing higher degree nodes (nodes with higher bandwidth capacity) close

to the root and increasing the cluster sizes as one ascends the tree.

8.2 Related Work

Publish/subscribe communication is becoming the medium of choice for the design
and development of loosely-coupled, component-based, distributed systems. Appli-
cations range from e-commerce frameworks (e.g., BEA’s WebLogic) to peer-to-peer
information sharing systems (e.g., Gnutella) to military command and control (e.g.,
US Air Force’s Joint Battlespace Infosphere).

Publish/subscribe communication is characterized by the notion that senders and
receivers are not required to have a priori knowledge of each other. The flow of in-
formation from senders to receivers is determined by the specific interests of the
receiver rather than by an explicit destination address assigned by the sender. With
this communication pattern, receivers subscribe to information that is of interest to

them without regard to any specific source, while senders simply publish information

CHAPTER 8. FATTREE BASED END-SYSTEM MULTICAST 176

Cap. 30 Kbps

Bottleneck node

Cap. 5 Kbps Cap. 5 Kbps Cap. 25 Kbps Cap. 5 Kbps

(a) Normal Tree
Cap. 30 Kbps

Cap. 5 Kbps Cap. 5 Kbps Cap. 10 Kbps Cap. 5 Kbps

(b) Fat Tree

Figure 8.1: Two binary trees with nodes A and B as sources, publishing at 5 Kbps
each. (a) shows a normal binary tree where node E becomes the bottleneck, resulting
on a reduced (dash line) outgoing stream quality. Node E has to forward the stream
A to node B and node G, as well as stream B to node A and node G, thus it needs
an outgoing bandwidth capacity of 20 Kbps. However, it has only 10 Kbps available,
making it a bottleneck in the tree. (b) shows a fat-tree with higher capacity nodes
placed higher in the tree.

CHAPTER 8. FATTREE BASED END-SYSTEM MULTICAST 177

without addressing it to any specific destination. A publish/subscribe communica-
tion service is responsible for interpreting subscriptions and delivering the relevant
publications to subscribers.

There are numerous work and commercial products on the publish/subscribe
model [54, 86, 47, 216, 194]. The most related work is by Carzaniga [54], who
concluded that under many circumstances the multicast approach can be adopted
for higher scalability and efficiency.

The limited deployment of IP Multicast [70, 79] has led to considerable interest in
alternate approaches that are implemented at the application layer, using only end-
systems [64, 124, 97, 176, 58, 30, 57, 187, 241, 170, 218]. One of the first end-system
multicast protocol was Narada [63], a multisource multicast system designed for small
to medium sized multicast groups. Peers in Narada are organized into a mesh with
fixed out-degree, with every peer monitoring all others to detect end-system failures
and network partitions. The per-source multicast tree is built on top of this mesh
from the reverse shortest path between each recipient and the source. Since the tree
construction algorithm does not account for cross traffic, a powerful link is likely to
be used by many multicast links, limiting the efficiency of the multicast system. Fat-
Nemo uses crew members to share the forwarding load, thus relaxing the burden on
a single high bandwidth path. Overcast [124] organizes dedicated servers in a single-
source, bandwidth optimized, multicast tree. In contrast, FatNemo is an end-system
overlay that constructs a global optimized fat-tree for multisource multicast. Baner-
jee et al. [30] introduce Nice and demonstrate the effectiveness of overlay multicast
across large scale networks. The authors also present the first look at the robustness
of alternative overlay multicast protocols under group membership changes. Fat-
Nemo adopts the same implicit approach, and its design draws on a number of ideas

from Nice such as its hierarchical control topology. FatNemo introduces co-leaders

CHAPTER 8. FATTREE BASED END-SYSTEM MULTICAST 178

to improve the resilience of the overlay and adopts a periodic probabilistic approach
to reduce/avoid the cost of membership operations.

A new set of projects have started to address the resilience of overlay multicast
protocols [32, 56, 218, 40, 170, 233]. ZigZag [218], a single-source protocol, explores
the idea of splitting the control and data delivery task between two peers in each
level, making both responsible for repairs under failures. With PRM [32] Banerjee
et al. propose the use of probabilistic forwarding and NACK-based retransmission
to improve resilience. In order to reduce the time-to-repair, Yang and Fei [233] ar-
gue for proactively, ahead of failures, selecting parent replacements. CoopNet [170]
improves resilience by building several disjoint trees on a centralized organization
protocol and employing Multiple Description Coding (MDC) for data redundancy.
Nemo [40] and FatNemo build redundancy into the overlay through co-leaders; dif-
ferent from the previously described protocols, they make all crew members share
forwarding responsibilities while all cluster members are in charge of repair opera-
tions. These simple measures enable an uninterrupted service to downstream peers
especially during recovery intervals.

Aiming at bulk data distribution, protocols such as Splitstream [56] , Bittor-
rent [65] and Bullet [132] have proposed simultaneous data streaming over different
paths to better share the forwarding load and increased downloading capacity. The
methods differ in how they locate alternate streaming peers. In comparison, FatNemo

exploits alternate paths for resilience and load balancing.

8.3 Fat-Trees and the Overlay

The communication network of a parallel machine must support global collective

communication operations in which all processors participate [136]. These operations

CHAPTER 8. FATTREE BASED END-SYSTEM MULTICAST 179

have a wide range, including reduction and broadcast trees, and neighbor exchange.
All-to-all personalized communication [115], in which each processor sends a unique
message to every other processor, is key to many algorithms. To support such op-
erations well, the network should have (1) minimal and scalable diameter, and (2)
maximal and scalable bisection bandwidth. These goals are very similar to those of
a multisource multicast overlay, which can be thought of as providing many-to-many
personalized communication, a subset of all-to-all personalized communication.

In his seminal work on fat-trees [137], Leiserson introduced a universal routing
network for interconnecting the processors of a parallel supercomputer, where com-
munication can be scaled independently of the number of processors. Based on a
complete binary tree, a fat-tree consists of a set of processors, located at the leaves,
and interconnected by a number of switching nodes (internal to the tree) and edges.
Each edge in the tree corresponds to two unidirectional channels connecting a parent
with each of its children. Channel consist of a bundle of wires, and the number of
wires in a channel is called its capacity. The capacity of the channels of a fat-tree
grows as one goes up the tree from the leaves, thus allowing it to overcome the “root
bottleneck” of a regular tree. Since their introduction, fat-trees have been success-
fully applied in massively parallel systems [138, 116] as well as in high performance
cluster computing [120].

FatNemo organizes the end-systems participant in a multicast group, in an overlay
tree that closely resembles a Leiserson fat-tree. In common with Leiserson, the
goal is to minimize the mean and standard deviation of inter-node communication
performance with multiple potential sources.

Emulating fat-trees in an overlay entails a number of challenges such as handling
the high level of transiency of end-system populations and addressing their degree

of heterogeneity. A straightforward way of approximating a fat-tree is placing those

CHAPTER 8. FATTREE BASED END-SYSTEM MULTICAST 180

external interface

s
switch

~node

\channels

)/pI'OCESSOT

Figure 8.2: Leiserson’s organization of a fat-tree in a supercomputer [137].

nodes with higher bandwidth capacity® closer to the root. Since interior nodes are
involved in most inter-node communication paths they strongly influence the overall
end-to-end delay and can soon become bottlenecks as one increases the number of
sources. Figure 8.1 shows a schematic example of both a regular binary tree with
two 5 Kbps sources (A and B) and a bottleneck node (E) unable to keep up with the
publishing rate of the nodes downstream.

Available bandwidth can differ significantly from bandwidth capacity over time,
due typically to competing traffic, and any algorithm that attempts to emulate fat-
trees in an overlay needs to take account of such dynamism. Also, per-path charac-
teristics must be taken into consideration. Since end-to-end latency is an important
factor in the performance of interactive applications, the latency of each link in the
overlay, the processing time at each node, and the number of intermediate nodes
should be considered carefully. When selecting among possible parents, a closer node
may be a better candidate, if it is able to support the load, than an alternative node

offering higher available bandwidth. Finally, the mean time to failure of end-systems

3The maximum outgoing bandwidth that the node is capable of, the capacity of the IP link
attaching the node to the network.

CHAPTER 8. FATTREE BASED END-SYSTEM MULTICAST 181

is significantly lower than for routers, possibly resulting in long interruptions to the
data stream as the failure is discovered and the distribution tree repaired.

Although overlay fat-trees can be built above most tree-based multicast systems,
FatNemo was implemented using Nemo, a high-resilience, latency-optimized overlay
multicast protocol that was developed by Birrer and Bustamante [40]. The following
section provides some background material on overlay multicast in general and on

the operational details of Nemo, before describing the FatNemo design in Section 8.5.

8.4 Background

All peer-to-peer or application-layer multicast protocols organize the participating
peers into (1) a control topology for group membership related tasks, and (2) a
delivery tree for data forwarding. Available protocols can be classified according to
the sequence adopted for their construction [29, 63]. In a tree-first approach [97, 124,
176], peers directly construct the data delivery tree by selecting their parents from
among known peers. Additional links are later added to define, in combination with
the data delivery tree, the control topology. With a mesh-first approach [63, 58],
peers build a more densely connected graph (mesh) over which (reverse) shortest
path spanning trees, rooted at any peer, can be constructed. Protocols adopting
an implicit approach [30, 57, 187, 241, 218] create only a control topology among
the participant peers. Their data delivery topology is implicitly determined by the
defined set of packet-forwarding rules.

FatNemo builds on Nemo to emulate a fat-tree; thus, it inherits the latter’s high
scalability and resilience. In the following paragraphs, we provide a summarized
description of Nemo; for more complete details we direct the reader to the work by

Birrer et al. [40].

CHAPTER 8. FATTREE BASED END-SYSTEM MULTICAST 182

A Leader

A Co-leader

O Ordinary member

Figure 8.3: Nemo’s logical organization. The shape illustrates only the role of a peer
within a cluster: a leader of a cluster at a given layer can act as leader, co-leader, or
an ordinary member at the next higher layer.

Nemo

Nemo [40] follows the implicit approach to building an overlay for multicasting. The
set of communication peers are organized into clusters based on network proximity,
where every peer is a member of a cluster at the lowest layer. Clusters vary in
size between d and 3d — 1, where d is a constant known as the degree. Each of these
clusters selects a leader that becomes a member of the immediately superior layer. In
part to avoid the dependency on a single node, every cluster leader recruits a number
of co-leaders to form a supporting crew. The process is repeated at each new layer,
with all peers in a layer being grouped into clusters, crew members selected, and
leaders promoted to participate in the next higher layer. Hence peers can lead more
than one cluster in successive layers of this logical hierarchy. Figure 8.3 illustrates
the logical organization of Nemo.

A new peer joins the multicast group by querying a well-known special end-
system, the rendezvous point, for the identifier of the root node. Starting there
and in an iterative manner, the incoming peer continues: (i) requesting the list of
members at the current layer from the cluster’s leader, (i) selecting from among

them who to contact next based on the result from a given cost function, and (4?)

CHAPTER 8. FATTREE BASED END-SYSTEM MULTICAST 183

moving into the next layer. When the new peer finds the leader with minimal cost
at the bottom layer, it joins the associated cluster.

Member peers can leave Nemo in a graceful manner (e.g. user disconnects) or
in an ungraceful manner (unannounced, e.g. when the end-system crashes). For
graceful departures, since a common member has no responsibilities towards other
peers, it can simply leave the group after informing its cluster’s leader. On the other
hand, a leader must first elect replacement leaders for all clusters it owns before it
leaves the session.

To detect unannounced departures, Nemo relies on heartbeats exchanged among
the cluster’s peers. Unreported members are given a fixed time interval before being
considered dead, at which point a repair algorithm is initiated. If the failed peer
happens to be a leader, the tree itself must be fixed, the members of the victim’s
cluster must elect the replacement leader from among themselves.

To deal with dynamic changes in the underlying network, every peer periodically
checks the leaders of the next higher layers and switches clusters if another leader has
a lower cost (i.e. lower latency) than the current one. Additionally, in a continuous
process of refinement, every leader checks its highest owned cluster for better suited
leaders and transfers leadership if such a peer exists.

Nemo addresses the resilience issue of tree-based systems through the introduction
of co-leaders. Co-leaders improve the resilience of the multicast group by avoiding
dependencies on single nodes and providing alternative paths for data forwarding.
In addition, crew members share the load from message forwarding, thus improving

scalability.

CHAPTER 8. FATTREE BASED END-SYSTEM MULTICAST 184

777777777777777777777777777777777

ffffffffffffffffffffffffffffffffffff

Figure 8.4: FatNemo’s Topology. The figure illustrates how the tree gets fatter when
moving toward the root. This tree has a cluster degree of 2.

8.5 FatNemo Design

To build an overlay fat-tree, FatNemo relies on three heuristics: (1) higher bandwidth
degree nodes should be placed higher up in the tree, (2) all peers must serve as crew
members in order to maximize load balancing, and (3) the size of clusters should
increase exponentially as one ascends the tree. The following paragraphs provide the
motivations behind each of these heuristics.

The per-node bandwidth constraint is critical for bandwidth-demanding applica-
tions and can be stated as the number of full-rate streams a peer is able to support,
i.e. its out-degree. By organizing peers based on their out-degrees [225, 63], FatNemo
intends to reduce the bandwidth constraints of links higher up the tree. Since the pro-
cess of estimating available bandwidth is time consuming, peers initially join the tree
based on proximity. Once in the tree, every leader checks its highest owned cluster
for better suited leaders in terms of bandwidth availability, and transfers leadership
if such a peer exists. This process assures that high out-degree peers will gradu-
ally ascend to higher layers, thus transforming the tree into a bandwidth optimized

fat-tree.

CHAPTER 8. FATTREE BASED END-SYSTEM MULTICAST 185

In traditional fat-trees the number of wires increases as one ascends the tree. Con-
sidering an overlay unicast connection as a “wire”, the number of wires in FatNemo
increases together with the crew size as one moves toward the root — the maximum
possible number of wires is thus achieved by setting the crew size equal to the cluster
size. The size of a cluster at layer ¢ in FatNemo varies between d; and 2d; + 2, and
grows exponentially (d; = dé“) as we move up the layers. The 0-th layer contains
the leaf nodes and has a degree dy of 3 (same as Nice and Nemo). The increased
number of wires helps avoid higher level links from becoming the bottleneck of the
system, as alternate paths share the load and reduce the forward responsibility of
each peer.

Beyond increasing the number of wires, large crew sizes also help reduce the depth
of a tree (when compared with its constant cluster-sizes equivalent). A smaller depths
means a lower total number of end-system hops, and should translate in a reduction
on the end-to-end delay.

Figure 8.4 illustrates how FatNemo constructs a fat-tree. In this simple example
dy = 2, so clusters scale up by a factor of 2 ascending the tree. Notice that these
links/wires are indeed (d;;1...2d;11 + 2) to (d;...2d; + 2) relations, as every crew
member of the next higher layer will talk to the crew members of the immediately
lower layer. For clarity in the graph, this set of links is represented in the graph by
d; lines.

To better understand the positive effect of FatNemo’s heuristics, we show an
instantiation of them with a population of 20, 000 peers from a popular on-line game. *

To begin, let’s generalize the concept of out-degree. The out-degree of a peer, d,y,

is equivalent to the total forwarding responsibility of a node, and it can be stated

4The number corresponds to the active populations of players in hattrick.org, an online soccer
game.

CHAPTER 8. FATTREE BASED END-SYSTEM MULTICAST 186

Table 8.1: Cluster and Crew Size as a function of the cluster degree d, for a 20,000
peer population. The variable = is a place holder for the cluster index starting at 0
for the lowest layer.

Protocol Cluster Size k(x) Crew Size c(x)
Nice d...3d -1 d=3:3...8 1
Nemo d...3d -1 d=3:3...8 3
FatNemo | d**!...2d*™' +2 |d=3,2=1:9...20 k(x)

as a function of the number of layers L in which the node participates, the cluster
size k(z) and the crew size c(z) at layer x (Equation (8.1)). Table 8.1 illustrates the

parameter values for FatNemo and two alternative protocols.

dowt = — (8.1)

Nice and Nemo have, in expectation, 5.5 nodes per cluster at every layer. Using
this value as an approximation for the cluster size, a traditional tree for this popula-
tion size will be about 7 layers in depth. FatNemo, on the other hand, has a variable
expected number of nodes per cluster, and its expected tree depth is 4 layers.

Based on the expected depth of the different trees for this example population, the
out-degree requirements on their root nodes can be calculated. According to the gen-
eralized out-degree equation introduced in the previous paragraph (Equation (8.1)),
Nice requires a root out-degree of 31.5, or almost three times more than what is
needed from a Nemo’s root (10.5) with a crew size of 3. In other words, the root of
a traditional tree for a 20,000 peer population must support 31.5 times the source
rate to fulfill its forwarding responsibility! By emulating a fat-tree in the overlay,

FatNemo avoids this “root bottleneck” requiring root out-degree only of 3.7.

CHAPTER 8. FATTREE BASED END-SYSTEM MULTICAST 187

8.6 Evaluation

The performance of FatNemo is evaluated through simulation, and the performance

metrics are:

Response Time: End-to-end delay (including retransmission time) from the source to
the receivers, as seen by the application. This includes path latencies along the
overlay hops, as well as queuing delay and processing overhead at peers along
the path. A lower mean response time indicates a higher system responsiveness,
and a smaller standard deviation implies better synchronization among the

receivers.

Delivered Packets: Number of packets successfully delivered to all subscribers within
a fixed time window. It indirectly measures the protocol’s ability to avoid

bottlenecks in the delivery tree.

Delivery Ratio: Ratio of subscribers that have received a packet within a fixed time

window. Disabled receivers are not accounted for.

Duplicate Packets: Number of duplicate packets per sequence number, for all enabled
receivers, reflecting an unnecessary burden on the network. Packets arrived
outside of the delivery window are accounted for as duplicates, since the receiver

already assumed them as lost.

Control-Related Traffic: Total control traffic in the system, in mega bits per second
(Mbps); part of the system’s overhead. A network packet traversing four routers
(including the source and destination node) will account as three sent packets,

one for every router which has to forward it.

CHAPTER 8. FATTREE BASED END-SYSTEM MULTICAST 188

Figure 8.5: Three simulation scenarios: Low-, Medium- and High-Bandwidth. Band-
width is expressed in Kbps.

Scenario Routers End systems Links Client-Stub Stub-Stub Transit-Stub Transit-Transit
Low-B/W 510 5000 11240 400-6000 3000-8000 4000-10000 10000-20000
Medium-B/W 312 6000 12730 800-8000 4000-10000 6000-15000 15000-30000
High-B/W 615 7500 16450 1000-15000 10000-30000 10000-50000 50000-100000

8.6.1 Experimental Setup

The simulations were done using the packet-level, event-based simulator SPANS [40].
Simulations were run using GridG [144, 146] topologies with 5510, 6312 and 8115 nodes,
and a multicast group of 256 members. GridG leverages Tiers [81, 51] to generate
a three-tier hierarchical network structure, before it applies a power law enforcing
algorithm that retains the hierarchical structure.

Members were randomly associated with end systems, and a random delay of
between 0.1 and 80ms was assigned to every link. The links use drop-tail queues
with a buffer capacity of 0.5sec. GridG was configured to use different bandwidth
distributions for different link types [132]. The assumption is that the core of the
Internet has higher bandwidth capacities than the edge, as shown in Fig. 8.5. In
all three scenarios, the bandwidth has a uniform distribution with ranges shown in
Fig. 8.5.

Each simulation experiment lasted for 500 sec. (simulation time). All peers join
the multicast group by contacting the rendezvous point at uniformly distributed,
random times within the first 100 sec. of the simulation. A warm-up time of 200 sec.
is omitted from the figures. Publishers join the network and start publishing at the
beginning of the simulation. Starting at 200sec. and lasting for about 300 sec., each
simulation has a phase with membership changes. During this phase, each protocol
was exercised with and without host failures. Failure rates are set based on those
obtained from a published report of field failures for networked systems [232]. Nodes

fail independently at a time sampled from an exponential distribution (with mean

CHAPTER 8. FATTREE BASED END-SYSTEM MULTICAST 189

time to failure (MTTF) equal to 60 min.) and rejoin shortly after (time sampled from
an exponential distribution with mean time to repair (MTTR) equal to 10 min.). The
two means were chosen asymmetrically to allow, on average, 6/7 of all members to
be up during this phase. The failure event sequence was generated a priori based on
the above distribution and used for all protocols and all runs.

In all experiments, multi-source multicast streams were modeled to a group. Each
source sends constant bit rate (CBR) traffic of 1000 Byte payload at a rate of 10
packets per second. The buffer size was set to 16 packets, which corresponds to
the usage of a 1.6-second buffer, a realistic scenario for applications such as video

conferencing.

8.7 Experimental Results

This section presents early evaluation results of FatNemo and compares them with
those of three alternative protocols. The reported results are from five runs per pro-
tocol obtained with the different GridG topologies and the Low-Bandwidth scenario.
Similar results were obtained with the Mid- and High-Bandwidth scenarios.

Figure 8.6 shows the average number of delivered packets of all runs with no host
failures. The protocol’s data delivery topology collapses as too many publishers are
added. This happens first for Narada, which is unable to handle the full publishing
rate from one publisher. Nice and Nice PRM handle an increasing number of pub-
lishers better; however, they deliver substantially fewer packets when compared with
FatNemo. FatNemo is best at avoiding bottlenecks in the delivery tree, delivering
the most packets when the network is overloaded (as seen with 8 publishers).

The performance of a multi-source multicast system can be measured in terms

of mean and standard deviation of the response time. Table 8.2 shows these two

CHAPTER 8. FATTREE BASED END-SYSTEM MULTICAST 190

~
<

— FatNemo
Nice
 --- Nice PRM(3,0.02)
-- Narada
— infinite bandwidth case

S (5] [}
< < <
T T T

Delivered Packets
w
k<
T

N}
<
T

[
<
T

Publishers

Figure 8.6: Delivered packets (256 end hosts, Low-Bandwidth scenario).

Table 8.2: Response Time (1 Publisher, 256 end hosts, Low-Bandwidth scenario).

Protocol Mean | Std

FatNemo 0.158 | 0.073
Nice 0.183 | 0.082
Nice-PRM(3,0.02) | 0.195 | 0.086
Narada 0.770 | 0.464

metrics for the evaluated protocols with one publisher. FatNemo outperforms Nice,
Nice PRM and Narada in terms of mean and standard deviation of response time.
With an increased number of publishers the relative number of delivered packets
for Nice, Nice PRM and Narada decreases compared to FatNemo, which makes it
impossible to fairly compare the response time for more than one publisher based only
on one number. The problem stems from that fact that, when lowering its delivery
ratio a protocol will drop those packets with high response time more likely than
others. Thus, comparing response times across protocols with significantly different

delivery ratios under stress will give less resilient protocols an unfair advantage.

CHAPTER 8. FATTREE BASED END-SYSTEM MULTICAST 191

L
05

o
o

2

ofh ™

[

-

= I R N
S

— FatNemo

Nice]
- Nice PRM(3,0.02) |
-- Narada

Figure 8.7: Response Time CDF with 1, 4 and 8 publishers (figures ordered top-down;
256 end hosts, Low-Bandwidth scenario).

CHAPTER 8. FATTREE BASED END-SYSTEM MULTICAST 192

Table 8.3: Delivery Ratio (1 Publisher, 256 end hosts, Low-Bandwidth scenario).

Protocol No Failures | With Failures
FatNemo 0.987 0.966
Nice 0.973 0.956
Nice-PRM(3,0.02) 0.989 0.970
Narada 0.685 0.648

Figure 8.7.(a) shows the Cumulative Distribution Function (CDF) of the response
time per packet for one publisher. The y-axis is normalized to the infinite bandwidth
case, i.e. when all receivers receive all possible packets. FatNemo, Nice and Nice
PRM perform well, but FatNemo’s flatter tree results in an improved response time.
Narada is only able to deliver a fraction of all possible packets, and only then with a
substantially high delay. With increasing number of publishers, the protocols start
running into bottlenecks. Despite the harder conditions, FatNemo is able to out-
performs the alternative protocols in terms of packet delivery times as illustrated in
Fig. 8.7.(b) and Fig. 8.7.(c).

Table 8.3 shows the delivery ratio using one publisher with and without end-
systems failures. It can be seen that FatNemo performs as well as Nice PRM under
a low-failure rate scenario with only a drop of 2.1% in delivery ratio. Nice has a
slightly lower delivery ratio, while Narada suffers already from a collapsed delivery
tree with only about 70% delivery ratio. In general, the delivery ratio will decrease
as the number of publishers increases, as the protocol’s data delivery topology slowly
collapses.

The overhead of a protocol can be measured in terms of duplicate packets. This
metric is shown in the second column of Table 8.4. Despite its high delivery ratio,

FatNemo incurs, in average, only 0.367 duplicate packets per sequence number, while

CHAPTER 8. FATTREE BASED END-SYSTEM MULTICAST 193

Table 8.4: Overhead (1 Publisher, 256 end hosts, Low-Bandwidth scenario).

Protocol Duplicate packets | Control Traffic [Mbps]
FatNemo 0.367 17.99
Nice 0.000 9.211
Nice-PRM(3,0.02) 5.168 11.48
Narada 0.006 157.3

Nice-PRM suffers from 5.168 duplicate packets per sequence number generated by its
probabilistic forwarding algorithm. Nice and Narada feature almost no duplicates,
but at a high cost in term of delivery ratio as shown in Table 8.3. FatNemo’s control
related traffic is higher than for Nice and Nice-PRM, a result of its larger cluster
cardinality higher in the tree. The control traffic is accounted for at router level,
thus the choice of a peer’s neighbors in FatNemo also adds additional overhead, as it

opts not for the closest, but for the peer with highest bandwidth.

8.8 Protocol modifications required

FatNemo and Nemo [40] were originally designed for real time multimedia, and its
triggered negative acknowledgement (NACK) assumes continuous data flow. Al-
though in a potentially huge grid system, the CDN is likely to have continuous data
traffic, we need to handle situations where continuous data flow doesn’t exist. We
need to either disable the NACK feature or use alternative mechanisms.

Simply disabling the NACK could solve this problem at the expense of potentially
decreasing the resilience of the FatNemo protocol. Fortunately, RGIS only requires
loose consistency among the servers, which indicates that disabling NACK may be a

feasible solution.

CHAPTER 8. FATTREE BASED END-SYSTEM MULTICAST 194

Alternatively, a hop-to-hop ACK mechanism can solve this problem without af-

fecting the resilience, but the overhead of this approach requires more investigation.

8.9 C(Conclusions and Further Work

This chapter first described FatNemo, a novel scalable end-system multicast protocol
that emulates a fat-tree on the wide area network to build data delivery topologies
with minimized mean and standard deviation of the response time, then discussed
how to enhance the RGIS CDN using FatNemo. FatNemo is based on Nemo, a
resilient end-system multicast protocol [40]. Simulation results show that FatNemo
can achieve significantly higher delivery ratios than alternative protocols (an increase
of up to 360% under high load), while reducing the mean (by up to 80%) and standard
deviation (by up to 84%) of the response time in the non-overloaded case. Under a
heavy load and a realistic host failure rate, the resulting protocol is able to attain
high delivery ratios with negligible cost in terms of control-related traffic. To adopt
the FatNemo protocol for the CDN in RGIS, the NACK feature should be disabled

or we can use alternative mechanisms such as hop-to-hop ACK.

Chapter 9

Conclusions and Future Work

9.1 Summary

A GIS built on the relational data model and modern relational database systems
allows the application to ask complex and sophisticated questions about composi-
tions of resources. We have described the architecture of our RGIS relational grid
information service system, followed by the description of the building components
of the RGIS system including query rewriting, topology generation, scheduling with
inaccurate job size information, serial and parallel TCP throughput modeling and
monitoring, and end-system multicast.

The dissertation started with GridG, our synthetic grids topology generator and
annotator. GridG can generate network topologies that follow the power-laws of the
Internet topology yet also keeping the clear hierarchy of the Internet. GridG can also
sensibly annotate the topology from the network to the hosts level, considering both
intro- and inter- hosts correlations.

The dissertation then described our query rewriting techniques for fast user re-

sponse time, which trade off between the running time of a query and the number

195

CHAPTER 9. CONCLUSIONS AND FUTURE WORK 196

of results it returns. We show that tradeoffs over many orders of magnitude are
possible, and the techniques can also be used to keep query processing time largely
independent of query complexity, albeit returning fewer results with more complex
queries. RGIS uses the techniques and a watchdog to bound the running time of
queries.

Our work on the size-based scheduling policies first shows the performance of
SRPT and FSP with inaccurate job size information and then applied them to web
server scheduling and P2P server side scheduling. Our work has shown that it is
possible to apply size-based schedulers on the RGIS servers.

Our work on the modeling and monitoring of sequential /parallel TCP throughput
is important for distributed systems developer and researchers. Also, these techniques
can be applied in the building of the CDN on which the RGIS servers rely to propagate
its updates.

Our work on multicast proposed and evaluated a novel end-system multicast
protocol based on the idea of fat-trees. The current CDN within RGIS is based
on subscribe/publish model, which can use either unicast or multicast as its data
transferring mechanism. Our fat-tree based multicast protocol can be adopted by
the CDN of RGIS as it has significantly higher performance and better scalability
than unicast in most cases.

As a conclusion, our work demonstrates for the first time that it is feasible to
provide the flexibility and power of a relational data model in a distributed GIS
system while controlling the costs associated with it. Several major components for

the system are also described in detail.

CHAPTER 9. CONCLUSIONS AND FUTURE WORK 197

9.2 Integration of the RGIS system

Our next step in the development of the RGIS system is to integrate all the available

research components and software modules into the current prototyped system.

9.3 Future work

Dynamic data is an important component of computational grids. Although our
current implementation of the RGIS system has considered dynamic contents in the
schema design, we are not entirely clear how to handle them efficiently in a scalable
manner. Some dynamic contents (such as CPU load) are transient by nature, which
makes the overhead of keeping all the relevant RGIS server consistent too high. Our
strategy is to utilize other monitoring tools such as ReMoS [141], RPS [78] and
DualPats [152] to help clients get dynamic data on the computing resources in a real
time manner. More work is needed to explore this interesting topic.

Scheduling the queries and updates on the RGIS servers for Quality of Service is
another interesting research topic. Although this thesis has addressed the scheduling

problem for better performance, the scheduling component is not targeted at QoS.

Bibliography

[1] The apache software foundation. http://www.apache.org/.
[2] Bonnie, a unix file system benchmark. http://www.textuality.com/bonnie/.
[3] http://codeen.cs.princeton.edu.
[4] http://dast.nlanr.net/projects/iperf/.
[5] http://www.isi.edu/nsnam/ns/.
[6] http://www.planet-lab.org.
[7] The internet traffic archive. http://ita.ee.lbl.gov/.
[8] The ircache project. http://www.ircache.net/.
[9] Kazaa homepage. http://www.kazaa.com.
[10] The squid web proxy cache project. http://www.squid-cache.org/.
[11] Bittorrent homepage, 2004. http://bitconjurer.org/BitTorrent.
[12] eDonkey homepage, 2004. http://www.edonkey2000.com.
[13] Gnutella homepage, 2004. http://www.gnutella.com.
[14] Kazaa homepage, 2004. http://www.kazaa.com.
[15] Mutella homepage, 2004. http://mutella.sourceforge.net.

[16] William Adjie-Winoto, Elliot Schwartz, Hari Balakrishnan, and Jeremy Lilley.
The design and implementation of an intentional naming system. In Proceedings
of the 17th ACM Symposium on Operating System Principles, December 199.

198

BIBLIOGRAPHY 199

[17]

18]

[19]

[20]

[21]

[22]

23]

[24]

[25]

[26]

[27]

28]

K. Aida, A. Takefusa, H. Nakada, S. Matsuoka, S. Sekiguchi, and U. Na-
gashima. Performance evaluation model for scheduling in a global computing

system. International Journal of High Performance Computing Applications,
14(3), 2000.

William Aiello, Fan Chung, and Linyuan Lu. A random graph model for mas-
sive graphs. In ACM Symposium on Theory of Computing, 2000.

Reka Albert and Albert laszlo Barabasi. Statistical mechanics of complex net-
works. Reviews of modern physics, 74, 2002.

Paul Albitz and Cricket Liu. DNS and BIND. O’Reilly and Associates, Inc.,
Sebastopol, California, 1992.

W. Allcock, J. Bester, J. Bresnahan, A. Cervenak, L. Liming, and S. Tuecke.
GridFTP: Protocol extensions to ftp for the grid. Technical report, Argonne
National Laboratory, August 2001.

W. Allcock, J. Bester, J. Bresnahan, A. Chervenak, I. Foster, C. Kesselman,
S. Meder, V. Nefedova, D. Quesnel, and S. Tuecke. Data management and

transfer in highperformance computational grid environments. Parallel Com-
puting, 28, 2002.

Arnold O. Allen. Probability, statistics, and queueing theory with computer
science applications. Academic press, Inc., 1990.

M. Allen and R. Wolski. The livny and plank-beck problems: Studies in data
movement on the computational grid. In Supercomputing 2003, November 2003.

J. Almeida, M. Dabu, A. Manikutty, and P. Cao. Providing differentiated
quality-of-service in web hosting services. In Proc. 1st WISP, 1998.

Eitan Altman, Konstantin Avrachenkov, and Chadi Barakat. A stochastic
model of TCP/IP with stationary random. In ACM SIGCOMM, pages 231—
242, 2000.

Hari Balakrishnan, Venkata N. Padmanabhan, Srinivasan Seshan, Mark
Stemm, and Randy H. Katz. TCP behavior of a busy internet server: Analysis
and improvements. In INFOCOM (1), pages 252-262, 1998.

Hari Balakrishnan, Srinivasan Seshan, Mark Stemm, and Randy H. Katz. An-
alyzing Stability in Wide-Area Network Performance. In ACM SIGMETRICS,
June 1997.

BIBLIOGRAPHY 200

[29] Suman Banerjee and Bobby Bhattacharjee. A comparative study of application
layer multicast protocols, 2002. Submitted for review.

[30] Suman Banerjee, Bobby Bhattacharjee, and Christopher Kommareddy. Scal-
able application layer multicast. In Proc. of ACM SIGCOMM, August 2002.

[31] Suman Banerjee, Seungjoon Lee, Bobby Bhattacharjee, and Aravind Srini-
vasan. Resilient multicast overlays. In Sigmetrics 2003, 2003.

[32] Suman Banerjee, Seungjoon Lee, Bobby Bhattacharjee, and Aravind Srini-
vasan. Resilient multicast using overlays. In Proc. of ACM SIGMETRICS,
June 2003.

[33] Nikhil Bansal and Mor Harchol-Balter. Analysis of SRPT scheduling: investi-
gating unfairness. In Proceedings of SIGMETRICS/Performance, pages 279—
290, 2001.

[34] Nikhil Bansal and Mor Harchol-Balter. Analysis of SRPT scheduling: Investi-
gating unfairness. In Proc. ACM SIGMETRICS, 2001.

[35] A.L. Barabasi and R.Albert. Emergence of scaling in random networks. Science,
pages 509-512, 1999.

[36] Paul Barford and Mark Crovella. Measuring web performance in the wide area.
Performance Evaluation Review, 27(2):37-48, 1999.

[37] Mayank Bawa, Hrishikesh Deshpande, and Hector Garcia-Molina. Transience
of peers & streaming media. In Proc. of HotNets-I, October 2002.

[38] Daniel S. Bernstein, Zhengzhu Feng, Brian Neil Levine, and Shlomo Zilberstein.
Adaptive peer selection. In Proc. 2nd IPTPS, 2003.

[39] P. Bernstein and N. Goodman. The failure and recovery problem for replicated
distributed databases. ACM Transactions on Database Systems, December
1984.

[40] Stefan Birrer and Fabidn E. Bustamante. Nemo - resilient peer-to-peer multi-
cast without the cost. In Proceedings of the 12th Annual Multimedia Computing
and Networking Conference (MMCN’05).

[41] Stefan Birrer, Dong Lu, Fabian Bustamante, Yi Qiao, and Peter Dinda. Fat-
nemo: Building a resilient multisource multicast fat-tree. In Proceedings of the
9th Web Content Caching and Distribution Workshop (WCW), October 2004.

BIBLIOGRAPHY 201

[42] Jurg Bolliger, Thomas Gross, and Urs Hengartner. Bandwidth modeling for
network-aware applications. In INFOCOM (8), pages 1300-1309, 1999.

[43] Jurg Bolliger, Thomas Gross, and Urs Hengartner. Bandwidth modeling for
network-aware applications. In INFOCOM (3), pages 1300-1309, 1999.

[44] O.J. Boxma and J.W. Cohen. Heavy-traffic analysis for the G/G/1 queue with
heavy-tailed distributions. Queueing Systems, 33:177-204, 1999.

[45] Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual
Web search engine. Computer Networks and ISDN Systems, 30(1-7):107-117,
1998.

[46] Fabiin E. Bustamante and Yi Qiao. Friendships that last: Peer lifespan and
its role in P2P protocols. In Proc. of IWCW, October 2003.

[47] Fabian E. Bustamante, Patrick Widener, and Karsten Schwan. Scalable direc-
tory services using proactivity. In Proceedings. of Supercomputing 2002 (SC
2002), 2002.

[48] Werner Bux. Analysis of a local-area bus system with controlled access. IEEE
Transactions on Computers, 32(8):760-763, 1983.

[49] R. Buyya and M. Murshed. Gridsim: A toolkit for the modeling and simulation
of distributed resource management and scheduling for grid computing. The
Journal of Concurrency and Computation: Practice and Ezperience (CCPE),
May 2002 (to appear).

[50] Kenneth L. Calvert, Matthew B. Doar, and Ellen W. Zegura. Modeling internet
topology. IEEE Communications Magazine, 35(6):160-168, June 1997.

[61] Kenneth L. Calvert, Matthew B. Doar, and Ellen W. Zegura. Modeling internet
topology. IEEE Communications Magazine, 35(6):160-163, June 1997.

[52] Marne C. Cario and Barry L. Nelson. Numerical Methods for Fitting and Sim-
ulating Autoregressive-to-Anything Processes. INFORMS Journal on Comput-
ing, 10(1):72-81, 1998.

[53] Robert Carter and Mark Crovella. Measuring bottleneck link speed in packet-
switched networks. Performance Evaluation, (28):297-318, 1996.

[54] Antonio Carzaniga, David S. Rosenblum, and Alexander L. Wolf. Design and
evaluation of a wide-area event notification service. ACM Transactions on
Computer Systems, 19(3), 2001.

BIBLIOGRAPHY 202

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]
[66]

H. Casanova. Simgrid: A toolkit for the simulation of application scheduling.
In the First IEEE/ACM International Symposium on Cluster Computing and
the Grid (CCGrid 2001), 2001.

Miguel Castro, Peter Druschel, Anne-Marie Kermarrec, Animesh Nandi,
Antony Rowstron, and Atul Singh. Splitstream: High-bandwidth multicast
in cooperative environments. In Proc. of the 19th ACM SOSP, October 2003.

Miguel Castro, Antony Rowstron, Anne-Marie Kermarrec, and Peter Druschel.
SCRIBE: A large-scale and decentralised application-level multicast infrastruc-
ture. IEEE Journal on Selected Areas in Communication, 20(8), 2002.

Yatin Chawathe. Scattercast: an architecture for Internet broadcast distribution
as an infrastructure service. Ph.D. Thesis, U. of California, Berkeley, CA, Fall
2000.

A. Chervenak, V. Vellanki, and Z. Kurmas. Protecting file systems: A survey of
backup techniques. In Proceedings of the Joint NASA and IEEE Mass Storage
Conference, 1998.

Bill Cheswick, Hal Burch, and Steve Branigan. Mapping and visualizing the
internet. In Proceedings of the USENIX Annual Technical Conference, June
2000.

Bilal Chinoy. Dynamics of internet routing information. In SIGCOMM, pages
45-52, 1993.

Yang-Hua Chu, Aditya Ganjam, T. S. Eugene Ng, Sanjay G. Rao, Kunwadee
Sripanidkulchai, Jibin Zhan, and Hui Zhang. Early experience with an Internet
broadcast system based on overlay multicast. In Proc. of USENIX ATC, June
2004.

Yang-Hua Chu, Sanjay G. Rao, Srinivasan Seshan, and Hui Zhang. A case
for end system multicast. IEEE Journal on Selected Areas in Communication,
20(8), October 2002.

Yang-Hua Chu, Sanjay G. Rao, and Hui Zhang. A case for end system multi-
cast. In Proc. of ACM SIGMETRICS, June 2000.

Bram Cohen. BitTorrent. bitconjurer.org/BitTorrent/, 2001. File distribution.

Mark Crovella, Robert Frangioso, and Mor Harchol-Balter. Connection schedul-
ing in web servers. In Proc. USENIX USITS, 1999.

BIBLIOGRAPHY 203

[67]

[68]

[69]

[70]

[71]

[72]

73]

[74]

[75]

[76]

[77]

(78]

K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman. Grid information
services for distributed resource sharing. In Proceedings of HPDC 2001, August
2001.

J. da Silva and O. Gudmundsson. The amanda network backup system man-
ager. In Proceedings of the USENIX Systems Administration conference, 1993.

J. da Silva, O. Gudmundsson, and D. Mosse. Performance of a parallel network
backup manager. In Proceedings of USENIX, pages 17-26, 1992.

Stephen E. Deering. Multicast routing in internetworks and extended LANS.
In Proc. of ACM SIGCOMM, August 1988.

A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker, H. Stur-
gis, D. Swinehart, and D. Terry. Epidemic algorithms for replicated database

maintenance. In Sizth Symposium on Principles Of Distributed Computing,
1987.

Shuang Deng. Empirical model of WWW document arivals at access links. In
IEEE International Conference on Communication, June 1996.

P. Dinda and D. O’Hallaron. An evaluation of linear models for host load
prediction. In 8th IEEE International Symposium on High Performance Dis-
tributed Computing (HPDC-8), 1999.

P. Dinda and B. Plale. A unified relational approach to grid information ser-
vices. Grid Forum Informational Draft GWD-GIS-012-1, February 2001.

Peter A. Dinda. The statistical properties of host load. Scientific Programming,
7(3,4), 1999. A version of this paper is also available as CMU Technical Report
CMU-CS-TR-98-175. A much earlier version appears in LCR ’98 and as CMU-
CS-TR-98-143.

Peter A. Dinda. Online prediction of the running time of tasks. Cluster Com-
puting, 5(3), 2002.

Peter A. Dinda and Dong Lu. Nondeterministic queries in a relational grid
information service. In Proceedings of ACM/IEEE SC 2003 (Supercomputing
2003), 2003. To Appear. (In this volume.).

Peter A. Dinda and David R. O’Hallaron. An extensible toolkit for resource
prediction in distributed systems. Technical Report CMU-CS-99-138, School
of Computer Science, Carnegie Mellon University, July 1999.

BIBLIOGRAPHY 204

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

88

[89]

[90]

Christopher Diot, Brian N. Levine, Bryan Lyles, Hassan Kassem, and Doug
Balensiefen. Deployment issues for the IP multicast service and architecture.
IEEFE Network, 14(1), January/February 2000.

Matthew B. Doar. A better model for generating test networks. IEEFE GLOBE-
COM, 1996.

Matthew B. Doar. A better model for generating test networks. In Proc. of
Globecom, November 1996.

Michael Doar. A better model for generating test networks. In Proceedings of
GLOBECOM ’96, November 1996.

Benoit Donnet, Philippe Raoult, Timur Friedman, and Mark Crovella. Effi-
cient algorithms for large-scale topology discovery. In Proceedings of the 2005
ACM SIGMETRICS Conference on Measurement and Modeling of Computer
Systems (SIGMETRICS), June 2005. To Appear.

Constantinos Dovrolis, Parameswaran Ramanathan, and David Moore. What
do packet dispersion techniques measure? In INFOCOM, pages 905-914, 2001.

Allen B. Downey. Using pathchar to estimate internet link characteristics. In
Measurement and Modeling of Computer Systems, pages 222-223, 1999.

John Dunagan, Nicholas J.A. Harvey, Michael B. Jones, Dejan Kostic, and
Marvin Theimerand Alec Wolman. Fuse: Lightweight guaranteed distributed
failure notification. In Proceedings of the Sizth Symposium on Operating Sys-
tems Design and Implementation (OSDI), 2004.

Kevin Fall and Sally Floyd. Simulation-based comparisons of Tahoe, Reno and
SACK TCP. Computer Communication Review, 26(3):5-21, July 1996.

Michalis Faloutsos, Petros Faloutsos, and Christos Faloutsos. On power-law
relationships of the internet topology. In Proceedings of SIGCOMM °99, 1999.

Michalis Faloutsos, Petros Faloutsos, and Christos Faloutsos. On power-law
relationships of the internet topology. In SIGCOMM, pages 251-262, 1999.

Renato Figueiredo, Peter A. Dinda, and Jose Fortes. A case for grid computing
on virtual machines. In Proceedings of the 23rd International Conference on
Distributed Computing Systems (ICDCS 2003), May 2003. To Appear.

BIBLIOGRAPHY 205

[91] Steve Fisher. Relational model for information and monitoring. Technical
Report Informational Draft GWD-GP-7-1, Grid Forum, 2001.

[92] Sally Floyd and Van Jacobson. Random early detection gateways for congestion
avoidance. IEEE/ACM Transactions on Networking, 1(4):397-413, 1993.

[93] I. Foster, C. Kesselman, J. Nick, and S. Tuecke. Grid services for distributed
system integration. Computer, 35(6), 2002.

[94] I. Foster, C. Kesselman, and S. Tuecke. The anatomy of the grid: Enabling
scalable virtual organizations. International Journal of Supercomputer Appli-
cations, 15, 2001.

[95] Ian Foster. Globus web page. Technical ~ Report
http://www.mecs.anl.gov/globus, Argone National Laboratory.

[96] Ian Foster and Carl Kesselman, editors. The Grid: Blueprint for a New Com-
puting Infrastructure. Morgan Kaufmann, 1999.

[97] Paul Francis. Yoid: Extending the Internet multicast architecture.
http://www.aciri.org/yoid, April 2000.

[98] Eric J. Friedman and Shane G. Henderson. Fairness and efficiency in web server
protocols. In Proceedings of SIGMETRICS/Performance, 2003.

[99] V. Fuller, T. Li, J. Yu, and K. Varadhan. (rfc1519) Classless Inter-Domain
Routing (CIDR): an address assignment and aggregation strategy, September
1993. http://www.fags.org/rfcs/rfc1519.txt.

[100] Fyodor. Remote os detection via tcp/ip stack fingerprinting. (web page).
http://www.insecure.org/nmap/nmap-fingerprinting-article.html.

[101] Simson Garfinkel. PGP: Pretty Good Privacy. O'Reilly and Assocates, 1994.
[102] Global Grid Forum. Global grid forum web site. http://www.gridforum.org.

[103] Mingwei Gong and Carey Williamson. Quantifying the properties of srpt
scheduling. In Proceedings of IEEE MASCOTS, 2003.

[104] Mingwei Gong and Carey Williamson. Simulation evaluation of hybrid srpt
scheduling policies. In Proceedings of IEEE MASCOTS, 2004.

[105] M. Goyal, R. Guerin, and R. Rajan. Predicting tcp throughput from non-
invasive network sampling. In IEEE INFOCOM, 2002.

BIBLIOGRAPHY 206

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

Krishna P. Gummadi, Richard J. Dunn, Stefan Saroiu, Steven D. Gribble,
Henry M. Levy, and John Zahorjan. Measurement, modeling and analysis of a
peer-to-peer file-sharing workload. In Proc. of ACM SOSP, December 2003.

Krishna P. Gummadi, Richard J. Dunn, Stefan Saroiu, Steven D. Gribble,
Henry M. Levy, and John Zahorjan. Measurement, modeling, and analysis of
a peer-to-peer file-sharing workload. In Proc. 19th ACM SOSP, 2003.

T. Hacker, B. Athey, and B. Noble. The end-to-end performance effects of
parallel tcp sockets on a lossy wide-area network. In 16th IEEE/ACM Inter-
national Parallel and Distributed Processing Symposium (IPDPS), 2002.

Thomas J. Hacker, Brian D. Noble, and Brian D.Athey. The effects of systemic
packet loss on aggregate tcp flows. In IEEE/ACM Supercomputing, 2002.

Thomas J. Hacker, Brian D. Noble, and Brian D.Athey. Improving throughput
and maintaining fairness using parallel TCP. In IEEE Infocom, 2004.

Mor Harchol-Balter, Mark E. Crovella, and SungSim Park. The case for srpt
scheduling in web servers. Technical Report MIT-LCR-TR-767, MIT lab for
computer science, October 1998.

Mor Harchol-Balter, Bianca Schroeder, Nikhil Bansal, and Mukesh Agrawal.
Size-based scheduling to improve web performance. ACM Transactions on
Computer Systems (TOCS), 21(2), May 2003.

Mor Harchol-Balter, Karl Sigman, and Adam Wierman. Asymptotic conver-

gence of scheduling policies with respect to slowdown. Performance Evaluation,
49(1/4), 2002.

R. Hinden. (rfc1517) Applicability statement for the implemen-
tation of Classes Inter-Domain Routing (CIDR), September 1993.
http://www.fags.org/rfcs/rfc1517.txt.

Susan Hinrichs, Corey Kosak, David O’Hallaron, Thomas Stricker, and Riichiro
Take. An architecture for optimimal all-to-all personalized communication. In
Proceedings of the 6th ACM Symposium on Parallel Algorithms and Architec-
tures (SPAA), pages 310-319, 1994.

Mark Homewood and Moray McLaren. Meiko CS-2 interconnect elan — elite
design. In IEEE Hot Interconnects Symposium, August 1993.

BIBLIOGRAPHY 207

[117] Ningning Hu and Peter Steenkiste. Evaluation and characterization of avail-
able bandwidth probing techniques. IEEE JSAC Special Issue in Internet and
WWW Measurement, Mapping, and Modeling, 21(6), August 2003.

[118] B. Huffaker, Daniel Plummer, David Moore, and K. Claffy. Topology discov-
ery by active probing. In Proceedings of Symposium on Applications and the
Internet, January 2002.

[119] IBM International Technical Support Organization. Understanding LDAP.
IBM Corporation, 1998.

[120] InfiniBand Trade Association. Infiniband architecture specification (1.0.a).
www.infinibandta.com, June 2001.

[121] International Telecommunication Union. Information technology — open sys-
tems interconnection — the directory: Overview of concepts, models, and ser-
vices, August 1997.

[122] M. Jain and C. Dovrolis. End-to-end available bandwidth: Measurement
methodolody, dynamics, and relation with tcp throughput. In ACM SIG-
COMM, 2002.

[123] M. Jain and C. Dovrolis. Pathload: A measurement tool for end-to-end avail-
able bandwidth. In Passive and Active Measurement Workshop, 2002.

[124] John Jannotti, David K. Gifford, Kirk L. Johnson, M. Frans Kaashoek, and
James W. O’Toole Jr. Overcast: Reliable multicasting with and overlay net-
work. In Proc. of the 4th USENIX OSDI, October 2000.

[125] Cheng Jin, Qian Chen, and Sugih Jamin. Inet: Internet topology generator.
Technical Report CSE-TR443-00, Department of EECS, University of Michigan
Ann Arbor, 2000.

[126] G. Jin and B. Tierney. Netest: A tool to measure maximum burst size, avail-
able bandwidth and achievable throughput. In International Conference on
Information Technology, 2003.

[127] G. Jin, G. Yang, B. Crowley, and D. Agarwal. Network characterization service
(ncs). In 10th IEEE Symposium on High Performance Distributed Computing,
Aug. 2001., 2001,

BIBLIOGRAPHY 208

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

Guojun Jin and Brian L. Tierney. System capability effects on algorithms for
network bandwidth measurement. In ACM SIGCOMM conference on Internet
measurement, 2003.

S. Keshav. A control-theoretic approach to flow control. Proceedings of the
conference on Communications architecture and protocols, pages 3-15, 1993.

J. J. Kistler and M. Satyanarayanan. Disconnected operation in the coda
file system. In Thirteenth ACM Symposium on Operating Systems Principles,
volume 25, pages 213-225, Asilomar Conference Center, Pacific Grove, U.S.,
1991. ACM Press.

Jon M. Kleinberg, Ravi Kumar, Prabhakar Raghavan, Sridhar Rajagopalan,
and Andrew S. Tomkins. The web as a graph: Measurements, models and
methods. Lecture Notes in Computer Science, 1627:1-18, 1999.

Dejan Kostié¢, Adolfo Rodriguez adn Jeannie Albrecht, and Amin Vahdat. Bul-
let: High bandwidth data dissemination using an overlay mesh. In Proc. of the
19th ACM SOSP, October 2003.

B. Krishnamurthy and J. Rexford. Web Protocols and Practice: HTTPI1.1,
Networking Protocols, Caching, and Traffic Measurements. Addison-Wesley,
2001.

Kevin Lai and Mary Baker. Nettimer: A tool for measuring bottleneck link
bandwidth. In USENIX Symposium on Internet Technologies and Systems,
pages 123-134, 2001.

Butler W. Lampson. Designing a global name service. In 4th ACM Symposium
on Principles of Distributed Computing, August 1986.

Thomas Leighton. Introduction to Parallel Algorithms and Architectures: Ar-
rays, Trees, Hypercubes. Morgan Kaufmann, 1992.

Charles E. Leiserson. Fat-trees: Universal networks for hardware-efficient su-
percomputing. IEEE Transactions on Computers, 34(10):892-901, October
1985.

Charles E. Leiserson, Zahi S. Abuhamdeh, David C. Douglas, Carl R. Feynman,
Mahesh N. Ganmukhi, Jeffrey V. Hill, W. Daniel Hillis, Bradley C. Kuszmaul,
Margaret A. St Pierre, David S. Wells, Monica C. Wong-Chan, Shaw-Wen
Yang, and Robert Zak. The network architecture of the Connection Machine
CM-5. Journal of Parallel and Distributed Computing, 33(2):145-158, 1996.

BIBLIOGRAPHY 209

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

Chuang Liu and Tan Foster. A constraint language approach to grid resource
selection. Technical Report TR-2003-07, Department of Computer Science,
University of Chicago, March 2003.

X. Liu and A. Chien. Realistic large-scale online network simulation. 2004.

Bruce Lowekamp, Nancy Miller, Dean Sutherland, Thomas Gross, Peter
Steenkiste, and Jaspal Subhlok. A resource monitoring system for network-
aware applications. In Proceedings of the 7th IEEE International Symposium
on High Performance Distributed Computing (HPDC), pages 189-196. IEEE,
July 1998.

Bruce Lowekamp, David R. O’Hallaron, and Thomas R. Gross. Topology dis-
covery for large ethernet networks. In Proceedings of SIGCOMM 2001, August
2001.

Dong Lu and Peter Dinda. Gridg: Generating realistic computational grids.
Performance Evaluation Review, 30(4):33-40, 2003.

Dong Lu and Peter A. Dinda. GridG: Generating realistic computational grids.
ACM Sigmetrics Performance Evaluation Review, 30(4):33-41, March 2003.

Dong Lu and Peter A. Dinda. Synthesizing realistic computational grids. In
Proceedings of ACM/IEEE SC 2008 (Supercomputing), November 2003.

Dong Lu and Peter A. Dinda. Synthesizing realistic computational grids. In
Proc. of S§C2003, November 2003.

Dong Lu, Peter A. Dinda, and Jason A. Skicewicz. Scoped and approximate
queries in a relational grid information service. In Proceedings of the 4th Inter-
national Workshop on Grid Computing (Grid 2003), November 2003.

Dong Lu, Yi Qiao, P. Dinda, and F. Bustamente. Modeling and taming parallel
tcp on the wide area network. Technical Report NWU-CS-04-35, Northwestern
University, Computer Science Department, April 2004.

Dong Lu, Yi Qiao, Peter Dinda, and Fabian Bustamante. Characterizing and
predicting tcp throughput on the wide area network. Technical Report NWU-
(CS-04-34, Northwestern University, Computer Science Department, April 2004.

Dong Lu, Yi Qiao, Peter Dinda, and Fabian Bustamante. Modeling and taming
parallel tcp on the wide area network. In Proceedings of the 19th IEEE Interna-
tional Parallel and Distributed Processing Symposium (IPDPS 05), April 2005.

BIBLIOGRAPHY 210

[151] Dong Lu, Yi Qiao, Peter A. Dinda, and Fabian E. Bustamante. Characterizing
and predicting tcp throughput on the wide area network. Technical Report
NWU-CS-04-34, Northwestern University, Department of Computer Science,
April 2004.

[152] Dong Lu, Yi Qiao, Peter A. Dinda, and Fabian E. Bustamante. Characterizing
and predicting tcp throughput on the wide area network. In ICDCS, 2005.

[153] Dong Lu, H. Sheng, and P. Dinda. Effects and implications of file size/service
time correlation on web server scheduling policies. Technical Report NWU-CS-
04-33, Northwestern University, Computer Science Department, April 2004.

[154] Dong Lu, Huanyuan Sheng, and Peter Dinda. Size-based scheduling policies
with inaccurate scheduling information. In Proceedings of IEEE MASCOTS,
2004.

[155] Dong Lu, Huanyuan Sheng, and Peter A. Dinda. Effects and implications of
file size/service time correlation on web server scheduling policies. Technical
Report NWU-CS-04-33, Northwestern University, Department of Computer
Science, 2004.

[156] Dong Lu, Huanyuan Sheng, and Peter A. Dinda. Size-based scheduling policies
with inaccutate scheduling information. In Proc. 12th Annual Meeting of the
IEEE/ACM International Symposium on Modeling, Analysis and Simulation
of Computer and Telecommunication Systems (MASCOTS), 2004.

[157] Stephen Manley and Margo Seltzer. Web Facts and Fantasy. In Proceedings of
the 1997 Useniz Symposium on Internet Technologies and Systems (USITS97),
Monterey, CA, 1997.

[158] M. Mathis and M. Allman. A framework for defining empirical bulk transfer
capacity metrics, rfc3148, July 2001.

[159] M. Mathis, J Heffner, and R Reddy. Web100: Extended tcp instrumentation for
research, education and diagnosis. ACM Computer Communications Review,
33(3), July 2003.

[160] Matthew Mathis, Jeffrey Semke, and Jamshid Mahdavi. The macroscopic be-
havior of the tcp congestionavoidance algorithm. Computer Communication

Review, 27(3), 1997.

BIBLIOGRAPHY 211

[161] Alberto Medina, Anukool Lakhina, Ibrahim Matta, John Byers famedina, and
anukool. Brite: An approach to universal topology generation. In IEEE MAS-
COTS 01 (Tools track), 2001.

[162] Alberto Medina, Ibrahim Matta, and John Byers. On the origin of power laws
in internet topologies. ACM SIGCOMM Computer Communication Review
(CCR), 30:18-28, 2000.

[163] Milena Mihail and Christos Papadimitriou. On the eigenvalue power law.
Springer-Verlag Lecture Notes in Computer Science, 2002.

[164] J. Mogul and S. Deering. A framework for defining empirical bulk transfer
capacity metrics, rfc3148, November 1990.

[165] R. Morris. TCP behavior with many flows. In ICNP, pages 205-211, 1997.

[166] Matt W. Mutka and Miron Livny. The available capacity of a privately owned
workstation environment. Performance Evaluation, 12(4):269-284, July 1991.

[167] Andy Myers, Peter A. Dinda, and Hui Zhang. Performance characteristics of
mirror servers on the internet. In INFOCOM (1), pages 304-312, 1999.

[168] Object Management Group. The common object request broker: Architecture
and specification (version 2.3.1). Technical report, Object Management Group,
1999.

[169] Jiter Padhye, Victor Firoiu, Don Towsley, and Jim Kurose. Modeling tcp
throughput: A simple model and its empirical validation. In ACM SIGCOMM,
1998.

[170] Venkata N. Padmanabhan, Helen J. Wang, and Philip A. Chou. Resilient peer-
to-peer streaming. In Proc. of IEEE ICNP, 2003.

[171] Ventata N. Padmanabhan and Kunwadee Sripanidkulchai. The case for coop-
erative networking. In IPTPS, 2002.

[172] Christopher R. Palmer and J. Gregory Steffan. Generating network topologies
that obey power laws. In GLOBECOM ’2000, 2000.

[173] Vern Paxson. End-to-end routing behavior in the Internet. In Proceedings of
the ACM SIGCOMM Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communications, volume 26,4 of ACM SIGCOMM
Computer Communication Review, pages 25—-38, New York, August 1996. ACM
Press.

BIBLIOGRAPHY 212

[174]

[175]

[176]

[177]

[178]

[179]

[180]

[181]

[182]

[183]

[184]

Vern Paxson. End-to-end routing behavior in the Internet. IEEE/ACM Trans-
actions on Networking, 5(5):601-615, 1997.

Vern Paxson and Sally Floyd. Wide area traffic: the failure of Poisson modeling.
IEEE/ACM Transactions on Networking, 3(3):226—244, 1995.

Dimitrios Pendarakis, Sherlia Shi, Dinesh Verma, and Marcel Waldvogel.
ALMI: An application level multicast infrastructure. In Proc. of USENIX
USITS, March 2001.

Ranjit Perera. The variance of delay time in queueing system M/G/1 with
optimal strategy SRPT. Archiv fur FElektronik und Uebertragungstechnik,
47(2):110-114, 1993.

Karin Petersen, Mike J. Spreitzer, Douglas B. Terry, Marvin M. Theimer, and
Alan J. Demers. Flexible update propagation for weakly consistent replication.
In Proceedings of the 16th ACM Symposium on Operating SystemsPrinciples
(SOSP-16), Saint Malo, France, 1997.

Beth Plale, Peter Dinda, and Gregor von Laszewski. Key concepts and services
of a grid information service. In Proceedings of the 15th International Confer-
ence on Parallel and Distributed Computing Systmes (PDCS 2002), 2002.

Beth Plale, Craig Jacobs, Charlie Moad, Rupali Parab, and Prajakta Vaidya.
Synthetic database benchmark/workload for grid information servers. In Pro-
ceedings of the 4th IEEE/ACM International Symposium on Cluster Computing
and the Grid (CCGrid 2004), 2004.

Yi Qiao, Dong Lu, F. Bustamante, and P. Dinda. Looking at the server side of
peer-to-peer systems. Technical Report NWU-CS-04-37, Department of Com-
puter Science, Northwestern University, March 2004.

Yi Qiao, Dong Lu, Fabian Bustamante, and Peter Dinda. Looking at the server
side of peer-to-peer systems. In 7th Workshop on Languages, Compilers, and
Run-time Systems for Scalable Computers (LCR 2004), 2004.

Lili Qiu, Yin Zhang, and Srinivasan Keshav. On individual and aggregate TCP
performance. In ICNP, pages 203-212, 1999.

Lili Qiu, Yin Zhang, and Srinivasan Keshav. Understanding the performance
of many TCP flows. Computer Networks, 37(3—4):277-306, 2001.

BIBLIOGRAPHY 213

[185] Rajesh Raman, Miron Livny, and Marvin Solomon. Matchmaking: Dis-
tributed resource management for high throughput computing. In Proceed-
ings of the Seventh IEEE International Symposium on High Performance Dis-
tributed Computing (HPDC ’98),, pages 140-146, July 1998.

[186] Rajesh Raman, Miron Livny, and Marvin Solomon. Resource management
through multilateral matchmaking. In Proceedings of the Ninth IEEE Interna-
tional Symposium on High Performance Distributed Computing (HPDC 2000),,
pages 290291, July 2000.

[187] Sylvia Ratnasamy, Mark Handley, Richard Karp, and Scott Shenker.
Application-level multicast using content-addressable networks. In Proc. of
NGC, November 2001.

[188] Sean Rhea, Dennis Geels, Timothy Roscoe, and John Kubiatowicz. Handling
churn in a DHT. In Proc. of USENIX ATC, December 2004.

[189] V. Ribeiro, R. Riedi, R. Baraniuk, J. Navratil, and L. Cottrell. pathchirp:
Efficient available bandwidth estimation for network paths. In Passive and
Active Measurement Workshop, 2003.

[190] Vinay Ribeiro, Mark Coates, Rudolf Riedi, Shriram Sarvotham, Brent Hen-
dricks, and Richard Baraniuk. Multifractal cross-traffic estimation, 2000.

[191] Matei Ripeanu and Ian Foster. Mapping gnutella network: Macroscopic prop-
ersies of large-scale peer-to-peer systems. In 1st International Workshop on
Peer-to-Peer Systems, 2002.

[192] Antony Rowstron and Peter Druschel. Pastry: Scalable, decentralized object
location, and routing for large-scale peer-to-peer systems. In Proceedings of the
IFIP/ACM International Conference on Distributed Systems Platforms (Mid-
dleware), 2001.

[193] Antony I. T. Rowstron and Peter Druschel. Pastry: Scalable, decentralized
object location, and routing for large-scale peer-to-peer systems. Middleware,
pages 329-350, 2001.

[194] RTI Inc. Rti inc. web site. http://www.rti.com.

[195] Stefan Saroiu, Krishna P. Gummadi, Richard J. Dunn, Steven D. Gribble, and
Henry M. Levy. An analysis of internet content delivery systems. In Proc. 5th
USENIX OSDI; 2002.

BIBLIOGRAPHY 214

[196] L. E. Schrage. A proof of the optimality of the shortest remaining processing
time discipline. Operations Research, 16:678—690, 1968.

[197] L. E. Schrage and L. W. Miller. The queue M/G/1 with the shortest remaining
processing time discipline. Operations Research, 14:670-684, 1966.

[198] F. Schreiber. Properties and applications of the optimal queueing strategy srpt
- a survey. Archiv fur Elektronik und Uebertragungstechnik, 47:372-378, 1993.

[199] B. Schroeder and M. Harchol-Balter. Web servers under overload: How schedul-
ing can help. Technical Report CMU-CS-02-143, Carnegie Mellon School of
Computer Science, June 2002.

[200] Srinivasan Seshan, Mark Stemm, and Randy H. Katz. SPAND: Shared passive
network performance discovery. In USENIX Symposium on Internet Technolo-
gies and Systems, 1997.

[201] S. Shenker, L. Zhang, and D. Clark. Some observations on the dynamics of a
congestion control algorithm. ACM Computer Communication Review, 1990.

[202] Harimath Sivakumar, Stuart Bailey, and Robert L. Grossman. PSockets: The
case for application-level network striping for data intensive applications using
high speed wide area networks. In Supercomputing, 2000.

[203] F. Donelson Smith, Felix Hernandez-Campos, Kevin Jeffay, and David Ott.
What TCP/IP protocol headers can tell us about the web. In SIGMET-
RICS/Performance, pages 245-256, 2001.

[204] Warren Smith, Abdul Waheed, David Meyers, and Jerry C. Yan. An evaluation
of alternative designs for a grid information service. Cluster Computing, 4:29—
37, 2001.

[205] H. J. Song, X. Liu, D. Jakobsen, R. Bhagwan, X. Zhang, Kenjiro Taura, and
Andrew A. Chien. The microgrid: a scientific tool for modeling computational
grids. In Supercomputing, 2000.

[206] N. Spring, R. Mahajan, and D. Wetherall. Measuring isp topologies with rock-
etfuel. In Proceedings of ACM/SIGCOMM, August 2002.

[207] Ton Stoica, Robert Morris, David Karger, Frans Kaashoek, and Hari Balakrish-
nan. Chord: A scalable Peer-To-Peer lookup service for internet applications.
In Proceedings of ACM SIGCOMM 2001, pages 149-160, 2001.

BIBLIOGRAPHY 215

[208] Jacob Strauss, Dina Katabi, and Frans Kaashoek. A measurement study of
available bandwidth estimation tools. In Internet Measurement Conference,
2003.

[209] Martin Swany and Rich Wolski. Multivariate resource performance forecasting
in the network weather service. In ACM/IEEFE conference on Supercomputing,
2002.

[210] Martin Swany and Rich Wolski. Representing dynamic performance informa-
tion in grid environments with the network weather service. In 2nd IEEE/ACM
International Symposium on Cluster Computing and the Grid (CCGRID’02),
2002.

[211] A. N. Tabet and D. D. Kouvatsos. On the approximation of the mean re-
sponse times of priority classes in a stable G/G/C/PR. queue. Journal of the
Operational Research Society, 43:227-239, 1992.

[212] A.S. Tanenbaum. Modern Operating Systems. Prentice Hall, 1995.

[213] Hongsuda Tangmunarunkit, Ramesh Govindan, and Sugih Jamin. Network
topology generators: degree-based vs. structural. In Proceedings of SIGCOMM
02, 2002.

[214] The Open Group. DCE 1.2.2: Introduction to OSF DCE. The Open Group,
September 1997. http://www.opengroup.org/pubs/catalog/f201.htm.

[215] Marvin Theimer and Michael B. Jones. Overlook: Scalable name service on
an overlay network. In Proceedings of the 22nd International Conference on
Distributed Computing Systems (ICDCS 2002), July 2002.

[216] Tibco Inc. Tibco inc. web site. http://www.tibco.com.

[217] B. Tierney. Tcp tuning guide for distributed application on wide area networks.
USENIX and SAGE Login, 26(1), 2001.

[218] Duc A. Tran, Kien A. Hua, and Tai Do. ZIGZAG: An efficient peer-to-peer
scheme for media streaming. In Proc. of IEEE INFOCOM, April 2003.

[219] Transaction Processing Council. Tpc benchmarks. http://www.tpc.org.

[220] Amin Vahdat, Michael Dahlin, Thomas Anderson, and Amit Aggarwal. Active
names: flexible location and transport of wide-area resources. In USENIX
Symposium on Internet Technology and Systems, October 1999.

BIBLIOGRAPHY 216

[221] Sudharshan Vazhkudai and Jennifer Schopf. Predicting sporadic grid data
transfers. In 12th IEEFE International Symposium on High Performance Dis-
tributed Computing (HPDC-12), 2002.

[222] Sudharshan Vazhkudai, Jennifer Schopf, and Ian Foster. Predicting the perfor-
mance of wide area data transfers. In The 16th Int’l Parallel and Distributed
Processing Symposium (IPDPS 2002)., 2002.

[223] J. Veizades, E. Guttman, C. Perkins, and S. Kaplan. Service location protocol.
Internet RFC 2165, June 1997.

[224] Jim Waldo. The Jini architecture for network-centric computing. Commaunica-
tions of the ACM, 42(7):76-82, 1999.

[225] Zheng Wang and Jon Crowcroft. Bandwidth-delay based routing algorithms.
In Proc. of IEEE GlobeCom, November 1995.

[226] B.M. Waxman. Routing of multipoint connections. IEEE J. of Selected Areas
in Communications, 6(9):1622-1671, 1988.

[227] D. Wessels and K. Claffy. (rfc2186) Internet cache protocol (ICP), version 2,
September 1997. http://www.fags.org/rfcs/rfc2186.html.

[228] Duane Wessels and K Claffy. ICP and the Squid Web cache. IEEE Journal on
Selected Areas in Communication, 16(3):345-357, 1998.

[229] Jared Winick and Sugih Jamin. Inet-3.0: Internet topology generator. Technical
Report CSE-TR-456-02, Department of EECS, University of Michigan Ann
Arbor, 2002.

[230] Richard Wolski. Dynamically forecasting network performance using the net-
work weather service. Cluster Computing, 1(1):119-132, 1998.

[231] Richard Wolski, Neil Spring, and Jim Hayes. The network weather service: A
distributed resource performance forecasting service for metacomputing. Jour-
nal of Future Generation Computing Systems, 15(5-6):757-768, 1999.

[232] Jun Xu, Zbigniew Kalbarczyk, and Ravishankar K. Iyer. Networked Windows
NT system field failure data analysis. In Proc. of PRDC, December 1999.

[233] Mengkun Yang and Zongming Fei. A proactive approach to reconstructing
overlay multicast trees. In Proc. of IEEE INFOCOM, March 2004.

BIBLIOGRAPHY 217

[234]

[235]

[236]

[237]

[238]

[239]

[240]

[241]

T. Ylonen. SSH — secure login connections over the internet. In Proceedings
of the 6th USENIX Security Symposium, pages 37-42, 1996.

Haifeng Yu and Amin Vahdat. Design and evaluation of a continuous consis-
tency model for replicated services. In Fourth Symposium on Operating Systems
Design and Implementation (OSDI), pages 305-318, 2001.

Marcia Zangrilli and Bruce B. Lowekamp. Comparing passive network mon-
itoring of grid application traffic with active probes. In Fourth International
Workshop on Grid Computing, 2003.

Xuehai Zhang, Jeffrey L. Freschl, and Jennifer M. Schopf. A performance study
of monitoring and information services for distributed systems. In Proceedings
of the 12th International Symposium on High Performance Distributed Com-
puting (HPDC), 2003.

Y. Zhang, N. Du, e Paxson, and S. Shenker. On the Constancy of Internet
path properties. In ACM SIGCOMM Internet Measurement Workshop, 2001.

Yin Zhang, Lee Breslau, Vern Paxson, and Scott Shenker. On the Character-
istics and Origins of Internet flow rates. In ACM SIGCOMM, 2002.

Yin Zhang, Nick Duffield, Vern Paxson, and Scott Shenker. On the constancy of
internet path properties. In ACM SIGCOMM Internet Measurement Workshop,
November 2001.

Shelley Q. Zhuang, Ben Y. Zhao, Anthony D. Joseph, Randy H. Katz, and
John D. Kubiatowicz. Bayeux: An architecture for scalable and fault-tolerant
wide-area data dissemination. In Proc. of NOSSDAV, June 2001.

Appendix A

Domain-Based Scheduling on Web

Servers

A.1 Introduction

In a web server, requests continuously arrive to be serviced. A request requires a
certain service time to be completed, time whose components include the CPU, the
disk, and the network path. A request is queued when it arrives and remains in
the system until it is complete, the total time from arrival to completion being the
sojourn time or response time. Scheduling policies determine which requests in the
queue are serviced at any point in time, how much time is spent on each, and what
happens when a new request arrives. Common goals of the scheduling policy are to
minimize the mean sojourn time (response time of the request), the average slowdown
(the ratio of its response time to its size), and to behave fairly to all requests.
Many policies are possible. First Come First Served (FCFS) is a non-preemptive
policy in which the requests are run to completion in the order in which they were

received. A more common policy is Processor Sharing (PS), which is preemptive. In

218

APPENDIX A. DOMAIN-BASED SCHEDULING ON WEB SERVERS 219

PS all requests in the queue are given an equal share of the web server’s attention.
Generalized Processor Sharing (GPS) generalizes PS with priorities. Often, FCFS
can be combined with PS or GPS, with FCFS dispatching of requests from the queue
to a pool of processes or threads that are collectively scheduled using PS or GPS.
These polices ignore the service time of the request.

Recently, size-based scheduling policies, those that incorporate the service time of
the request into their decisions, have been proposed for use in web servers. Harchol-
Balter, et al, have proposed the use of the Shortest Remaining Processing Time
(SRPT) scheduling policy in web servers [33, 112], showed how to incorporate it
into actual implementations [112], and proved that the performance gains of SRPT
usually do not come at the expense of large jobs [33]. In other words, SRPT is fair
with heavy-tailed job size distributions. Gong, et al further investigated the fairness
issues of SRPT through simulation [103] and proposed two hybrid SRPT scheduling
policies [104] to trade off the fairness with performance. The Fair Sojourn Protocol
(FSP) is a modified version of SRPT that has been proven to be more efficient and
fair than PS given any arrival sequence and service time distribution [98].

In the implementation of size-based polices such as SRPT and FSP on a web
server, the service time of the request is needed. The common assumption is that the
service time is the size of the file being served, as this is very easy to discover when
the request enters the system. More broadly, the assumption is that the service time
is strongly correlated to the file size. In this appendix, we examine the validity of
this assumption, and the impact that the degree of correlation between file size and
service time has on the performance of SRPT and FSP.

To evaluate this impact, we developed a simulator that can support PS, SRPT,
and FSP in both M/G/1/m and G/G/n/m. The simulator operates on a trace of

request arrivals, which can come either from an augmented Apache [1] web server

APPENDIX A. DOMAIN-BASED SCHEDULING ON WEB SERVERS 220

log, or from a trace generator. The trace contains the request arrivals, the file sizes,
and the actual service times in microseconds. We use traces that we have captured
on our department-level web server, and traces captured by others on web caches.

In our earlier work [154] on size-based scheduling policies with inaccurate job size
information, we showed that for mean response time and slowdown, the performance
of SRPT-FS and FSP-FS is dramatically affected by R, falling below that of PS
for low R values; and an effective job size estimator is needed to successfully apply
size-based scheduling plicies. This appendix focues on applying size-basd scheduling
in web servers when the correlation R is low. We first study how the performance
of the file-size based policies (SRPT-FS, FSP-FS) diverges from their ideal versions
(SRPT, FSP) as we increase the load on the web server. We then propose domain-
based scheduling and evaluate it via trace-driven simulations.

We study G/G/n/m in addition to M/G/1/m because previous research [72, 175]
has shown that Poisson processes are valid only for modeling the arrival of user-
initiated TCP sessions such as the arrival of TELNET connections and FTP con-
nections. HT'TP arrivals are not Poisson. That is because HT'TP document trans-
missions are not entirely initiated by the user: the HTTP client will automatically
generate a series of additional requests to download embedded files, thus resulting in a
more bursty process. Previous work [72] pointed out that the aggregated interarrival
times of HT'TP requests can be modeled with a heavy-tailed Weibull distribution.

There has been significant work on the G/G/n queuing model. However, we are
aware of no analytical results on G/G/n/m for SRPT or FSP scheduling in regimes
where interarrival times and service times are heavy-tailed. Therefore, the work we
describe in this appendix is based on measurement and simulation.

Using our infrastructure, and measured and synthesized trace data, we address

the following questions:

APPENDIX A. DOMAIN-BASED SCHEDULING ON WEB SERVERS 221

1. What is the actual degree of correlation between file size and service time in

practice? (Section A.2)

2. What is the performance of SRPT, FSP and PS under typical real workloads?
(Section A.3)

3. Is there a simple and low-overhead estimator for service time that would make

SRPT and FSP on M/G/1/m and G/G/n/m perform better? (Section A.4)

It is important to point out that our results in addressing questions 2 and 3 are
largely independent of our results for question 1, and the algorithm we develop in
response to question 4 provides benefits to SRPT and FSP over a wide range of
possible answers to question 1.

Our definition of service time is the time needed to send all of requested data
in the absence of other requests in the system. Our measurements show that the
assumption that file size and service time are strongly correlated is unwarranted—
the correlation is, in fact, often rather weak. We believe that the reason for this
phenomenon is path diversity to different clients. Even if for every specific request,
the service time t; = L + N/B, where N is the number of bytes in the transfer and
L and B are the latency and bandwidth of the path, every path will likely have a
different L and B. In aggregate, this will mean that ¢, will be weakly correlated with
N. Notice that this explanation does not require that the bottleneck for file transfer
be the network. Path diversity is simply a fact of life of a large network.

Our trace-driven simulations show that the performance of file size-based SRPT
and FSP is strongly affected by the weak correlation between file size and service
time reflected in our web server traces. In fact, R is indeed low enough that both
file-size based SRPT and FSP perform worse than PS. We believe that the job size
distribution, arrival process and load decide the threshhold value of R that SRTP

APPENDIX A. DOMAIN-BASED SCHEDULING ON WEB SERVERS 222

Scheduling Policy Description

PS Processor Sharing scheduling policy.
FSP Ideal Fair Sojourn Protocol,
service times are known exactly a priori.
SRPT Ideal Shortest Remaining Processing Time,
service times are known exactly a priori.
FSP-FS File size-based Fair Sojourn Protocol,
file sizes are used as service times.
SRPT-FS File size-based Shortest Remaining Processing Time,
file sizes are used as service times.
FSP-D Domain-based Fair Sojourn Protocol,
estimated service times are used as service times.
SRPT-D Domain-based Shortest Remaining Processing Time,

estimated service times are used as service times.

Figure A.1: Scheduling policies used in the appendix.

and FSP need to outperform PS.

These results led us to believe that a better estimator for service time was needed.
We refer to our estimator as a domain estimator, and the use of our domain-based
estimator with a size-based scheduling policy such as SRPT or FSP as domain-based
scheduling. The basic idea is to use the high order k£ bits of the source IP address to
assign the request to one of 2% domains. For each domain, we estimate the service
rate (file size divided by service time) based on all previous completed transfers to
the domain. The service rate is then used to estimate the service time of a new
request based on its file’s size. Based on our traces, there is a strong relationship
between the correlation of these estimates and the actual service time, which grows
with the number of bits £ used. In short, by choosing k£ appropriately, we can create
enough correlation to make SRPT and FSP perform well. Surprisingly, £ can be
kept relatively small, making the implementation of domain-based scheduling feasible
and fast. Throughout the appendix, we refer to the scheduling policies as listed in

Figure A.1, and refer to the queuing models used as listed in Figure A.2.

APPENDIX A. DOMAIN-BASED SCHEDULING ON WEB SERVERS 223

Queuing Model Description

M/G/1/m Poisson arrival process;
General service time distribution;
Single server ; Limited queue capacity m.
G/G/n/m General arrival process (Pareto and Weibull);
General service time distribution;
n servers ; Limited queue capacity m.

Figure A.2: Queuing models used in the appendix. Both Pareto and Weibull service
time distributions are considered.

A.2 s file size a good indicator of service time?

Size-based SRPT scheduling appeared in digital communication networks research in
1983 [48]. In this context, the service time was taken to be equal to the transmission
time of a message, which is proportional to the length of the message stored in the
node buffers. A web server serving static requests appears superficially similar in
that it transmits files to the client. However, there are differences. First, in the
digital communication network context, the work represented by the service time
is pushing the bits of the message onto the wire, while for the web server context,
the work involves end-to-end cooperation along an entire shared heterogeneous path.
Although most transfers are likely to be dominated by the bottleneck bandwidth in
the path and the latency of the path, there are multiple possible bottlenecks along
the path and they can vary with time due to packet losses and congestion. Second,
the disk(s), memory system(s), and CPU(s) of the web server and the client are also
potential bottlenecks. These complexities suggest that the service time of a request
may not be proportional or even well correlated with the size of the file it serves.
There are several possible definitions for service time in the web server context.
For example, we could focus on a bottleneck resource on the server, such as the CPU,

and define the service time as the total CPU time needed to execute the request.

APPENDIX A. DOMAIN-BASED SCHEDULING ON WEB SERVERS 224

Alternatively, we could treat the CPU, disk, and network link of the server as a
single resource and consider the total non-blocked time of a request on it. We could
also take a holistic view and consider it the time spent on the bottleneck resource on
the path from server to client. We take the position that the service time of a request
is the time that the combination of server, client, and network would take to finish
the request given no other requests in the whole end-to-end system (no load on any
server resource). In the following sections, we use this definition and argue that our
measurement methodology measures it by verifying that the loads on the resources
of the end-to-end system that we measure are miniscule.

To measure correlation between file size and service time we use the correlation
coefficient (Pierson’s R) [23]. To answer the question posed by this section, we
examine R values for a large trace acquired by us from a typical web server, as well
as 70 traces collected from web cache servers. The main conclusion is that R can
vary considerably from server to server, and can be quite small. R = 0.14 for our web
server trace, while the web caches have R evenly distributed in the range [0.12,0.61].
In subsequent sections, we use our web server trace to drive our simulation. However,
we also use synthetically generated traces in which we can control R directly. While
many web server traces are available, none that we could find record the actual service

time of the request and thus are not useful for the purposes of our study.

A.2.1 Measurement on a typical web server

We modified the code of the Apache log module so that it records the response time of
each request with microsecond granularity (using the TA32 cycle counter to measure
time). Under extremely low load conditions, as we document below, this time is
equivalent to the service time according to our definition above.

We deployed the module on our department-level web site. We collected data

APPENDIX A. DOMAIN-BASED SCHEDULING ON WEB SERVERS 225

7777777

y = 0.2349e

01 1 R’ = 0.9559

0.01 A

P(Load>x)

0.001 A

0.0001 A

0.00001

0 02 04 06 08 1 12 14 16 18 2
CPU Load

Figure A.3: Complementary distribution of CPU load on the web server.

from September 15, 2003 to October 19, 2003. This trace includes approximately
1.5 million HTTP requests, among which less than 2% are dynamic PHP requests
that collectively took less than 1% of the total service time recorded. > 98% of our
requests and > 99% of the service time in the trace are for static pages. Hence, our
web server is dominated by static web content. our results are comparable to previous
work [157, 133, 112] that claims static content dominates web traffic. The requests
originated from 110 “/8” IP networks, 7220 “/16” IP networks and 31250 “/24”
IP networks spread over the world. We claim that this server is typical. However,
the conclusions of this appendix are also supported by other measured traces and
generated traces.

The bottleneck resource of a request in this trace is hardly ever the CPU of the
server. The web server is a dual processor Pentium IV Xeon machine running Red
Hat Linux 7.3. CPU load is defined as the exponentially averaged number of jobs
in the run queue of the OS kernel scheduler (the Unix load average), The machine
can serve two CPU intensive applications with full CPU cycles. Figure A.3 plots the
complementary distribution of the CPU load during the period of the traces with the

vertical axis in log scale to better show details. This distribution can be modeled with

APPENDIX A. DOMAIN-BASED SCHEDULING ON WEB SERVERS 226

y = 0.0723e -0.0001x
0.1 R2=0.9855

0.01 4
0.001

0.0001 A

P(disk read 10>x)

0.00001 4

0.000001 -

0.0000001

0 20000 40000 60000 80000 100000

Hard disk read 10 in KB/sec

Figure A.4: Complementary distribution of hard disk read I/O on the web server.

Char read Block read WebRead Char write Block write
23604.2 1399254.2 29879.3 16777.9 50355.8

Figure A.5: Hard disk to memory bandwidth, KB/sec.

a exponential distribution with R? ~ 0.96. Figure A.3 shows that the probability
P[CPUload > 2] is minuscule. The memory system is also clearly not a bottleneck
based on these results as significant cache stalls would show up as increased load.

The bottleneck resource of a request in this trace is hardly ever the disk system
of the server. The machine’s file systems reside on a NFS-mounted (over private
gigabit Ethernet SAN) RAID 5 storage server. Figure A.4 shows the complementary
distribution of the storage system reads during the period of the trace. The vertical
axis is log scale to show details. The distribution can be modeled with a exponential
distribution with R? close to 0.99.

We benchmarked the storage system using Bonnie, which is a widely used utility
that measures the performance of Unix file system operations that an application
sees [2]. Bonnie reads and writes a 100 MB file (marked uncacheable) by character
or by block. Both sequential and random access are tested. Random block and

character throughput give us upper and lower bounds on the performance of file

APPENDIX A. DOMAIN-BASED SCHEDULING ON WEB SERVERS 227

system I/O that Apache sees. We also wrote our own benchmark (WebRead) to get
a sense of the typical read performance that Apache sees. WebRead simply reads the
files in our access log, in order, as fast as possible. Not surprisingly, the WebRead
performance is in between the character read and block read benchmark given by
Bonnie. WebRead’s performance is shown Figure A.4 as a vertical line, while all the
results are shown Figure A.5. We can see that probability of read throughput being
larger than the throughput measured in the WebRead benchmark is < 0.001, while
no recorded read throughput was larger than Bonnie’s block read benchmark. Notice
also that the highest throughputs seen are lower than the 125 MB/s throughput limit
of the Ethernet SAN, hence the SAN is also not a bottleneck.

As it is clear that the CPU, memory, and disk systems are not bottlenecks, if
there is any bottleneck it is in the network or the client. Based on many earlier
measurements of load behavior on clients that indicate their resources spend much
of their time idle [166, 73], it is extremely unlikely for a client to be the bottleneck.
If there is any bottleneck, it is in the network path to the client, which agrees with
earlier work [171, 112], which showed that the network is the bottleneck for the web
servers serving mainly static contents. Given the low rate of requests, it is highly
likely that a single request would perform similarly to the requests in our trace.
Hence, the high-resolution response time that we record in the Apache log is a close
approximation of the service time as defined above. Obviously, there are situations
where CPU or disk can become bottlenecks, such as in virtual server configuration
in which one physical server hosts several web sites, or on a web server that hosts
database-based dynamic web content.

Given the provenance of the trace, we can now use it to answer our question.
Figure A.7 (a) is a log-log scatter plot of file size versus service time. Visually, we

can see hardly any correlation between file size and service time. File transfer times

APPENDIX A. DOMAIN-BASED SCHEDULING ON WEB SERVERS 228

File Size R
X <30 KB 0.0616
30 < X <500 KB 0.1121
X > 500 KB 0.1033

Figure A.6: R depends on file size.

le+09 le+08
le+08 le+07
ool 1e+06
= le+06 =
] . § 100000
@ 100000 a
10000
| :
F] F]
- 1000 - —
100 100
10 — 10
1 1
100 1000 10000 100000 le+d& letQ7 let(8 letdd letlO 100 1000 10000 100000 let0e 1etd? let08 letl®
Service ame (Micio Seconds) Service ame (Micio Seconds)
(a) R=0.14 (b) R=0.25

Figure A.7: Scatter plot of file size VS. service time. (a) shows the plot of the whole
web trace, where the R is about 0.14. (b) shows the trace of a particular /16 network,
where the R is about 0.25.

vary over several orders of magnitude with same file size. Over the entire 1.5 million
requests in the trace, we find that R is a very weak 0.14. R varies slightly with file
size, as can be seen in Figure A.6.

Within a domain, R is larger. We define precisely what we mean by a domain and
connect it with CIDR in Section A.4. Here, simply consider it as a single network that
may be recursively decomposed into subnetworks. For example, Figure A.7 (b) is a
log-log scatter plot of file size versus service time for requests originating with a single
“/16” IP network, where the network address is 16 bits. R = 0.25 for this situation.
As the domain grows smaller (has fewer IP addresses, or more bits representing its
network address), R grows larger. For example, if we focus on a particular “/24”

LAN subnet (24 bit network address) that is contained within the previous network,

APPENDIX A. DOMAIN-BASED SCHEDULING ON WEB SERVERS 229

R = 0.39. We speculate that the reason for this behavior is that network bandwidth
heterogeneity from the server to the clients of a domain decreases as the size of the
domain decreases. This provides a different, but compatible, explanation for earlier
findings [33] that file size-based SRPT scheduling can decrease mean sojourn time by
a factor of 3-8 over PS in a LAN for load higher than 0.5, but can only decrease the
mean sojourn time by 25% on the WAN. In Section A.3, our simulations show that
when R =~ 0.4, as on the example LAN, file size-based SRPT outperforms PS by a
factor of about 3, but when the R < 0.2 (recall that our web trace showed R = 0.14)
file size-based SRPT performs similar to PS and can perform worse than PS if R
goes down further, when file sizes are hardly any indicator of service times at all.
We are actively acquiring additional traces, but this is difficult because web server
modifications are necessary to acquire fine grain service times. Many available traces,
such as those from the Internet Traffic Archive [7], our institution’s other web servers,
and others provide only file size, not service time and thus are unsuitable for our work.
We have, however, acquired many traces from web caches, described next, and built
a trace generator that allows us to control R as well as the distributions of service

time and interarrival time, described later.

A.2.2 Measurement on web caches

We examined 70 sanitized access logs from Squid web caches, made available through
the ircache site [8]. These traces contain actual fine grain service times (not response
times) in addition to file sizes. Internet object caching stores frequently requested
Internet objects (i.e., pages, images, and other data) on caches closer to the requester
than to the source. Clients can then use a local cache as an HTTP proxy, reducing
access time as well as bandwidth consumption.

Squid is a high-performance proxy caching server for web clients. Unlike tradi-

APPENDIX A. DOMAIN-BASED SCHEDULING ON WEB SERVERS 230

l povy
0.9 - ~,
08 | D
0.7 4 *
06 | o,
05 | .
04 | %
03 | e,
0.2 | 0 sr0000
0.1 - o,

*,
0 : : : : : %o
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

P[R>X]

Correlation Coefficient between file size and service time

Figure A.8: Complementary distribution of R in web cache traces.

tional caching software, Squid handles all requests in a single, non-blocking, 1/O-
driven process [10], making it very easy to determine the service time of a request.
Squid is similar to a web server in that it also accepts HTTP requests and sends
back requested files, but it is different in that the Squid servers form a overlay net-
work that uses the Internet Cache Protocol (ICP) to perform server selection for web
clients and load balancing among the cache servers [228, 227]. A client sees that it
typically receives a reply from the nearest cache server, while from the Squid cache
servers’ points of view, the Internet is divided into several regions with each cache
server typically serving requests for a specific region.

Because a single Squid cache serves clients largely from one region of the Internet,
the bandwidth heterogeneity to the clients is likely to be less than that seen by a web
server, which services clients regardless of region. This, we believe, should lead to
larger R being measured on Squid caches than on web servers. The partitioning of
the network as seen from the web server into domains that we describe in Section A.4
builds on this observation.

While we cannot (and do not) use web cache traces as proxies for web server

traces, it is instructive that R on the caches is also rather weak. Figure A.8 shows

APPENDIX A. DOMAIN-BASED SCHEDULING ON WEB SERVERS 231

a complementary distribution plot of the R values in the 70 traces. The traces were
collected from 10 squid web cache servers over 7 days Each trace contains from 0.1 to
1.1 million requests. The smallest R = 0.12, while the largest R = 0.61. The mean
is 0.34 with standard deviation 0.13. Given that we expect that R for web servers
will be lower than R for web caches by the reasoning in the previous paragraph, that
measured s on web caches are low suggests that R on web servers is likely to be
low as well.

In combination with the low R seen on our web server trace, we believe that we
can now answer the question posed by this section in the negative: The correlation

between request file size and service time on web servers is weak.

A.3 How is the performance affected by the weak
correlation?

We have seen that request service time on web servers and caches is not strongly
correlated with request file size. Here, we investigate, via simulation, how this weak
correlation (R) affects the performance of size-based scheduling policies (SRPT and
FSP, where actual service time is known a priori, and SRPT-FS and FSP-FS, where
the file size is used as the service time) and compare with a size-oblivious policy
(PS). Our metrics are the mean sojourn time and mean queue length. In our earlier
work [154], we find that for these metrics, the performance of SRPT-FS and FSP-FS
is dramatically affected by R, falling below that of PS for low R values. Here for
the web server case, where we have a fixed low R, we study how the performance
of the file-size based policies (SRPT-FS, FSP-FS) could divergence from their ideal

versions (SRPT, FSP) as we increase the load on the web server.

APPENDIX A. DOMAIN-BASED SCHEDULING ON WEB SERVERS 232

A.3.1 Simulator

Our simulator supports both M/G/1/m and G/G/n/m queuing systems. It is driven
by a trace in which each request contains the arrival time, file size, and service time.
In addition to the web server trace described in the previous section, our simulator
can also support synthetic traces generated with interarrival times from exponential,
bounded Pareto, and Weibull distributions, and file sizes from bounded Pareto and
Weibull distributions, and service times from bounded Pareto. The correlation R
between file size and service time in a synthetic trace can also be directly controlled.
We refer readers to our earlier work [154] for more details about this general-purpose

simulator.

A.3.2 Simulation with web server trace

Here we consider the performance of SRPT, SRPT-FS, FSP, FSP-FS, and PS on the
measured web server trace (R = 0.14) described in Section A.2.1. The mean service
time is 1250 microseconds. The scheduling policies are described in Figure A.1. Note
that although our web server trace represents very low load, here we vary the load in
the system by controlling the arrival process of the requests represented in the trace.
We make use of Poisson arrivals, Pareto arrivals, and Weibull arrivals and control
their mean rate in order to control the load. Load control is important, because,
as we discussed in Section A.2.1, the load captured in the trace is rather low. The
time units are microseconds throughout the rest of the appendix. Each simulation
throughout the rest of the appendix is repeated 20 times.

First, we consider G/G/1/m (Job interarrival has a heavy-tailed Pareto distri-
bution, file sizes and service times as in the trace). Figure A.9 shows the mean

sojourn times of different scheduling policies with increasing load, while Figure A.10

APPENDIX A. DOMAIN-BASED SCHEDULING ON WEB SERVERS 233

900000

—=—PS
800000 FSP
——SRPT
FSP-FS
600000 1| _— SRPT-Fs

700000 -

500000 -
400000 -
300000 -

200000 -
100000 4

0

Mean Sojourn Time in Microseconds

0 0.5 1 15 2
Load

Figure A.9: Mean sojourn time versus load, G/G/n/m, Pareto arrivals. Web server
trace driven simulation.

6000

—a—PS
FSP
—e—SRPT
FSP-FS
—%— SRPT-FS

5000

4000

3000

Mean Queue Length

2000

1000

0 o ; /

0 0.5 1 15 2
Load

Figure A.10: Mean queue length versus load, G/G/n/m, Pareto arrivals. Web server
trace driven simulation.

shows the mean queue length of different scheduling policies with increasing load
on the queue. In both figures, ideal SRPT and FSP perform very well and almost
identically. However, SRPT-FS and FSP-FS both perform quite poorly, and their
performance diverges dramatically from their ideal performance with increasing load.
SRPT-FS and FSP-FS perform worse than SRPT and FSP in all our simulations.
For a queue with unlimited queue capacity, the mean sojourn time and queue
length tend to be infinity if the load is over unity, and therefore it is meaningless

to present mean sojourn time and queue length. Our simulator uses a finite queue

APPENDIX A. DOMAIN-BASED SCHEDULING ON WEB SERVERS 234

capacity to better match implementations. The server will begin to reject jobs when
it is overloaded for some period of time (when queue is full). Hence, both mean
sojourn time and mean queue length are meaningful; they represent the behavior of
the server under transient overload.

We have also investigated a Weibull arrival process and Poisson arrival process,
where the interarrival times of requests in the trace are drawn from a Weibull distri-
bution and exponential distribution respectively. The results are similar to those for
the Pareto arrival process shown earlier.

Qur simulations show that the performance of SRPT-FS and FSP-FS, SRPT and
FSP where request file size is used as request service time, is largely affected by the
weak correlation R between file size and service time. With such a low R in our trace,
performance can degrade so far that PS is preferable to either of these policies. Our
trace shows such a low R. On the other hand, our earlier work [154] shows that
over wide range of R, including the range seen in the web cache traces examined,
increasing R can dramatically improve the performance for SRPT-FS. In the next
Section, we describe and evaluate a better estimator for service time that uses file
size, the network “domain” of the client, and past performance to the domain to
produce more accurate service time estimates in those regimes where the correlation

between file size and service time is low. We believe these regimes are commonplace.

A.4 Domain-based scheduling

We have found that request file size and service time are weakly correlated and that
the performance of size-based scheduling policies are strongly dependent on the degree
of this correlation. Given these results, a natural question is whether there is a better

service time estimator than file size, one whose estimates are more strongly correlated

APPENDIX A. DOMAIN-BASED SCHEDULING ON WEB SERVERS 235

with actual service time. Such an estimator must also be lightweight, requiring little
work per request. For this reason, we cannot use active probing techniques. Instead,

we explore the web logs and use past web requests as our probes.

A.4.1 Statistical stability of the Internet

Domain-based scheduling relies on the Internet being statistically stable over periods
of time, particularly from the point of view of the web server. Fortunately, there is
significant evidence that this is the case. This evidence falls into two classes, routing
stability and spatial and temporal locality of end-to-end TCP throughput.

Routing stability: Paxson [173] proposed two metrics for route stability, preva-
lence and persistency. Prevalence, which is of particular interest to us here, is the
probability of observing a given route over time. If a route is prevalent, then the
observation of it allows us to predict that it will be used again. Persistency is the
frequency of route changes. The two metrics are not closely correlated. Paxson’s
conclusions are that Internet paths are heavily dominated by a single route, but that
the time periods over which routes persist show wide variation, ranging from seconds
to days. However, 2/3 of the Internet paths Paxson studied had routes that per-
sisted for days to weeks. Chinoy found that route changes tend to concentrate at the
edges of the network, not in its “backbone” [61]. Barford, et al measured the web
performance in the wide area network and found that the routes from/to the client
to/from a web servers was asymmetric, but very stable [36].

Spatial locality and temporal locality of end-to-end TCP throughput:
Balakrishnan, et al analyzed statistical models for the observed end-to-end network
performance based on extensive packet-level traces collected from the primary web
site for the Atlanta Summer Olympic Games in 1996. They concluded that nearby

Internet hosts often have almost identical distributions of observed throughput. Al-

APPENDIX A. DOMAIN-BASED SCHEDULING ON WEB SERVERS 236

though the size of the clusters for which the performance is identical varies as a
function of their location on the Internet, cluster sizes in the range of 2 to 4 hops
work well for many regions. They also found that end-to-end throughput to hosts
often varied by less than a factor of two over timescales on the order of many tens
of minutes, and that the throughput was piecewise stationary over timescales of sim-
ilar magnitude [28]. Seshan, et al applied these findings in the development of the
Shared Passive Network Performance Discovery (SPAND) system [200]. Myers, et al
examined performance from a wide range of clients to a wide range of servers and
found that bandwidth to the servers and server rankings from the point of view of a
client were remarkably stable over time [167]. Yin Zhang, et al [238] found that three
Internet path properties, loss rate, delay and TCP throughput show various degrees
of constancy and concluded that one can generally count on constancy on at least

the time scale of minutes.

A.4.2 Algorithm

Although the Internet, web servers, and clients form a highly dynamic system, the
stability we pointed out in the previous section suggests that previous web requests
(the web server’s access log) are a rich history which can be used to better estimate
the service time of a new request. We assume that after processing a request we
know (1) its file size, (2) the actual service time, and (3) the IP address of the client.
Collecting this information is simple and efficient. Our goal is to develop an efficient
estimator that uses a history of such requests, combined with the file size and IP
address of the current request to determine the likely service time of the current
request. The correlation R between the estimated service time and the actual service
time should be higher than the correlation between file size and actual service time.

Recall that R must exceed a threshold in order for SRPT to perform better than PS,

APPENDIX A. DOMAIN-BASED SCHEDULING ON WEB SERVERS 237

and as R increases, the performance of SRPT increases.

Classless Inter Domain Routing (CIDR) [99] was proposed in 1993 as “a strategy
for address assignment of the existing IP address space with a view to conserve the
address space and stem the explosive growth of routing tables in default-route-free
routers”. The CIDR strategy has been widely deployed since 1993. “One major goal
of the CIDR addressing plan is to allocate Internet address space in such a manner
as to allow aggregation of routing information along topological lines”. Consider a
domain, a neighborhood in the network topology. The broad use of CIDR implies
that routes from machines in the domain to a server outside the domain will share
many hops. Similarly, the routes from the server to different machines in the domain
will also have considerable overlap. This also means that the routes will be likely
to share the same bottleneck network link and therefore have similar throughput
to/from the server. The smaller the domain, the more the sharing.

The aggregation of CIDR is along a hierarchy of increasingly larger networks and
is reflected in IP addresses. The first £ bits of an IP address gives the network of
which the address is a part, the first £ —1 bits give the broader network that contains
the first network, and so on. We exploit this hierarchy in domain-based scheduling,

the algorithm of which is given below.

1. Use the high order k bits of the client IP address to classify the clients into 2*

domains, where the k bits are treated as the domain address.

2. Aggregate past requests to estimate the service rate (or representative band-
width) for each domain. This can be done with several estimators, but our
experiments show that the estimator S = 1;_: performs the best. Here Sy is
the representative service rate, Fy is the sum of the requested file sizes from the

domain, and S; is the sum of the service times for these requests. Notice that

APPENDIX A. DOMAIN-BASED SCHEDULING ON WEB SERVERS 238

©c o o o
g o N ©
| | |

e 04 4

mated service time)

o
w
|

time and esti

o o
=N
! !

R (correlation cofficient between actual service

o

0 2 4 6 8101214161820222426283032

Bits used to define adomain

Figure A.11: Correlation R versus number of bits used to define a domain k.

updating this estimate after a request has been processed is trivial: simply add
the request’s file size and service time to Fy and Sy, respectively (two reads, two
adds, two writes). For each domain, we store Fy; and S;. An array of these pairs
is kept, indexed by the domain address. The total state size is 2¥*! floating

point numbers.

3. For each incoming client request, the web server first extracts the domain ad-
dress, indexes the array and computes Sg for the domain. It then estimates the
request’s service time as T,simate = g—;, where f; is the request file size. The
estimator requires a logical shift, two reads, a division, and a multiply. For a

request from a heretofore unobserved domain, which occurs exactly once per

domain, we simply use file size as the estimate.

4. Apply a size-based scheduling policy such as SRPT using the estimated service
times. We suffix the scheduling policy with “-D”: SRPT-D, FSP-D.

As we might expect, as domains become smaller (k gets larger), predictive per-

formance increases, at the cost of memory to store the state. Figure A.11 shows the

APPENDIX A. DOMAIN-BASED SCHEDULING ON WEB SERVERS 239

relationship between k, the number of bits used to define a domain and the corre-
lation R between the actual service time and estimated service time. The figure is
derived from our web server trace. R jumps to 0.26 with £ = 5 bits, beyond the
threshold at which SRPT begins to perform better than PS. Notice that this is a
mere 32 domains (state size of 256 bytes with 4 byte floats). After k = 24 bits, there
are only very small increases of R, probably because at this point we have divided the
Internet into LANs, where each machine on a LAN shares a common route to every
other machine in the Internet, and thus shares the same bottlenecks. The maximum

R we were able to achieve was 0.704.

A.4.3 Performance evaluation

To evaluate domain-based scheduling (SRPT-D and FSP-D, also see Figure A.1), we
use the methodology of Section A.3.2. We replay our web trace with Poisson, Pareto,
and Weibull arrivals to control load. We vary k, the number of high-order bits we
use to define a domain.

Figures A.12 and A.13 show the mean sojourn time and mean queue length of
all the scheduling policies with heavy-tailed Pareto arrivals as a function of k. Notice
that PS, FSP, SRPT, FSP-FS, and SRPT-FS are flat lines. PS ignores service time.
FSP and SRPT have exact knowledge of the service times (they represent the ideal
performance of these policies). FSP-FS and SRPT-FS use file size as a proxy for
service time (representing current practice). Notice that as we increase the number
of bits £ used to define a domain, the performance of SRPT-D and FSP-D first
exceeds that of PS and finally converges to near the ideal performance.

While SRPT-D’s performance increases continuously, with diminishing returns,
with increasing k, FSP-D is rather insensitive until ¥ = 16 to 24 bits, at which point

its performance jumps dramatically and comes very close to SRPT-D’s. Since R

APPENDIX A. DOMAIN-BASED SCHEDULING ON WEB SERVERS 240

900000

—a—PS
800000 —a—FSP
—e—SRPT
700000 % FSP-FS
= %€
E 600000 —X— SRPT-FS
3 FSP-D
§ 500000 —+—SRPT-D
c
§ 400000
s
300000 KKK XK XKXK KK K KK XK XK KKK KKK XK XK K K XK XX X K XX
200000 a2 2 a2 3 2 3}
100000
0

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Bits Used to define a Domain

Figure A.12: Mean sojourn time versus k for web trace, domain-based scheduling,
G/G/1/m, Pareto arrivals with a = 1.32, Lower bound 84, Upper bound 5 x 10°,
load 0.88.

doesn’t increase much beyond k£ = 24 bits, as we might expect, the performance of
SRPT-D and FSP-D plateaus. Similar conclusions can be drown for Poisson arrivals
and Heavy-tailed Weibull arrivals.

Qur performance evaluation of SPRT-D and FSP-D demonstrates that better,
practical estimators of service time are possible and that they can dramatically im-

prove the performance of size-based scheduling policies on web servers.

A.5 Conclusions and future work

This appendix has made the following contributions:

e We have demonstrated that the assumption that file size is a good indicator of
service time for web servers is unwarranted. File size and service time are only
weakly correlated. The implication is that size-based scheduling policies such

as SRPT and FSP are likely to perform worse than expected.

e We have evaluated the performance of SRPT-FS and FSP-FS, SRPT and FSP

by running simulations driven by our web server traces. We found that their

APPENDIX A. DOMAIN-BASED SCHEDULING ON WEB SERVERS 241

3000

—a—PS
—a— FSP
2500 —— SRPT
—%—FSP-FS
—X— SRPT-FS
FSP-D
—+— SRPT-D

2000

1500

.
15}
S
S}

KKK KK KK KK KKK K KKK KKK KKK KKK KK XK K K

e s s e

0 5 10 15 20 25 30 35

Mean Queue Length

o
=3
3

o

Bits used to define adomain

Figure A.13: Mean queue length versus k£ for web trace, domain-based scheduling,
G/G/1/m; Pareto arrivals with o = 1.32, Lower bound 84, Upper bound 5 x 105,
load 0.88.

performance does indeed degrade dramatically with the weak correlation re-
flected in the trace. In some cases SRPT-FS and FSP-FS can actually perform

worse than PS.

e We have proposed, implemented, and evaluated a better service time estimator
that makes use of the hierarchical nature of routing on the Internet and the
history of past requests available on the web server. We refer to SRPT and
FSP augmented with our domain-based estimator as SRPT-D and FSP-D. The

state size of our estimator is a parameter.

e We have found that, with a small state size, SRPT-D can outperform PS. With
a practical state size, SRPT-D can exhibit close to ideal performance. FSP-D
requires a significantly larger state size to perform close to its ideal. SRPT

reacts very quickly to increasingly accurate service time estimates.

Fairness is an important concern in the deployment of domain-based scheduling.
Slowdown has been used in previous research work [33, 112] and our earlier work [154]

as the fairness metric. We have studied fairness using our simulator and our initial

APPENDIX A. DOMAIN-BASED SCHEDULING ON WEB SERVERS 242

results show that SRPT-D outperforms PS in fairness under most conditions. We
are working to extend these results.

Because the TCP connection (and disk) that a request uses can block, implemen-
tations of size-based scheduling in web servers often use what we call back-filling.
An executing request that becomes blocked is preempted in favor of a request with
a larger number of bytes remaining to be handled—it is the non-blocked request of
smallest remaining size that is run, not the smallest request. Our simulations do not
model such a system. However, as far as we are aware, there are no analytical results
for size-based scheduling with blocking behavior either, making it quite difficult to
validate a simulator. We are working to extend our simulations and analysis to cover

this gap.

Appendix B

P2P server side scheduling

I also contributed to the P2P server side scheduling project conducted at the Com-
puter Science department of Northwestern University. The initial paper was pub-

lished in LCR’04 [182].

B.1 Introduction

The popularity and tremendous success of peer-to-peer (P2P) systems have motivated
considerable research on many of the paradigm’s technical aspects. In the context
of data-sharing services, a number of projects have explored a wide variety of issues
including more scalable object location, query and routing protocols, fair resource
sharing, and high churn-resilient systems, just to name a few. The majority of these
projects have, so far, concentrated on either the whole P2P infrastructure or the client
side of a peer. Little attention has been given to the peer’s server-side, although that
side determines much of the everyday user’s experience.

After determining alternative sources for a desired object, the requesting peer ini-

tiates the object downloads from a subset of possible providers; each party effectively

243

APPENDIX B. P2P SERVER SIDE SCHEDULING 244

adopting client and server roles. Recent studies suggest that the server-side in this
interaction often turn out to be a performance bottleneck. From the analysis of P2P
traffic collected at border routers at the University of Washington, Saroiu et al. [195]
report that a small number of Kazaa [14] servers are responsible for serving the ma-
jority of requests for content. Their traces indicate that over 80% of all download
requests are rejected because of the saturation of server capacity. Similarly, another
study of P2P workload by the same group [107] shows that object downloading in
Kazaa can be extremely slow, with 50% of all requests for large objects (>100MB)
taking more than one day and nearly 20% taking over one week to complete!

These results clearly argue for taking a closer look at the server-side of peers,
and this appendix reports on our initial steps. This work focuses on the scheduling
problem, and the goal is to design efficient and fair scheduling algorithms for P2P
servers that result in a lower average response time (a.k.a. sojourn time) for serving
downloading requests of client peers. Despite the similarity in purpose with research
on scheduling algorithms for web servers [25, 66, 34, 155], a closer look at the char-
acteristics of P2P request traces indicate that many findings from the web context

are not directly applicable to our problem:

e The fetch-at-most-once behavior of P2P client makes the distribution of object

popularity decidedly not conform to Zipf or other power-laws [107].

e Requests to P2P servers are often not for the whole object, but instead for
only a small chunk (with the remaining parts downloaded from other servers).
In fact, as our traces show, the amount of data actually served is often just a

fraction of the requested size.

e While web servers can reasonably assume full control over resources, P2P

servers are commonly configured with quite conservative upper bounds for re-

APPENDIX B. P2P SERVER SIDE SCHEDULING 245

source consumption to control their impact on their users’ other tasks.

e Although web servers often experience high load !, close to 1, they are typically
not overloaded. Popular P2P servers, on the other hand, normally operate
overloaded [195] due in part to low resource availability and, on average, large

object sizes.

This chapter starts by characterizing server workload through trace collection and
analysis. The traces of download requests were collected from a set of P2P servers
behind 100Mbps and cable modem connections. To the best of our knowledge, ours
is the first attempt at characterizing server workload on P2P systems.

This chapter studies the performance and fairness of different scheduling policies
using our workload characterization and trace-driven simulations. The results show
that average response time can be dramatically reduced by scheduling jobs on the

server-side of P2P systems using policies based on preemptive Shortest-Remaining-

Processing-Time (SRPT).

B.2 Trace Collection

For the study of server workload characterization and the subsequent analysis of
scheduling policies for P2P servers, this chapter makes use of set of traces collected
from Gnutella [13], a popular data-sharing P2P system.

The workload traces were collected using a set of honey-pots, peers offering a
large number of popular files to other peers in the Gnutella network. At each honey-

pot and for each incoming download request, the request arrival time, object name,

In this appendix, the load is defined as mean job arrival rate over mean service rate, as is the
standard definition for load in queuing theory [197].

APPENDIX B. P2P SERVER SIDE SCHEDULING 246

size of requested and served data chunk and transfer finish time were recorded for
further analysis. Each of the honey-pots was built on a modified open-source Gnutella
client [15].

To avoid potential bias in data collection, multiple honey-pots at different hosts
were employed, each serving its own collection of shared objects, and each configured
with different upper bounds for outgoing bandwidth and number of threads serving
requests. To ensure that the behavior of busy server peers is caught, most of these
limits were set much higher than their default settings. In order to capture potential
differences due to bandwidth classes, traces were also collected using a peer behind a

cable connection. Some key parameters of the traces are summarized in Figure B.1.

Connection Number of Number of Number of
Type Threads Objects Requests
100Mbps Ethernet 200 1,533 300,000
100Mbps Ethernet 100 1,533 150,000
100Mbps Ethernet 50 500 80,000
Cable Modem 20 1,533 40,000

Figure B.1: Key parameters of collected traces from P2P servers. Number of Threads
is the number of available server threads.

B.3 Server Workload Characterization

Server workload characterization forms the basis for any work on scheduling poli-
cies. This section addresses the following questions for the case of data-sharing P2P

servers. The terms “job” and “request” are used interchangeably.

e What is the distribution of job interarrival time?

e Are the job arrivals independent?

APPENDIX B. P2P SERVER SIDE SCHEDULING 247

e What is the distribution of job size and job service time??
e What is the likely performance bottleneck?

e What are the implications of our findings on P2P system scheduling?

B.3.1 Job Arrivals Form a Poisson Process

The job interarrival times is characterized for P2P servers based on the collected
traces. Figure B.2 gives the complementary cumulative distribution function (CCDF)
of job interarrival time at a P2P server for a typical trace. Notice that the vertical axis
is logarithmic; the straight line of the CCDF curve strongly indicates that the arrival
process can be modeled by an exponential. The least-squares curve-fitting using an
exponential function, indicated by the dash-line in Figure B.2, with coefficient of
determination R? = 0.9943 quantifies our argument.

The independence of job arrivals is tested by computing the serial correlation of
their interarrival times, as shown in Figure B.3. Clearly, the correlation between any
two separate interarrival times is effectively nil. Since each of our traces exhibits sim-
ilar behavior, job interarrivals for a P2P server can be well modeled as independent
of each other, clearly a significant difference from the web server case. Exponential-
lydistributed, independent interarrival times are the definition of a Poisson process.

Previous research [175, 72| has shown that Poisson processes are valid for modeling
the arrival of user-initiated TCP sessions such as TELNET and FTP connections.
HTTP arrivals, on the other hand, have been shown not to be Poisson. Deng et

al [72] point out that the aggregated interarrival times of HT'TP requests can better

2In this appendix, The job service time is defined as the wall clock time it takes a server to
finish sending data to a client over the Internet given the bounded outgoing bandwidth for the job.
Similarly, the response time of a job is the sum of its service time and its total waiting time in the
queue.

APPENDIX B. P2P SERVER SIDE SCHEDULING

Complementary Cumulative Percentages of Request Interarrival Time

10° : : : ‘ .
— Interarrival CDF |]
- - Exponential Fit
10 .
<
N
=
=
%
g Exponential Fit: 0.991*exp(—0.00047*x) oo
Q s\\
1077 .
10_3 | | | |
0 2000 4000 6000 8000 10000

Request Interarrival Time (Millisec)

Figure B.2: CCDF of interarrival time of requests to P2P server

248

APPENDIX B. P2P SERVER SIDE SCHEDULING 249

Serial Correlation of Job Interarrivals (3.91143 % sig at p=0.05)
2 T T T T T T

15F

0.5

Serial Correlation
o
I
|
|

|
|
|
|
|
|]
|
|
|
|
|
|
|
i
|
|
|
|
i
1!
il
tE
Il

I

o

4]
T

0 2000 4000 6000 8000 10000 12000
Lag

Figure B.3: Serial correlation of interarrival time of requests to P2P server

APPENDIX B. P2P SERVER SIDE SCHEDULING 250

be modeled by a heavy-tailed Weibull distribution. This is because HT'TP document
transmissions are not entirely initiated by the user; some are automatically generated
by the browser (requesting embedded files), resulting in a more bursty process.
Although P2P server requests, like web requests, are not solely initiated by the
users, there are some interesting peculiarities of client peers that may explain the
observed differences. For example, a client searching for a given object collects a
set, of candidate servers from which it later initiates parallel downloads. In addition,
clients can abandon (switch) servers in the middle of a download, after finding an

alternative source with higher available bandwidth [15, 12, 38|.

B.3.2 Job Sizes are Pareto

Job size is an important property for queuing models. Interestingly, for P2P schedul-
ing, there are three different possible definitions for job size: full object size, requested
data chunk size, and served data chunk size. While the full object size is usually very
large, most requested data chunks are small, covering only a small fraction of the
whole object. More importantly, there is usually also a significant difference between
the requested data chunk size and the actual served data chunk size. Some possible
explanations are discussed for this difference in Section B.4.

The CCDFs of the three job sizes are depicted in log-log scale in Figure B.4.
As it is clear from the graph, the three often differ by several orders of magnitude.
This clearly distinguishes P2P server requests from web requests and supports the
argument for taking a closer look at the server side of P2P systems. The remainder
of this appendix focuses mainly on the requested and served data chunk sizes as these
two are the main determinants of P2P server performance. For all of the traces, the
distribution of these sizes can be modeled as a Pareto with high R? values (0.9293
and 0.9452 for the example in Figure B.4).

APPENDIX B. P2P SERVER SIDE SCHEDULING 251

o CCDFs of Served Chunk Size, Requested Chunk Size, and Object Size
10" —&=-eaems

10

Probability[X>x]
=
o

1078 | Served Chunk |
F ¢ Requested Chunk i
—-x Full Object
-4
10 n PR | n PR | n PR n MR | n MR
10° 10" 10° 10° 10* 10°

Chunk Size (KBytes)

Figure B.4: CCDFs of served data chunk size, requested data chunk size, and full
object size

APPENDIX B. P2P SERVER SIDE SCHEDULING 252

B.3.3 Job Service Times Are Pareto

Job service time is another aspect of the workload that will help us understand the
potential benefits of different scheduling policies. Due to the different download
speeds of clients, job service time is not directly proportional to any of the three job
sizes, but can be well approximated by a Pareto distribution, one of the simplest

forms of heavy-tailed distributions.

B.3.4 Server Resource Utilization

Despite their apparent similarities with web servers, the resource utilization of P2P
servers could be quite different. Web servers typically try to serve requests as quickly
as possible and, as it has been shown, their bottleneck resource is commonly the
limited bandwidth of the outgoing link [34]. P2P servers, on the other hand, are
normally run on the background of common users’ machines and are thus more
conservative in their use of resources.

The honey-pots ® was instrumented to periodically (every three seconds) record
different metrics such as CPU and memory usage. The traces show that even when
the servers support 200 concurrent downloads and use up to 2 MBytes/second of
bandwidth, CPU utilization is always between 1.2% and 20%, and memory usage
is consistently below 20 MBytes. Thus, unlike the web server case, neither CPU,
memory, nor bandwidth turn out to be the performance bottleneck for a P2P server,
not even for the most popular of our honey-pots.

These low resources utilization can be largely attributed to the user-defined upper-

bounds on bandwidth usage and number of concurrent server threads. These same

3Each of our servers is a dual 1 GHz Pentium III machine with 1 GB RAM and two 30GB IDE
disks running Red Hat Linux 7.3.

APPENDIX B. P2P SERVER SIDE SCHEDULING 253

tight upper-bounds are what make P2P servers the performance bottleneck of the
whole system [195, 107].

It is clear from this analysis that the bottleneck resource to schedule is the set
of server threads on a server, i.e., the collection of concurrent jobs that a server can
serve. Our scheduling problem can then be formulated as follows: Given the total
number of concurrent jobs that a server can take, how to schedule the incoming jobs

so that their mean response time is minimized?

B.4 Evaluation of Scheduling Policies

B.4.1 Scheduling Policies

A good scheduling policy should minimize the average waiting time without starving
any jobs. Fairness is another important metric for evaluation of a scheduling policy.
Fairness has several metrics, with the most recent work [34] using slowdown — defined
as a request’s response time divided by the time it would require if it were the sole
request in the system.

The most commonly used scheduling polices are Processor Sharing (PS) and First
Come First Serve (FCFS). PS is commonly employed for CPU scheduling and in the
current Apache web server, while FCFS is used by common Gnutella implementa-
tions such as Mutella [15]. Neither of these policies makes use of other available
information, such as size of a job, to improve performance. *

Shortest Remaining Processing Time (SRPT) has been studied since the 1960s [197].
For a general queuing system (G/G/1) Schrage [196] proved that SRPT is optimal

in the sense that it yields — compared to any other conceivable strategy — the small-

‘However, some P2P systems (such as eDonkey [12]) consider reputation (scores) as part of their
scheduling policy.

APPENDIX B. P2P SERVER SIDE SCHEDULING 254

est mean value of occupancy and thus also of minimum waiting and delay time.
Perera [177] and Harchol-Balter, et al [34] evaluated SRPT in terms of fairness. Per-
era [177] studied the variance of delay time in the M/G/1/SRPT queuing systems
and concluded that the variance is lower than FIFO and LIFO [177], while in [34] the
authors proved that SRPT also outperforms PS in terms of mean slowdown, their
fairness metric. SRPT has been successfully applied to a number of application ar-
eas. Bux [48], for example, introduced SRPT into packet networks using the message
size as the service time. More recently, Harchol-Balter et al. [34] proposed the use of
SRPT in web servers, relying on file sizes as the estimator of service time.

This appendix introduces SRPT into P2P server-side scheduling. The adoption of
SRPT faces some challenges, however. To begin with, ideal SRPT requires knowledge
of requests’ service times, something not available a priori. In addition, while it may
be possible to estimate it [48, 34], the estimation is in itself challenging due to the

dynamic characteristics of P2P systems.

B.4.2 SRPT Scheduling in P2P Systems

Since a typical P2P download request is for a specific chunk of the whole object, as
described in Section B.3, we could use the requested chunk size as a rough estimate
of service time, and as the metric for SRPT scheduling. Unfortunately, as Figure B.5
shows, there are only weak correlations between requested chunk size and either
served chunk size or the real service time, which implies that requested chunk size
may not be a good estimate of service time. This discrepancy between the requested
and served chunk sizes could compromise the performance of SRPT [155].

Several characteristics of the P2P environment could help explain the weak cor-

relation:

APPENDIX B. P2P SERVER SIDE SCHEDULING 255

Statistics Service Served Requested

Time Chunk Size Chunk Size
Service Time 1.0000 0.7023 0.2833
Served Chunk Size 0.7023 1.0000 0.2339
Requested Chunk Size 0.2833 0.2339 1.0000

Figure B.5: Correlation coefficients between service time, served chunk size and
requested chunk size.

e A client can exit at any time during the data transmission.

e As already discussed, a P2P client can switch servers for a given data chunk

before the request is completed.

e Although each downloading process is supposed to share equal outgoing band-
width from the P2P server, bandwidth bottlenecks along the path to the des-

tination can make the individual download speed vary.

Figure B.5 also shows a much stronger correlation between served chunk size and
service time, indicating that served chunk size can be a very good estimate for service
time.

Despite the aforementioned discrepancies between requested and served chunk
sizes and the weak correlation between requested chunk size and service time, it
may be worthy to evaluate SRPT performance using requested chunk size as its
scheduling metric. Lu et al. [156] have studied the behavior of size-based schedulers
with inaccurate job size information and concluded that the SRPT can outperform
PS given an effective job size estimator. They [155] showed that SRPT outperforms
PS when R > 0.15 in the case of web server scheduling.

For comparison purposes, the scheduling performance for ideal SRPT is also pre-

sented. The three scheduling policies are denoted as SRPT-CS, SRPT-SS, and SRPT,

APPENDIX B. P2P SERVER SIDE SCHEDULING 256

Mean Response Time under Different Loads

2500 \ \ ‘ ‘ ‘ ‘ ‘
—e— FCFS
~- PS
* SRPT-CS
i —— SRPT-SS ||
2000 - - SRPT

1500} X 1

10001 i

Mean Response Time (Second)

n
o
o
T
|

Figure B.6: Mean Response time for different scheduling policies under varying load

respectively. Notice that SRPT-CS can be directly implemented with current tools,

while SPRT-SS would require an accurate estimator.

B.4.3 Performance Analysis

A general purpose queuing simulator is built to evaluate the performance of different
policies, including PS, FCFS, SRPT-CS, SRPT-SS and ideal SRPT. All simulations
were driven by the server-side request traces. For all of the simulations the queue
capacity is set to 500. A time slice of 0.01 seconds is used for PS. Besides our own
work [156], we are not aware of other previous research addressing SRPT performance
with inaccurate job size information.

Figure B.6 gives the mean response time of the five scheduling policies handling

APPENDIX B. P2P SERVER SIDE SCHEDULING

Rejection Rate
© © o o o o o
w N [6)] (2] ~ (o] (o] =

o
N

0.1

Rejection Rate under Different Loads

T

T

T

—e— FCFS

~- PS

*- SRPT-CS

—+— SRPT-SS
--- SRPT

3 4 5 6 7
Load

8

9

10

257

Figure B.7: Rejection rate for different scheduling policies under varying load

APPENDIX B. P2P SERVER SIDE SCHEDULING 258

all requests for a P2P server, with the system load varying between 0.1 to 10. The
advantages of the three SRPT-based policies over PS and FCFS are clear, especially
when the load is close to or above 1°. When the load is 1.76, for instance, mean
response time is 2244.08 seconds under FCFS and 1569.89 seconds under PS. For
SRPT-CS, SRPT-SS, and SRPT, however, the number drops to 903.61 seconds,
322.621 seconds, and 151.451 seconds, respectively. This confirms our expectations
of SRPT performance.

Similar to what can be observed for web servers [155], even with only a weak
correlation between requested chunk size and actual service time, SRPT-CS achieves
considerable performance gains over both PS and FCFS. As would be expected,
due to the strong correlation between served chunk size and service time, SRPT-SS
performs significantly better and even approaches the performance of ideal SRPT
under several different system loads.

The actual served chunk size, upon which SRPT-SS relies, is not known until
the request is completed. However, it should be possible to predict it fairly accu-
rately. One possible way of achieving this is by finding correlations between object
popularity and the level of discrepancy between the requested and served data chunk
size. Another approach could be based on both the prediction of served chunk size
and the download speed of the client. For the latter, the connection type and the
network distance to the client, such a domain-based scheduling, could be potentially

applied [155].

5In this appendix we are mostly interested in the case where server load is larger than 1, which
is normal for a popular P2P server. Moreover, since job arrivals form a Poisson process and lack
burstiness, the queue length shrinks abruptly when the load drops below 1. In all scheduling policies
evaluated, for example, the mean queue length drops to around 0.10 when system load is 0.75. As
can be seen in Figure B.6, SRPT-based scheduling policies still outperform FCFS and PS when the
load is smaller than 1, as long as there are jobs waiting in the queue.

APPENDIX B. P2P SERVER SIDE SCHEDULING 259

B.4.4 Fairness Concerns

One major concern with SRPT scheduling is that it is possible to design an adversarial
workload in which SRPT leads to starvation of large jobs. That is, SRPT can be
made to behave unfairly. Fortunately, previous research on M/G/1 queuing systems
with comparable workloads have shown that the starvation does not occur [177, 34].
Perera [177] proves that the variance of delay time of ideal SRPT is smaller than that
of FIFO and LIFO, while Harchol-Balter [34] shows that the mean slowdown of ideal
SRPT is actually smaller than that of FCFS and PS. In the context of P2P server
scheduling, we consider fairness issues of a scheduling policy from three different
aspects: mean slowdown of large jobs, rejection rate of requests, and distribution of
rejected job size.

Figure B.7 shows the rejection rates for the five policies under various system
loads. It can be seen that SRPT actually results in the lowest rejection rate; SRPT-
CS and SRPT-SS also reject fewer jobs than FCEFS and PS. Our simulations also
demonstrate that the distribution of rejected job size is almost identical for all evalu-
ated scheduling policies. Moreover, under various system loads, SRPT-based schedul-
ing policies yield lower mean slowdown for large jobs. When the system load is two,
for instance, the mean slowdown for the top 10% largest jobs in the system are: 15.496

(FCFS), 25.615 (PS), 10.723 (SRPT-CS), 8.741 (SRPT-SS), and 7.707 (SRPT).

B.5 Conclusions and Future Work

The server-side of P2P systems often turns out to be the performance bottleneck.
Surprisingly, it has received little attention from the research community. This ap-
pendix starts this exploration by looking at the problem of download request schedul-

ing. The trace data of P2P download requests experienced by individual P2P servers

APPENDIX B. P2P SERVER SIDE SCHEDULING 260

was collected and performed analysis and modeling of this server workload. Two
SRPT-based scheduling policies were proposed and show their advantages through
trace-driven simulations.

Analysis of several inherent characteristics of P2P server requests also reveals con-
siderable room for improvement in estimating request service time, which would let
us approach the performance of ideal SRPT. Two possible approaches for estimating
service time include: predicting served data chunk size based on object popular-
ity and requested chunk size, and predicting transfer rate based on client type and
Internet path characteristics.

Other interesting directions of future work in P2P server-side scheduling are also

identified:

e Deeper and more thorough analyses of fairness issues for various scheduling

policies.

e P2P server trace collection from different hosts, increasing both the geograph-

ical and connection variety.

e Modeling and scheduling for cooperative uploading/downloading, as employed

in [12, 11].

e Implementation and evaluation of various scheduling models in P2P software

and its evaluation on large-scale Internet testbeds.

