
Test 1 Review

This is a general study guide for the test. In addition to the list of topics below, study the class notes
and the relevant sections of the textbook. Do not just memorize terms; most questions will be testing your
understanding of the concepts. The exam will be closed book/notes and may contain several different kinds
of questions (such as multiple choice, short-answer, debugging, coding, etc.). If you have to write any code,
it will not be extensive, but you will be graded for syntax and correctness.

• The compilation process
What does the compiler do? What does the linker do? What is the debugger and how can it help us
find errors? What are preprocessor directives?

• Variables & constants
Naming rules & conventions: What is a valid variable name? What should be avoided when naming
identifiers?

Literals: What is a literal? Why is better to use #define for literals than to hard-code them? What
is the advantage of const over #define?

Basic operators: What is an expression? What are precedence & associativity? What are the prece-
dence and associativity rules for the arithmetic, logical and relational operators?

• Functions, etc.
Parameters: What are the actual parameters? What are the formal parameters? What is a prototype
and its syntax? What is call-by-value and what is call-by-reference? When the argument is a pointer is
that call-by-value or call-by-reference? Why and how would we use const when passing an argument
by reference?

Scope & storage: What does scope mean? What is local scope? File scope? Class scope? Prototype
scope? What does storage class mean? What is automatic storage? Static storage? External storage?

Stack frame: What is the stack frame? How does it change when a function is called? What is typically
stored there? What isn’t stored in the stack?

• Conditionals
if, if/else and switch statements: syntax, use. What should be the type of the control variable in
a switch? Why do we use break and what will happen if we don’t? What is the fall-through effect?
What is the default case and why should we have one? Can an if statement always be converted
into a switch?

• Loops
for, while and do-while: syntax, use. What are the effects of continue, break and return in a
loop? Why are floating point control variables dangerous?

• Arrays
Basics: What is an array? How is it declared? What does its name represent? How do you pass an
array as an argument to a function? How do you pass an array element as an argument to a function?
What types of elements can an array have? Don’t forget about zero-indexing.

• Pointers
Basics: What is a pointer variable? How do you declare and initialize one? Why are pointers danger-
ous? How are pointers related to arrays? Operators *, &. Pointer arithmetic.

Memory issues: What is NULL? What is dynamic memory allocation? new and delete. Using pointers
to implement dynamic arrays.

Functions: How do we pass a pointer to a function?

1



• Classes
Basics: What is the idea behind OOP? What is a class and what is an object? How is a class
defined? What are private and public members? Why and how do we separate the interface from
the implementation? How is conditional compilation achieved?

Special functions: What are the constructors, destructor, copy constructor? When and how are they
called? When and why are they necessary?

• C-strings
Basics: How are C-style strings implemented?

Functions: You should be able to use strcpy, strcat, strlen, strcmp and their ‘n’ versions.

2


