
 Name: _____________________________

CS 211
Spring 2004

Midterm

1) Using classic compact “what, me worry?” C style, define the C string function

strcat(s1, s2) which copies the characters in s2 onto the end of s1. For
example, if s1 = "abc" and s2 = "def" then afterwards s1 = "abcdef". (5
points)

char * strcat(char *s1, char *s2)
{
 char *r = s1;
 while (*s1) s++;
 while (*s1++ = *s2++);
 return r;
}

Several people wrote s1[i] = s2[i++]. This is wrong. Depending on the compiler, either
the left or right side might be evaluated first, leading to different results.

2) Using reference parameters, not explicit pointers, define a function swap to swap two

integers. Show how swap would be called to exchange a[i] and a[j]. (3 points)

void swap(int &x, int &y)
{
 int temp = x;
 x = y;
 y = temp;
}

Sample call: swap(a[i], a[j));

���������strtcat() returns the
concatenated string, not void.

���������Need to save start of s1 so
we can return it. Or we could increment r
and return s1.

���������Skip to the end of s1.

���������Same loop as strcpy(). No []
or separate index variable needed. That’s
the point (in C) or pointers.

���������No dererference operators.
No need for a separate assignment
statement to set temp. Only one temp var
needed (some people used two).

���������No address-of operators.

2

3) The following C string code is very broken. Circle every mistake, and describe what’s
wrong and what might happen if this code is run. Be specific! Don’t bother fixing. (5
points)

#include <iostream>
using std::cin;
using std::cout;
using std::endl;

#include <string.h>
using std::strcat;

char * getResponse();

int main()
{
 char *response = getResponse();
 cout << response << endl;
}

char * getResponse()
{
 char name[20];
 char response[40];
 cout << "Enter name: ";
 cin >> name;
 strcat(response, "Hello, ");
 strcat(response, name);
 return response;
}
The buffer overflows mean that a hacker could attack a machine running this code.

Fortunately (!), not initializing response and returning a pointer to it means this program
will probably crash with a segmentation fault before that happens.

Many people thought cout << response was wrong in some way. It’s fine.

It’s also legal (but bad style) to omit return 0 in main().

Almost everyone missed returning a pointer to a local variable. It’s very important to
know why this is a major error. It can be fixed (sort of) by making response a static
variable, but that leads to string sharing that is almost always a bad idea.

���������<cstring>. <string> is not
correct – that defines the C++ string
class.

���������input could overflow name
buffer

���������response never initialized to
empty string. To fix, either put '\0' in
response[0] or use strcpy().

���������Name could easily overflow
response buffer

���������returns a pointer to a local
variable, which will be garbage after the
function exits.

3

4) Deitel gives this algorithm for shuffling an array of N cards: Make an array A of N
empty slots. For each of the N cards, choose a slot in A at random until you find an
empty one, and put the card there.

Explain why this algorithm is incredibly inefficient. Be specific. Use an example (3
points).

As the slots get filled up, it will spend more and more time generating random
numbers that access filled slots. At the end, for example, it will keep guessing until it
randomly finds the one free slot. This gets worse and worse as N gets larger. For
example, with a million cards, at the end it would be randomly trying to find 1 slot
out of a million.

5) On the following pages, implement the classes Book and BookList so that code like
the following will work. The Book constructor should default both title and author to
empty strings, and store them as instances of string internally. The BookList
constructor should take any integer N, and internally create an array of Book’s.
Follow best practices, e.g., make everything const that can be, minimize the amount
of implementation code in the header file, and so on.

#include <iostream>
using std::cout;
using std::endl;
using std::ostream;

#include "booklist.h"

int main()
{
 BookList books(2);
 books.setBook(0, Book("C++", "Deitel"));
 books.setBook(1, Book("ICBR", "Riesbeck"));
 for (int i = 0; i < books.size(); ++i)
 {
 cout << i << ": " << books.getBook(i)<< endl;
 }
 return 0;
}

prints

0: C++ by Deitel
1: ICBR by Riesbeck

4

a) Write a single complete header file, booklist.h, for Book and BookList, with
#include’s, using declarations, and header guard. (15 points)

#ifndef BOOKLIST_H
#define BOOKLIST_H

#include <iostream>
using std::ostream;

#include <string>
using std::string;

class Book {
public:
 Book(const string &t = "", const string &a = "");
 string getTitle() const;
 string getAuthor() const;
private:
 string myTitle;
 string myAuthor;
};

class BookList {
public:
 BookList(int n);
 ~BookList();
 int size() const;
 Book getBook(int i) const;
 void setBook(int i, const Book &b);

private:
 int mySize;
 Book *myBooks;
};

ostream &operator<< (ostream &out, const Book &b);

#endif

Getting the header file correct is harder than the code!

Many people were pretty bad about using const and const references.

It is very bad to say using namespace std; in a header file. This would cause any
code using the header to get EVERY name in std, which could easily cause name
conflicts. It’s OK, but not recommended, in .cpp files.

Some people made BookList::size static, which isn’t appropriate at all. Each BookList is
a different size.

���������header guard

���������ostream needed for
operator<< declaration, but cout, cin, etc
are NOT needed

���������string needed for title and
author variables

���������Default parameters must be
specified in the header, so the compiler
knows. This also gives us the default
constructor needed for the new[] call in
BookList::BookList().

���������const member functions.
Omitting these means operator<< has to
be a friend and makes Book less useful.

���������setAuthor() and setTitle()
OK but not needed.

���������We need a destructor to
deallocate the memory allocated by the
constructor.

���������string is NOT a good return
type. It avoids needing to overload
operator<< but makes getBook() useless
for getting actual Book data.

���������more const member
functions. It’s not necessary to const
primitive types like int.

���������This will be an array but we
don’t know the size until construction.

���������ostream reference returned

���������operators must be declared
in header so compiler knows about them.
Does NOT need to be a friend if it uses
public accessors. Takes const Book
reference. It was OK to omit getTitle()
and getAuthor() and make operator<< a
friend, but in any real code you’d need
these accessors anyway.

5

b) Write the implementation file booklist.cpp for Book and BookList. Don’t
forget to overload operator<<. (10 points)

#include <iostream>
using std::ostream;

#include <string>
using std::string;

#include "booklist.h"

Book::Book(const string &t, const string &a)
 : myTitle(t), myAuthor(a)
{}

string Book::getTitle() const { return myTitle; }

string Book::getAuthor() const { return myAuthor; }

ostream &operator<< (ostream &out, const Book &b)
{
 return out << b.getTitle() << " by " << b.getAuthor();
}

BookList::BookList(int n)
 : mySize(n), myBooks(new Book[n])
{}

BookList::~BookList() { delete[] myBooks; }

int BookList::size() const { return mySize; }

Book BookList::getBook(int i) const { return myBooks[i]; }

void BookList::setBook(int i, const Book &b)
{ myBooks[i] = b; }

Some people tried to allocate the Book array in a loop like this:

 for (int i = 0; i < n; ++i) {
 books[i] = new Book;
 }

This does NOT work because books has not been allocated any space so books[i] is
accessing some random location in memory.

It was not OK to make an array of some fixed maximum size.

���������no need for cout, cin, or
endl since we don’t use them here.

���������It can be argued that you
know that these headers are already
included by booklist.h because the
function signatures use ostream and
string. But it’s clearer to be explicit.

���������Initialization lists used.

���������Legal since << returns the
stream.

���������Initialization lists again.

���������Critical to use delete[] not
delete.

���������Checking the validity of i
would be good.

